Adaptive-Uniform-Experimental-Design-Based Fractional-Order Particle Swarm Optimizer with Non-Linear Time-Varying Evolution
Abstract
:1. Introduction
2. FPSO and FPSO-NTE
3. AUED-Based FPSO (AUFPSO) with NTE
- Initialization of the AUED method in the proposed FPSO-NTE algorithm
- Step 1.
- Define the experimental parameters as the four constant coefficients λ, α, β, and γ. For each parameter, set the range from 0 to 2, and set the solution accuracy to 0.0001.
- Step 2.
- Set the experimental output as the fitness value.
- Step 3.
- Set the stepwise ratio to 0.8.
- Step 4.
- Select a suitable ten-level uniform layout of U10(104), as shown in Table 1.
- Step 5.
- Repeat steps 1–4 until the objective value is reached or until the fitness value does not obtain a near-objective value in two consecutive ten-level uniform layout experiments.
- Perform the ten-level uniform layout experiments
- Step 1.
- The ranges for each parameter are divided into ten discrete values according to the chosen ten-level uniform layout of U10(104).
- Step 2.
- Assign ten discrete values of each parameter into the chosen ten-level uniform layout of U10(104), shown as Table 2.
- Step 3.
- Perform this process 15 times for each ten-level uniform layout experiment and record the average as the output.
- Update the search range for next ten-level uniform experiments
- Step 1.
- For each parameter, calculate the search range according to the best combination in this stage and the stepwise ratio (0.8). The updated Algorithm 1 is shown below.
- Step 2.
- Return to main step B and execute the experimental steps until the stop condition is met.
Algorithm 1 |
Start For K = 1 to PARA_NO LT ← LB(K); UT ← UB(K); LB(K) ← BEST(K) − (UT − LT) × SWR ÷ 2; UB(K) ← BEST(K) + (UT − LT) × SWR ÷ 2; If LB(K) < LT LB(K) = LT; End If UB(K) > UT UB(K) = UT; End For I = 1 to EXP_NO LEVEL(I, K) ← LB(K) + ((UB(K) − LB(K))/(EXP_NO − 1) × (I − 1)); End End End |
4. Simulation Results and Comparisons
4.1. Example (1): Proposed AUFPSO-NTE in Comparison with FPSO, PSO-FOV, MPSO, and PSO
4.2. Example (2): Proposed AUFPSO-NTE in Comparison with FVFP-PSO, FP-PSO, FV-PSO, and PSO
4.3. Example (3): Comparison of the Proposed AUFPSO-NTE with AFO-FPSO, NCPSO, FO-DPSO, FPSO, APSO, DPSO, HPSO, and PSO
4.4. Example (4): Comparison of the Proposed AUFPSO-NTE with HAFPSO, GAPSO, HFPSO, FPSO, and PSO
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995. [Google Scholar]
- Wang, Y.; Feng, X.Y.; Huang, Y.X.; Pu, D.B.; Zhou, W.G.; Liang, Y.C. A Novel Quantum Swarm Evolutionary Algorithm and Its Applications. Neurocomputing 2007, 70, 633–640. [Google Scholar] [CrossRef]
- Rezaee Jordehi, A.; Jasni, J. Parameter Selection in Particle Swarm Optimisation: A Survey. J. Exp. Theor. Artif. Intell. 2013, 25, 527–542. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, J.G.; Gou, J. Image Compression Method Using Improved PSO Vector Quantization. In Proceedings of the Advances in Natural Computation: First International Conference, ICNC, Changsha, China, 27–29 August 2005. [Google Scholar]
