Magnetic Shell Structure of 2D-Trapped Fermi Gases in the Flat-Band Lieb Lattices
Abstract
:1. Introduction
2. Numerical Methods and Preparations
2.1. Real-Space Dynamical Mean-Field Theory
2.2. Finite-Temperature R-DMFT in the Lieb Lattices
3. Results and Discussion
3.1. Magnetic Shell Structure and Phase Separation in the Trap
3.2. Verification of the Local Density Approximation
3.3. Compressibility Tests of the Core by Adding Particles and Increasing Polarization
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 2005, 1, 23–30. [Google Scholar] [CrossRef]
- Lewenstein, M.; Sanpera, A.; Ahufinger, V.; Damski, B.; Sen De, A.; Sen, U. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 2007, 56, 243–379. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar] [CrossRef] [Green Version]
- Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 2008, 80, 1215–1274. [Google Scholar] [CrossRef] [Green Version]
- Gross, C.; Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 2017, 357, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, B.; Jin, D.S. Onset of Fermi degeneracy in a trapped atomic gas. Science 1999, 285, 1703–1706. [Google Scholar] [CrossRef] [PubMed]
- Grimm, R. Ultracold Fermi gases in the BEC-BCS crossover: A review from the Innsbruck perspective. arXiv, 2007; arXiv:cond-mat/0703091. [Google Scholar]
- Ketterle, W.; Zwierlein, M.W. Making, probing and understanding ultracold Fermi gases. arXiv, 2008; arXiv:0801.2500. [Google Scholar]
- Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010, 82, 1225–1286. [Google Scholar] [CrossRef] [Green Version]
- Esslinger, T. Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 2010, 1, 129–152. [Google Scholar] [CrossRef]
- Jordens, R.; Strohmaier, N.; Gunter, K.; Moritz, H.; Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 2008, 455, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Hackermuller, L.; Will, S.; Best, T.; Bloch, I.; Costi, T.A.; Helmes, R.W.; Rasch, D.; Rosch, A. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 2008, 322, 1520–1525. [Google Scholar] [CrossRef]
- Helmes, R.W.; Costi, T.A.; Rosch, A. Mott transition of fermionic atoms in a three-dimensional optical trap. Phys. Rev. Lett. 2008, 100, 056403. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Soltan-Panahi, P.; Kronjäger, J.; Dörscher, S.; Bongs, K.; Sengstock, K. Ultracold quantum gases in triangular optical lattices. New J. Phys. 2010, 12, 065025. [Google Scholar] [CrossRef] [Green Version]
- Ölschläger, M.; Wirth, G.; Hemmerich, A. Unconventional superfluid order in the F Band of a bipartite optical square lattice. Phys. Rev. Lett. 2011, 106, 015302. [Google Scholar] [CrossRef] [PubMed]
- Wirth, G.; Ölschläger, M.; Hemmerich, A. Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice. Nat. Phys. 2011, 7, 147–153. [Google Scholar] [CrossRef]
- Soltan-Panahi, P.; Struck, J.; Hauke, P.; Bick, A.; Plenkers, W.; Meineke, G.; Becker, C.; Windpassinger, P.; Lewenstein, M.; Sengstock, K. Multi-component quantum gases in spin-dependent hexagonal lattices. Nat. Phys. 2011, 7, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Struck, J.; Ölschläger, C.; Targat, R.L.; Soltan-Panahi, P.; Eckardt, A.; Lewenstein, M.; Windpassinger, P.; Sengstock, K. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 2011, 333, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Soltan-Panahi, P.; Lühmann, D.-S.; Struck, J.; Windpassinger, P.; Sengstock, K. Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices. Nat. Phys. 2012, 8, 71–75. [Google Scholar] [CrossRef]
- Lühmann, D.-S.; Jürgensen, O.; Weinberg, M.; Simonet, J.; Soltan-Panahi, P.; Sengstock, K. Quantum phases in tunable state-dependent hexagonal optical lattices. Phys. Rev. A 2014, 90, 013614. [Google Scholar] [CrossRef]
- Tarruell, L.; Greif, D.; Uehlinger, T.; Jotzu, G.; Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 2012, 483, 302–305. [Google Scholar] [CrossRef] [Green Version]