- Navimipour, N.J.; Eslamic, F. Service Allocation in the Cloud Environments Using Multi-Objective Particle Swarm Optimization Algorithm based on Crowding Distance. Swarm Evol. Comput. 2017, 35, 56–64. [Google Scholar]
- Kerdphol, T.; Fuji, K.; Mitani, Y.; Watanabe, M.; Qudaih, Y. Optimization of a Battery Energy Storage System Using Particle Swarm Optimization for Stand-Alone Microgrids. Electr. Power Energy Syst. 2016, 81, 32–39. [Google Scholar] [CrossRef]
- Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A Novel Fuzzy Adaptive Configuration of Particle Swarm Optimization to Solve Large-Scale Optimal Reactive Power Dispatch. Appl. Soft Comput. 2017, 53, 441–456. [Google Scholar] [CrossRef]
- Chou, P.Y.; Tsai, J.T.; Chou, J.H. Modeling and Optimizing Tensile Strength and Yield Point on a Steel Bar Using an Artificial Neural Network with Taguchi Particle Swarm Optimizer. IEEE Access. 2016, 4, 585–593. [Google Scholar] [CrossRef]
- Girish, B.S. An Efficient Hybrid Particle Swarm Optimization Algorithm in a Rolling Horizon Framework for the Aircraft Landing Problem. Appl. Soft Comput. 2016, 44, 200–221. [Google Scholar]
- Shi, Y.; Eberhart, R.C. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical Study of Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Tracking and Optimizing Dynamic Systems with Particle Swarm. In Proceedings of the Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001. [Google Scholar]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef]
- Chatterjee, A.; Siarry, P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization. Comput. Oper. Res. 2006, 33, 859–871. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, J.; Yuan, J. A Modified Particle Swarm Optimizer with Dynamic Adaptation. Appl. Math. Comput. 2007, 189, 1205–1213. [Google Scholar] [CrossRef]
- Ko, C.N.; Chang, Y.P.; Wu, C.J. An Orthogonal-Array-based Particle Swarm Optimizer with Nonlinear Time-Varying Evolution. Appl. Math. Comput. 2007, 191, 272–279. [Google Scholar] [CrossRef]
- Ali, M.M.; Kaelo, P. Improved Particle Swarm Algorithms for Global Optimization. Appl. Math. Comput. 2008, 196, 578–593. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y. On Convergence and Parameter Selection of an Improved Particle Swarm Optimization. Int. J. Control Autom. Syst. 2008, 6, 559–570. [Google Scholar]
- Huang, S.R. Survey of Particle Swarm Optimization Algorithm. Comput. Eng. Des. 2009, 30, 1977–1980. [Google Scholar]
- Li, X. Niching without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE Trans. Evol. Comput. 2010, 14, 150–169. [Google Scholar] [CrossRef]
- Tsai, H.C.; Tyan, Y.Y.; Wu, Y.W.; Lin, Y.H. Isolated Particle Swarm Optimization with Particle Migration and Global Best Adoption. Eng. Optim. 2012, 44, 1405–1424. [Google Scholar] [CrossRef]
- Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Li, Y.; Shi, Y.H. Particle Swarm Optimization with an Aging Leader and Challengers. IEEE Trans. Evol. Comput. 2013, 17, 241–258. [Google Scholar] [CrossRef]
- Pehlivanoglu, Y.V. A New Particle Swarm Optimization Method Enhanced with a Periodic Mutation Strategy and Neural Networks. IEEE Trans. Evol. Comput. 2013, 17, 436–452. [Google Scholar] [CrossRef]
- Li, N.J.; Wang, W.J.; Hsu, C.C.; Chang, J.W.; Chang, J.W. Enhanced Particle Swarm Optimizer Incorporating a Weighted Particle. Neurocomputing 2014, 124, 218–227. [Google Scholar] [CrossRef]
- Wang, L.; Yang, B.; Li, Y.; Zhang, N. A Novel Improvement of Particle Swarm Optimization Using Dual Factors Strategy. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014. [Google Scholar]
- Cheng, R.; Jin, Y. A Social Learning Particle Swarm Optimization Algorithm for Scalable Optimization. Inf. Sci. 2015, 291, 43–60. [Google Scholar] [CrossRef]
- Lynn, N.; Suganthan, P.N. Heterogeneous Comprehensive Learning Particle Swarm Optimization with Enhanced Exploration and Exploitation. Swarm Evol. Comput. 2015, 24, 11–24. [Google Scholar] [CrossRef]
- Tsai, J.T.; Chou, P.Y.; Chou, J.H. Color Filter Polishing Optimization Using ANFIS with Sliding-Level Particle Swarm Optimizer. IEEE Trans. Syst. Man Cybern. Syst. 2017. [Google Scholar] [CrossRef]
- Kao, Y.T.; Zahara, E. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions. Appl. Soft Comput. 2008, 8, 849–857. [Google Scholar] [CrossRef]
- Xin, B.; Chen, J. A Survey and Taxonomy on Hybrid Algorithms based on Particle Swarm Optimization and Differential Evolution. J. Syst. Sci. Math. Sci. 2011, 31, 1130–1150. [Google Scholar]
- Noel, M.M. A New Gradient Based Particle Swarm Optimization Algorithm for Accurate Computation of Global Minimum. Appl. Soft Comput. 2012, 12, 353–359. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Gu, X. A Hybrid Co-Evolutionary Cultural Algorithm based on Particle Swarm Optimization for Solving Global Optimization Problems. Neurocomputing 2012, 98, 76–89. [Google Scholar] [CrossRef]
- Zhao, C.N.; Li, Y.S.; Lu, T. Analysis and Design of Fractional Order System; National Defense Industry Press: Beijing, China, 2011. [Google Scholar]
- Solteiro Pires, E.J.; Tenreiro Machado, J.A.; Moura Oliveira, P.B.; Boaventura Cunha, J.; Mendes, L. Particle Swarm Optimization with Fractional-Order Velocity. Nonlinear Dyn. 2010, 61, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Solteiro Pires, E.J.; Tenreiro Machado, J.A.; Moura Oliveira, P.B. Fractional Particle Swarm Optimization. In Mathematical Methods in Engineering; Fonseca, N.M., Tenreiro Machado, J.A., Eds.; Springer: London, UK, 2014; pp. 47–56. [Google Scholar]
- Gao, Z.; Wei, J.; Liang, C.; Yan, M. Fractional-Order Particle Swarm Optimization. In Proceedings of the 26th Chinese Control and Decision Conference (CCDC), Changsha, China, 31 May–2 June 2014. [Google Scholar]
- Couceiro, M.; Ghamisi, P. Fractional Order Darwinian Particle Swarm Optimization: Applications and Evaluation of an Evolutionary Algorithm; Springer: Cham, Switzerland, 2016; pp. 11–20. [Google Scholar]
- Guo, T.; Lan, J.L.; Li, Y.F.; Chen, S.W. Adaptive Fractional-Order Darwinian Particle Swarm Optimization Algorithm. J. Commun. 2014, 35, 130–140. [Google Scholar]
- Akbar, S.; Zaman, F.; Asif, M.; Rehman, A.U.; Raja, M.A.Z. Novel application of FO-DPSO for 2-D parameter estimation of electromagnetic plane waves. Neural Comput. Appl. 2019, 31, 3681–3690. [Google Scholar] [CrossRef]