- Greif, D.; Uehlinger, T.; Jotzu, G.; Tarruell, L.; Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 2013, 340, 1307–1310. [Google Scholar] [CrossRef]
- Uehlinger, T.; Jotzu, G.; Messer, M.; Greif, D.; Hofstetter, W.; Bissbort, U.; Esslinger, T. Artificial graphene with tunable interactions. Phys. Rev. Lett. 2013, 111, 185307. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.-B.; Guzman, J.; Thomas, C.K.; Hosur, P.; Vishwanath, A.; Stamper-Kurn, D.M. Ultracold atoms in a tunable optical Kagome lattice. Phys. Rev. Lett. 2012, 108, 045305. [Google Scholar] [CrossRef]
- Zhang, T.; Jo, G.-B. One-dimensional sawtooth and zigzag lattices for ultracold atoms. Sci. Rep. 2015, 5, 16044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windpassinger, P.; Sengstock, K. Engineering novel optical lattices. Rep. Prog. Phys. 2013, 76, 086401. [Google Scholar] [CrossRef]
- Revelle, M.C.; Fry, J.A.; Olsen, B.A.; Hulet, R.G. 1D to 3D crossover of a spin-imbalanced Fermi gas. Phys. Rev. Lett. 2016, 117, 235301. [Google Scholar] [CrossRef] [PubMed]
- Leykam, D.; Andreanov, A.; Flach, S. Artificial flat band systems: From lattice models to experiments. Adv. Phys. X 2018, 3, 1473052. [Google Scholar] [CrossRef]
- Lieb, E.H. Two theorems on the Hubbard model. Phys. Rev. Lett. 1989, 62, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Mielke, A. Ferromagnetism in the Hubbard model on line graphs and further considerations. J. Phys. A Math. Gen. 1991, 24, 3311–3321. [Google Scholar] [CrossRef]
- Tasaki, H. Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Phys. Rev. Lett. 1992, 69, 1608–1611. [Google Scholar] [CrossRef]
- Tasaki, H. From Nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond: An introduction to ferromagnetism in the Hubbard model. Prog. Theor. Phys. 1999, 99, 489–548. [Google Scholar] [CrossRef]
- Huber, S.D.; Altman, E. Bose condensation in flat bands. Phys. Rev. B 2010, 82, 184502. [Google Scholar] [CrossRef]
- Taie, S.; Ozawa, H.; Ichinose, T.; Nishio, T.; Nakajima, S.; Takahashi, Y. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv. 2015, 1, e1500854. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, H.; Taie, S.; Ichinose, T.; Takahashi, Y. Interaction-driven shift and distortion of a flat band in an optical Lieb lattice. Phys. Rev. Lett. 2017, 118, 175301. [Google Scholar] [CrossRef]
- Slot, M.R.; Gardenier, T.S.; Jacobse, P.H.; van Miert, G.C.P.; Kempkes, S.N.; Zevenhuizen, S.J.M.; Smith, C.M.; Vanmaekelbergh, D.; Swart, I. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 2017, 13, 672–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drost, R.; Ojanen, T.; Harju, A.; Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 2017, 13, 668–671. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Silva, D.; Mejía-Cortés, C.; Bandres, M.A.; Rechtsman, M.C.; Weimann, S.; Nolte, S.; Segev, M.; Szameit, A.; Vicencio, R.A. Experimental observation of bulk and edge transport in photonic Lieb lattices. New J. Phys. 2014, 16, 063061. [Google Scholar] [CrossRef] [Green Version]
- Vicencio, R.A.; Cantillano, C.; Morales-Inostroza, L.; Real, B.; Mejía-Cortés, C.; Weimann, S.; Szameit, A.; Molina, M.I. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 2015, 114, 245503. [Google Scholar] [CrossRef]
- Mukherjee, S.; Spracklen, A.; Choudhury, D.; Goldman, N.; Öhberg, P.; Andersson, E.; Thomson, R.R. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 2015, 114, 245504. [Google Scholar] [CrossRef]
- Baboux, F.; Ge, L.; Jacqmin, T.; Biondi, M.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Schmidt, S.; Türeci, H.E.; Amo, A.; Bloch, J. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 2016, 116, 066402. [Google Scholar] [CrossRef]
- Iglovikov, V.I.; Hébert, F.; Grémaud, B.; Batrouni, G.G.; Scalettar, R.T. Superconducting transitions in flat-band systems. Phys. Rev. B 2014, 90, 094506. [Google Scholar] [CrossRef]