- Ates, A.; Alagoz, B.B.; Kavuran, G.; Yeroglu, C. Implementation of fractional order filters discretized by modified fractional order darwinian particle swarm optimization. Measurement 2017, 107, 153–164. [Google Scholar] [CrossRef]
- Shahri, E.S.A.; Alfi, A.; Machado, J.T. Fractional fixed-structure H∞ controller design using augmented lagrangian particle swarm optimization with fractional order velocity. Appl. Soft Comput. 2019, 77, 688–695. [Google Scholar] [CrossRef]
- Wei, J.R.; Ma, Y.; Xia, R.; Jiang, H.B.; Zhou, T.T. Image segmentation algorithm based on Otsu optimized by fractional-order particle swarm optimization. Comput. Eng. Des. 2017, 38, 3284–3290. [Google Scholar]
- Guo, F.; Peng, H.; Zou, B.; Zhao, R.; Liu, X. Localisation and segmentation of optic disc with the fractionalorder Darwinian particle swarm optimization algorithm. IET Image Process. 2018, 12, 1303–1312. [Google Scholar] [CrossRef]
- Ahilan, A.; Manogaran, G.; Raja, C.; Kadry, S.; Kumar, S.N.; Agees Kumar, C.; Jarin, T.; Krishnamoorthy, S.; Kumar, P.M.; Babu, G.C.; et al. Segmentation by Fractional Order Darwinian Particle Swarm Optimization Based Multilevel Thresholding and Improved Lossless Prediction Based Compression Algorithm for Medical Images. IEEE Access. 2019, 7, 89570–89580. [Google Scholar] [CrossRef]
- Tang, Q.; Gao, S.; Liu, Y.; Yu, F. Infrared image segmentation algorithm for defect detection based on FODPSO. Infrared Phys. Technol. 2019, 102, 103051. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Peng, W.X.; Qiu, C.H.; Jiang, J.; Xia, S.R. Fractional-order Darwinian PSO-based feature selection for media-adventitia border detection in intravascular ultrasound images. Ultrasonics 2019, 92, 1–7. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Hajipour, A.; Tavakoli, H. Design and optimization of a CMOS power amplifier using innovative fractional-order particle swarm optimization. Appl. Soft Comput. 2019, 85, 105831. [Google Scholar] [CrossRef]
- Akdağ, O.; Okumuş, F.; Kocamaz, A.F.; Yeroglu, C. Fractional Order Darwinian PSO with Constraint Threshold for Load Flow Optimization of Energy Transmission System. Gazi Univ. J. Sci. 2018, 31, 831–844. [Google Scholar]
- Zameer, A.; Muneeb, M.; Mirza, S.M.; Raja, M.A.Z. Fractional-order particle swarm based multi-objective PWR core loading pattern optimization. Ann. Nucl. Energy 2020, 135, 106982. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhang, H.; Qiu, C.H.; Xia, S.R. A Novel Feature Selection Method Based on Extreme Learning Machine and Fractional-Order Darwinian PSO. Comput. Intell. Neurosci. 2018, 2018, 5078268. [Google Scholar] [CrossRef]
- Taguchi, G.; Chowdhury, S.; Taguchi, S. Robust Engineering; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Wang, Y.; Fang, K.T. A Note on Uniform Distribution and Experimental Design. Chin. Sci. Bull. 1981, 26, 485–489. [Google Scholar]
- Tsao, H.; Lee, L. Uniform Layout Implement on Matlab. Stat. Decis. 2008, 6, 144–146. [Google Scholar]
- Tsai, J.T.; Yang, P.Y.; Chou, J.H. Data-Driven Approach to Using Uniform Experimental Design to Optimize System Compensation Parameters for an Auto-Alignment Machine. IEEE Access. 2018, 6, 40365–40378. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations—An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015. [Google Scholar]
- Cui, Z.H.; Zeng, J.C. Particle Swarm Optimization; Science Press: Beijing, China, 2011. [Google Scholar]
- Liu, H.; Zhai, R.; Fu, J.; Wang, Y.; Yang, Y. Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm. Sol. Energy 2019, 184, 391–409. [Google Scholar] [CrossRef]
- Aydilek, İ.B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl. Soft Comput. 2018, 66, 232–249. [Google Scholar] [CrossRef]
Experiment Number | Column Numbers | |||
---|---|---|---|---|
1 | 2 | 5 | 7 | |
1 | 1 | 2 | 5 | 7 |
2 | 2 | 4 | 10 | 3 |
3 | 3 | 6 | 4 | 10 |
4 | 4 | 8 | 9 | 6 |
5 | 5 | 10 | 3 | 2 |
6 | 6 | 1 | 8 | 9 |
7 | 7 | 3 | 2 | 5 |
8 | 8 | 5 | 7 | 1 |
9 | 9 | 7 | 1 | 8 |
10 | 10 | 9 | 6 | 4 |
Experiment Number | Experimental Parameters | |||
---|---|---|---|---|
λ | α | β | γ | |
1 | 0 | 0.2222 | 0.8889 | 1.3333 |
2 | 0.2222 | 0.6667 | 2 | 0.4444 |
3 | 0.4444 | 1.1111 | 0.6667 | 2 |
4 | 0.6667 | 1.5556 | 1.7778 | 1.1111 |
5 | 0.8889 | 2 | 0.4444 | 0.2222 |
6 | 1.1111 | 0 | 1.5556 | 1.7778 |
7 | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
8 | 1.5556 | 0.8889 | 1.3333 | 0 |
9 | 1.7778 | 1.3333 | 0 | 1.5556 |
10 | 2 | 1.7778 | 1.1111 | 0.6667 |
Levels | Parameters | |||
---|---|---|---|---|
P1 | P2 | P3 | P4 | |
1 | 0 | 0 | 0 | 0.4455 |
2 | 0.1173 | 0.1390 | 0.1506 | 0.6182 |
3 | 0.2345 | 0.2781 | 0.3012 | 0.7909 |
4 | 0.3518 | 0.4171 | 0.4519 | 0.9637 |
5 | 0.4690 | 0.5562 | 0.6025 | 1.1364 |
6 | 0.5863 | 0.6952 | 0.7531 | 1.3091 |
7 | 0.7035 | 0.8343 | 0.9037 | 1.4818 |
8 | 0.8208 | 0.9733 | 1.0544 | 1.6546 |
9 | 0.9380 | 1.1124 | 1.2050 | 1.8273 |
10 | 1.0553 | 1.2514 | 1.3556 | 2 |
Name | Definition | Solution Space | Optimal Value |
---|---|---|---|
Bohachevsky 1 | [−50,50]2 | 0 | |
Colville | [−10,10]4 | 0 | |
Drop wave | [−10,10]2 | −1 | |
Easom | [−100,100]2 | −1 | |
Rastrigin | [−5.12,5.12]G | 0 | |
Michalewiczs | [0,π]2 | −1.8409 | |
Rosenbrock’s valley | [−2.048,2.048]2 | 0 | |
Sphere | [−100,100]G | 0 | |
Ackley | [−32,32]G | 0 | |
Rosenbrock | [−30,30]G | 0 | |
Griewank | [−600,600]G | 0 | |
DeJong F4 | [−20,20]G | 0 | |
Schwefel’s P1.2 | [−100,100]G | 0 | |
Quartic | [−1.28,1.28]G | 0 | |
Salomon | [−100,100]G | 0 |
Function | Number of Dimension (Dn) | Number of Particles (S) | Number of Iterations (I) | |
---|---|---|---|---|
f1 | Bohachevsky 1 | 2 | 10 | 200 |
f2 | Colville | 4 | 10 | 200 |
f3 | Drop wave | 2 | 10 | 200 |
f4 | Easom | 2 | 10 | 200 |
f5 | Rastrigin | 30 | 10 | 200 |
f6 | Michalewiczs | 2 | 10 | 200 |
f7 | Rosenbrock’s valley | 4 | 10 | 200 |
Terms | Algorithms | |||||
---|---|---|---|---|---|---|
AUFPSO-NTE | FPSO | PSO-FOV | MPSO | PSO | ||
ω | min | 0.4 | N/A | N/A | 0.4 | N/A |
max | 0.9 | 0.9 | ||||
c1 | min | 0 | 2 | 2 | 2 | 2 |
max | 2 | |||||
c2 | min | 0 | 2 | 2 | 2 | 2 |
max | 2 |
Function | λ | α | β | γ |
---|---|---|---|---|
Bohachevsky 1 | 0.6667 | 1.5556 | 1.7778 | 1.1111 |
Colville | 0.8852 | 0.3010 | 1.2533 | 0.9829 |
Drop wave | 0.0320 | 0.3562 | 0.5070 | 1.5989 |