- Peotta, S.; Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 2015, 6, 8944. [Google Scholar] [CrossRef] [PubMed]
- Julku, A.; Peotta, S.; Vanhala, T.I.; Kim, D.-H.; Törmä, P. Geometric origin of superfluidity in the Lieb-lattice flat Band. Phys. Rev. Lett. 2016, 117, 045303. [Google Scholar] [CrossRef] [PubMed]
- Tovmasyan, M.; Peotta, S.; Törmä, P.; Huber, S.D. Effective theory and emergent SU(2) symmetry in the flat bands of attractive Hubbard models. Phys. Rev. B 2016, 94, 245149. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Peotta, S.; Harju, A.; Törmä, P. Wave-packet dynamics of Bogoliubov quasiparticles: Quantum metric effects. Phys. Rev. B 2017, 96, 064511. [Google Scholar] [CrossRef]
- Liang, L.; Vanhala, T.I.; Peotta, S.; Siro, T.; Harju, A.; Törmä, P. Band geometry, Berry curvature, and superfluid weight. Phys. Rev. B 2017, 95, 024515. [Google Scholar] [CrossRef]
- Huhtinen, K.-E.; Tylutki, M.; Kumar, P.; Vanhala, T.I.; Peotta, S.; Törmä, P. Spin-imbalanced pairing and Fermi surface deformation in flat bands. Phys. Rev. B 2018, 97, 214503. [Google Scholar] [CrossRef] [Green Version]
- Tylutki, M.; Törmä, P. Spin-imbalanced Fermi superfluidity in a Hubbard model on a Lieb lattice. Phys. Rev. B 2018, 98, 094513. [Google Scholar] [CrossRef]
- Tovmasyan, M.; Peotta, S.; Liang, L.; Törmä, P.; Huber, S.D. Preformed pairs in flat Bloch bands. Phys. Rev. B 2018, 98, 134513. [Google Scholar] [CrossRef]
- Mondaini, R.; Batrouni, G.G.; Grémaud, B. Pairing and superconductivity in the flat band: Creutz lattice. Phys. Rev. B 2018, 98, 155142. [Google Scholar] [CrossRef]
- Tamura, H.; Shiraishi, K.; Kimura, T.; Takayanagi, H. Flat-band ferromagnetism in quantum dot superlattices. Phys. Rev. B 2002, 65, 085324. [Google Scholar] [CrossRef]
- Noda, K.; Koga, A.; Kawakami, N.; Pruschke, T. Ferromagnetism of cold fermions loaded into a decorated square lattice. Phys. Rev. A 2009, 80, 063622. [Google Scholar] [CrossRef]
- Noda, K.; Inaba, K.; Yamashita, M. Flat-band ferromagnetism in the multilayer Lieb optical lattice. Phys. Rev. A 2014, 90, 043624. [Google Scholar] [CrossRef]
- Noda, K.; Inaba, K.; Yamashita, M. Magnetism in the three-dimensional layered Lieb lattice: enhanced transition temperature via flat-band and Van Hove singularities. Phys. Rev. A 2015, 91, 063610. [Google Scholar] [CrossRef]
- Costa, N.C.; Mendes-Santos, T.; Paiva, T.; dos Santos, R.R.; Scalettar, R.T. Ferromagnetism beyond Lieb’s theorem. Phys. Rev. B 2016, 94, 155107. [Google Scholar] [CrossRef]
- Gouveia, J.D.; Dias, R.G. Magnetic phase diagram of the Hubbard model in the Lieb lattice. J. Magn. Magn. Mater. 2015, 382, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Dias, R.G.; Gouveia, J.D. Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices. Sci. Rep. 2015, 5, 16852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, J.D.; Dias, R.G. Spin and charge density waves in the Lieb lattice. J. Magn. Magn. Mater. 2016, 405, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.-S.; Tran, M.-T. Dynamical mean-field theory for flat-band ferromagnetism. Phys. Rev. B 2016, 94, 125106. [Google Scholar] [CrossRef]
- Nie, W.; Zhang, D.; Zhang, W. Ferromagnetic ground state of the SU(3) Hubbard model on the Lieb lattice. Phys. Rev. A 2017, 96, 053616. [Google Scholar] [CrossRef]
- Tran, M.-T.; Nguyen, T.T. Molecular Kondo effect in flat-band lattices. Phys. Rev. B 2018, 97, 155125. [Google Scholar] [CrossRef]
- Kumar, P.; Vanhala, T.I.; Törmä, P. Temperature and doping induced instabilities of the repulsive Hubbard model on the Lieb lattice. Phys. Rev. B 2017, 96, 245127. [Google Scholar] [CrossRef] [Green Version]
- Bercx, M.; Hofmann, J.S.; Assaad, F.F.; Lang, T.C. Spontaneous particle-hole symmetry breaking of correlated fermions on the Lieb lattice. Phys. Rev. B 2017, 95, 035108. [Google Scholar] [CrossRef]