Easom | 1.0035 | 0.3911 | 1.5022 | 1.4322 |
Rastrigin | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Michalewiczs | 0.9867 | 0.2489 | 1.9140 | 1.7678 |
Rosenbrock’s valley | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Function | λ |
---|---|
Bohachevsky 1 | 1.65 |
Colville | 1.75 |
Drop wave | 1.43 |
Easom | 1.98 |
Rastrigin | 1.99 |
Michalewiczs | 1.99 |
Rosenbrock’s valley | 1.66 |
Function | λ |
---|---|
Bohachevsky 1 | 0.35 |
Colville | 0.57 |
Drop wave | 0.57 |
Easom | 0.32 |
Rastrigin | 0.54 |
Michalewiczs | 0.19 |
Rosenbrock’s valley | 0.41 |
Function | Terms | AUFPSO-NTE | FPSO | PSO-FOV | MPSO | PSO |
---|---|---|---|---|---|---|
Bohachevsky 1 | Best | 0 | 0 | 0 | 0 | 0.1118 |
Mean | 0 | 5.6621 × 10−16 | 0.0138 | 0.0275 | 5.1798 | |
S.D. | 0 | 1.8519 × 10−15 | 0.0754 | 0.1048 | 6.5905 | |
Colville | Best | 7.7920 × 10−5 | 1.3908 × 10−3 | 4.0173 × 10−3 | 0.2002 | 11.7514 |
Mean | 1.6906 | 2.4786 | 2.8318 | 5.9281 | 223.7255 | |
S.D. | 1.8018 | 2.0702 | 2.8068 | 9.8226 | 462.9368 | |
Drop wave | Best | −1 | −1 | −1 | −1 | −0.9803 |
Mean | −1 | −0.9763 | −0.9617 | −0.9660 | −0.7892 | |
S.D. | 1.9387 × 10−11 | 0.0310 | 0.0318 | 0.0324 | 0.1580 | |
Easom | Best | −1 | −1 | −1 | −1 | −0.9103 |
Mean | −1 | −1 | 0.9998 | −0.9998 | −0.0721 | |
S.D. | 7.6828 × 10−11 | 6.8674 × 10−6 | 9.0521 × 10−4 | 1.0572 × 10−3 | 0.1996 | |
Rastrigin | Best | 0 | 0 | 94.1343 | 0.0151 | 24.6608 |
Mean | 5.1159 × 10−14 | 0.1044 | 153.9817 | 133.8380 | 223.4087 | |
S.D. | 6.5665 × 10−14 | 0.3025 | 27.1046 | 77.8643 | 75.7597 | |
Michalewiczs | Best | −1.8409 | −1.8409 | −1.8409 | −1.8409 | −1.8388 |
Mean | −1.8409 | −1.8409 | −1.8409 | −1.8409 | −1.8388 | |
S.D. | 2.9272 × 10−10 | 9.4381 × 10−8 | 1.2377 × 10−7 | 3.9510 × 10−7 | 4.2741 × 10−7 | |
Rosenbrock’s valley | Best | 4.0000 × 10−34 | 1.2791 × 10−21 | 4.8507 × 10−16 | 3.9505 × 10−14 | 0.0177 |
Mean | 3.9129 × 10−22 | 1.3965 × 10−4 | 2.5900 × 10−3 | 2.8691 × 10−3 | 4.2239 | |
S.D. | 1.6158 × 10−21 | 6.4890 × 10−4 | 0.0089 | 0.0157 | 7.7636 |
Function | Number of Dimension (Dn) | Number of Particles (S) | Number of Iterations (I) | |
---|---|---|---|---|
f5 | Rastrigin | 10 | 30 | 300 |
f8 | Sphere | 10 | 30 | 300 |
f9 | Ackley | 10 | 30 | 300 |
f10 | Rosenbrock | 10 | 30 | 300 |
f11 | Griewank | 10 | 30 | 300 |
Terms | Algorithms | |||||
---|---|---|---|---|---|---|
AUFPSO-NTE | FVFP-PSO | FP-PSO | FV-PSO | PSO | ||
ω | min | 0.4 | 0.4 | 0.4 | 0.4 | N/A |
max | 0.9 | 0.9 | 0.9 | 0.9 | ||
c1 | min | 0 | 1 | 1 | 1 | 1 |
max | 2 | |||||
c2 | min | 0 | 1 | 1 | 1 | 1 |
max | 2 | |||||
ε | min | N/A | 0.1 | 1 | 0.1 | N/A |
max | 1.2 | 1.2 | ||||
ζ | min | N/A | 0.1 | 0.1 | 1 | N/A |
max | 1.2 | 1.2 |
Function | λ | α | β | γ |
---|---|---|---|---|
Rastrigin | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Sphere | 1.4689 | 0.5306 | 0.2595 | 0.9879 |
Ackley | 1.5538 | 0.3519 | 0.1248 | 0.7688 |
Rosenbrock | 1.2 | 0 | 1.7235 | 1.8864 |
Griewank | 1.5111 | 0.2765 | 0.1136 | 0.8 |
Function | AUFPSO-NTE | FVFP-PSO | FP-PSO | FV-PSO | PSO |
---|---|---|---|---|---|
Rastrigin | 0 | 0 | 3.4182 | 20.3351 | 18.3371 |
Sphere | 2.8280 × 10−41 | 8.9588 × 10−36 | 1.9469 × 10−19 | 941.4338 | 8.2506 × 10−12 |
Ackley | 8.8818 × 10−16 | 8.4555 × 10−15 | 0.0299 | 10.4455 | 0.0231 |
Rosenbrock | 7.7881 | 8.0633 | 8.8267 | 2.5590 × 105 | 56.5664 |
Griewank | 0 | 0.0013 | 0.3770 | 10.3937 | 0.1041 |
Function | Number of Dimension (Dn) | Number of Particles (S) | Number of Iterations (I) | |
---|---|---|---|---|
f5 | Rastrigin | 30 | 30 | 1000 |
f8 | Sphere | 30 | 30 | 1000 |
f9 | Ackley | 30 | 30 | 1000 |
f11 | Griewank | 30 | 30 | 1000 |
f12 | DeJong F4 | 30 | 30 | 1000 |
Terms | Algorithms | |||||
---|---|---|---|---|---|---|
AUFPSO-NTE | AFO-FPSO | NCPSO | FO-DPSO | FPSO | ||
ω | min | 0.4 | 1 | 0.7298 | 0.9 | 0.9 |
max | 0.9 | |||||
c1 | min | 0 | 1.5 | 1.4962 | 1.5 | 1.5 |
max | 2 | 2.5 | ||||
c2 | min | 0 | 1.5 | 1.4962 | 1.5 | 1.5 |
max | 2 | 2.5 |
Terms | Algorithms | |||||
---|---|---|---|---|---|---|
AUFPSO-NTE | APSO | DPSO | HPSO | PSO | ||
ω | min | 0.4 | Auto-control | 0.9 | 0.2 | 0.4 |
max | 0.9 | 0.8 | 0.9 | |||
c1 | min | 0 | Auto-control | N/A | 2.5 | 2 |
max | 2 | |||||
c2 | min | 0 | Auto-control | N/A | 2.5 | 2 |
max | 2 |
Function | λ | α | β | γ |
---|---|---|---|---|
Rastrigin | 1.1111 | 0 | 1.5556 | 1.7778 |
Sphere | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Ackley | 1.3813 | 0.9368 | 0.9227 | 1.7236 |
Griewank | 0.4444 | 1.1111 | 0.6667 | 2 |
DeJong F4 | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Function | AUFPSO-NTE | AFO-FPSO | NCPSO | FO-DPSO | FO-PSO |
---|---|---|---|---|---|
Rastrigin | 0 | 1.8956 × 10−10 | 4.3741 × 10−4 | 4.2305 × 10−5 | 3.5000 × 10−3 |
Sphere | 1.5042 × 10−124 | 2.3420 × 10−14 | 2.0279 × 10−9 | 3.4728 × 10−7 | 1.5340 × 10−5 |
Ackley | 8.8818 × 10−16 | 3.6610 × 10−11 | 9.0869 × 10−7 | 1.3774 × 10−6 | 1.4000 × 10−6 |
Griewank | 0 | 0 | 9.9050 × 10−11 | 8.1377 × 10−9 | 1.4184 × 10−7 |
DeJong F4 | 1.3852 × 10−255 | 6.3364 × 10−23 | 2.0809 × 10−17 | 8.8098 × 10−16 | 9.2521 × 10−12 |
Function | AUFPSO-NTE | APSO | DPSO | HPSO | PSO |
---|---|---|---|---|---|
Rastrigin | 0 | 1.0100 | 1.9899 | 4.8642 | 106.55 |
Sphere | 1.5042 × 10−124 | 1.4500 × 10−10 | 0.0328 | 0.3876 | 370.04 |
Ackley | 8.8818 × 10−16 | 0.3550 | 2.4083 | 5.6972 | 11.4953 |
Griewank | 0 | 0.0167 | 7.400 × 10−3 | 0.0237 | 2.6100 × 107 |
DeJong F4 | 1.3852 × 10−255 | 2.1300 × 10−10 | 1.3752 × 10−5 | 0.0635 | 4.3467 × 103 |
Function | AUFPSO-NTE | AFO-FPSO | NCPSO | FO-DPSO | FO-PSO |
---|---|---|---|---|---|
Rastrigin | 0 | 0.0017 | 0.0043 | 0.0137 | 0.0232 |
Sphere | 1.6599 × 10−245 | 0.0031 | 0.0597 | 0.4091 | 0.7505 |
Ackley | 2.9170 × 10−61 | 1.4637 × 10−5 | 3.5416 × 10−4 | 5.9058 × 10−4 | 0.0025 |
Griewank | 0 | 0.0116 | 0.1912 | 0.6574 | 0.8151 |
DeJong F4 | 0 | 0.0201 | 0.2765 | 0.7344 | 0.8836 |
Function | AUFPSO-NTE | APSO | DPSO | HPSO | PSO |
---|---|---|---|---|---|
Rastrigin | 0 | 0.0173 | 0.0774 | 0.2162 | 0.3488 |
Sphere | 1.6599 × 10−245 | 0.5126 | 1.0068 | 1.6022 | 2.0978 |
Ackley | 2.9170 × 10−61 | 0.0011 | 0.0162 | 0.0200 | 0.9074 |
Griewank | 0 | 0.6819 | 0.9371 | 1.3658 | 1.6408 |
DeJong F4 | 0 | 0.8381 | 0.9611 | 1.0130 | 1.7960 |