- Weeks, C.; Franz, M. Topological insulators on the Lieb and perovskite lattices. Phys. Rev. B 2010, 82, 085310. [Google Scholar] [CrossRef] [Green Version]
- Goldman, N.; Urban, D.F.; Bercioux, D. Topological phases for fermionic cold atoms on the Lieb lattice. Phys. Rev. A 2011, 83, 063601. [Google Scholar] [CrossRef]
- Tsai, W.-F.; Fang, C.; Yao, H.; Hu, J. Interaction-driven topological and nematic phases on the Lieb lattice. New J. Phys. 2015, 17, 055016. [Google Scholar] [CrossRef] [Green Version]
- Paananen, T.; Dahm, T. Topological flat bands in optical checkerboardlike lattices. Phys. Rev. A 2015, 91, 033604. [Google Scholar] [CrossRef]
- Dauphin, A.; Müller, M.; Martin-Delgado, M.A. Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice. Phys. Rev. A 2016, 93, 043611. [Google Scholar] [CrossRef] [Green Version]
- Iskin, M. Hofstadter-Hubbard model with opposite magnetic fields: Bardeen-Cooper-Schrieffer pairing and superfluidity in the nearly flat butterfly bands. Phys. Rev. A 2017, 96, 043628. [Google Scholar] [CrossRef]
- Chen, R.; Xu, D.-H.; Zhou, B. Disorder-induced topological phase transitions on Lieb lattices. Phys. Rev. B 2017, 96, 205304. [Google Scholar] [CrossRef]
- Georges, A.; Kotliar, G.; Krauth, W.; Rozenberg, M.J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 1996, 68, 13–125. [Google Scholar] [CrossRef]
- Kinnunen, J.J.; Baarsma, J.E.; Martikainen, J.-P.; Törmä, P. The Fulde-Ferrell-Larkin-Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: A review. Rep. Prog. Phys. 2018, 81, 046401. [Google Scholar] [CrossRef]
- Snoek, M.; Titvinidze, I.; Töke, C.; Byczuk, K.; Hofstetter, W. Antiferromagnetic order of strongly interacting fermions in a trap: Real-space dynamical mean-field analysis. New J. Phys. 2008, 10, 093008. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kinnunen, J.J.; Martikainen, J.-P.; Törmä, P. Exotic superfluid states of lattice fermions in elongated traps. Phys. Rev. Lett. 2011, 106, 095301. [Google Scholar] [CrossRef]
- Hirsch, J.E.; Fye, R.M. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett. 1986, 56, 2521–2524. [Google Scholar] [CrossRef]
- Gull, E.; Millis, A.J.; Lichtenstein, A.I.; Rubtsov, A.N.; Troyer, M.; Werner, P. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 2011, 83, 349–404. [Google Scholar] [CrossRef] [Green Version]
- Bulla, R.; Costi, T.A.; Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 2008, 80, 395–450. [Google Scholar] [CrossRef] [Green Version]
- Fernández, Y.N.; Hallberg, K. Solving the multi-site and multi-orbital dynamical mean field theory using density matrix renormalization. Front. Phys. 2018, 6, 1–13. [Google Scholar] [CrossRef]
- Caffarel, M.; Krauth, W. Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. Phys. Rev. Lett. 1994, 72, 1545–1548. [Google Scholar] [CrossRef]
- Lu, Y.; Höppner, M.; Gunnarsson, O.; Haverkort, M.W. Efficient real-frequency solver for dynamical mean-field theory. Phys. Rev. B 2014, 90, 085102. [Google Scholar] [CrossRef]
Cloud Size | (LDA) | Shell Boundary (R-DMFT) | |
---|---|---|---|
0.15 | 2.25 | 2–3 | |
0.03 | 5.03 | 3–7 | |
0.01 | 8.72 | 7–11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-H.; Park, H.; Kim, D.; Kim, D.-H. Magnetic Shell Structure of 2D-Trapped Fermi Gases in the Flat-Band Lieb Lattices. Appl. Sci. 2019, 9, 365. https://doi.org/10.3390/app9030365
Jeong J-H, Park H, Kim D, Kim D-H. Magnetic Shell Structure of 2D-Trapped Fermi Gases in the Flat-Band Lieb Lattices. Applied Sciences. 2019; 9(3):365. https://doi.org/10.3390/app9030365
Chicago/Turabian StyleJeong, Joo-Hyeok, Hyunjoon Park, Dongkyu Kim, and Dong-Hee Kim. 2019. "Magnetic Shell Structure of 2D-Trapped Fermi Gases in the Flat-Band Lieb Lattices" Applied Sciences 9, no. 3: 365. https://doi.org/10.3390/app9030365
APA StyleJeong, J. -H., Park, H., Kim, D., & Kim, D. -H. (2019). Magnetic Shell Structure of 2D-Trapped Fermi Gases in the Flat-Band Lieb Lattices. Applied Sciences, 9(3), 365. https://doi.org/10.3390/app9030365