Function | Number of Dimension (Dn) | Number of Particles (S) | Number of Iterations (I) | |
---|---|---|---|---|
f5 | Rastrigin | 50 | 30 | 1000 |
f8 | Sphere | 50 | 30 | 1000 |
f10 | Rosenbrock | 50 | 30 | 1000 |
f11 | Griewank | 50 | 30 | 1000 |
f13 | Schwefel P1.2 | 50 | 30 | 1000 |
f14 | Quartic | 50 | 30 | 1000 |
f15 | Salomon | 50 | 30 | 1000 |
Function | λ | α | β | γ |
---|---|---|---|---|
Rastrigin | 1.2494 | 0 | 1.6361 | 1.8209 |
Sphere | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Rosenbrock | 1.7778 | 1.3333 | 0 | 1.5556 |
Griewank | 0.2765 | 1.2 | 0.4889 | 2 |
Schwefel P1.2 | 1.3333 | 0.4444 | 0.2222 | 0.8889 |
Quartic | 1.5111 | 0.2765 | 0.1136 | 0.8 |
Salomon | 1.3087 | 1.6889 | 0.8592 | 0.0889 |
Function | Terms | AUFPSO-NTE | HAFPSO | GAPSO | HFPSO | FPSO | PSO |
---|---|---|---|---|---|---|---|
Rastrigin | Mean | 0 | 2.18 × 10−2 | 6.76 × 101 | 8.83 × 101 | 7.40 × 101 | 7.90 × 101 |
S.D. | 0 | 2.83 × 10−2 | 1.84 × 101 | 3.08 × 101 | 2.04 × 101 | 1.86 × 101 | |
Sphere | Mean | 1.89 × 10−121 | 2.15 × 10−9 | 3.67 × 10−3 | 1.43 × 10−5 | 7.51 × 10−3 | 4.57 × 10−5 |
S.D. | 1.75 × 10−120 | 3.54 × 10−9 | 6.11 × 10−3 | 8.05 × 10−6 | 3.20 × 10−2 | 1.61 × 10−4 | |
Rosenbrock | Mean | 4.88 × 101 | 1.00 × 102 | 8.14 × 101 | 1.53 × 102 | 1.16 × 102 | 1.06 × 102 |
S.D. | 1.06 × 10−1 | 5.57 × 101 | 4.16 × 101 | 5.93 × 101 | 5.56 × 101 | 4.86 × 101 | |
Griewank | Mean | 0 | 1.27 × 10−2 | 1.60 × 10−2 | 9.88 × 10−1 | 3.64 × 10−2 | 5.81 × 10−2 |
S.D. | 0 | 1.54 × 10−2 | 2.06 × 10−2 | 6.49 × 10−2 | 6.61 × 10−2 | 8.96 × 10−2 | |
Schwefel P1.2 | Mean | 6.98 × 10−123 | 1.03 × 103 | 3.99 × 101 | 1.15 × 103 | 6.32 × 102 | 2.22 × 103 |
S.D. | 6.49 × 10−122 | 4.83 × 102 | 3.53 × 101 | 1.09 × 103 | 4.32 × 102 | 8.84 × 102 | |
Quartic | Mean | 1.34 × 10−4 | 1.34 × 10−2 | 4.46 × 10−2 | 3.70 × 10−2 | 6.45 × 10−2 | 5.23 × 10−2 |
S.D. | 9.80 × 10−5 | 3.91 × 10−3 | 1.17 × 10−2 | 1.28 × 10−2 | 2.12 × 10−2 | 1.90 × 10−2 | |
Salomon | Mean | 7.99 × 10−3 | 6.40 × 10−1 | 7.85 × 10−1 | 1.15 | 1.27 | 1.13 |
S.D. | 2.72 × 10−2 | 7.91 × 10−2 | 1.38 × 10−1 | 1.99 × 10−1 | 3.60 × 10−1 | 2.74 × 10−1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-Y.; Chou, F.-I.; Tsai, J.-T.; Chou, J.-H. Adaptive-Uniform-Experimental-Design-Based Fractional-Order Particle Swarm Optimizer with Non-Linear Time-Varying Evolution. Appl. Sci. 2019, 9, 5537. https://doi.org/10.3390/app9245537
Yang P-Y, Chou F-I, Tsai J-T, Chou J-H. Adaptive-Uniform-Experimental-Design-Based Fractional-Order Particle Swarm Optimizer with Non-Linear Time-Varying Evolution. Applied Sciences. 2019; 9(24):5537. https://doi.org/10.3390/app9245537
Chicago/Turabian StyleYang, Po-Yuan, Fu-I Chou, Jinn-Tsong Tsai, and Jyh-Horng Chou. 2019. "Adaptive-Uniform-Experimental-Design-Based Fractional-Order Particle Swarm Optimizer with Non-Linear Time-Varying Evolution" Applied Sciences 9, no. 24: 5537. https://doi.org/10.3390/app9245537
APA StyleYang, P. -Y., Chou, F. -I., Tsai, J. -T., & Chou, J. -H. (2019). Adaptive-Uniform-Experimental-Design-Based Fractional-Order Particle Swarm Optimizer with Non-Linear Time-Varying Evolution. Applied Sciences, 9(24), 5537. https://doi.org/10.3390/app9245537