Terahertz Time-Domain Spectroscopy of Graphene Nanoflakes Embedded in Polymer Matrix
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Graphene Nanocomposite Preparation and Characterization
2.2. THz Time-Domain Spectroscopy Technique
3. Results and Discussion
3.1. Data Analysis
3.2. Index of Refraction and Absorption Coefficient
3.3. Dielectric Constant
3.4. Complex Conductivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Kulkarni, D.D.; Choi, I.; Tsukruk, V.V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39, 1934–1972. [Google Scholar] [CrossRef]
- Silva, M.; Alves, N.M.; Paiva, M.C. Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 2018, 29, 687–700. [Google Scholar] [CrossRef]
- Sobolewski, P.; Piwowarczyk, M.; Fray, M.E. Polymer-graphene nanocomposite materials for electrochemical biosensing. Macromol. Biosci. 2016, 16, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Kundalwal, S.I.; Kumar, S. Gas barrier performance of graphene-polymer nanocomposites. Carbon 2016, 98, 313–333. [Google Scholar] [CrossRef]
- Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I. 50th anniversary perspective: Are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714–731. [Google Scholar] [CrossRef]
- Khare, H.S.; Burris, D.L. A quantitative method for measuring nanocomposite dispersion. Polymer 2010, 51, 719–729. [Google Scholar] [CrossRef]
- Schaefer, D.W.; Justice, R.S. How nano are nanocomposites? Macromolecules 2007, 40, 8501–8517. [Google Scholar] [CrossRef]
- Miltner, H.E.; Watzeels, N.; Goffin, A.-L.; Duquesne, E.; Benali, S.; Dubois, P.F.; Rahier, H.; Van Mele, B. Quantifying the degree of nanofiller dispersion by advanced thermal analysis: Application to polyester nanocomposites prepared by various elaboration methods. J. Mater. Chem. 2010, 20, 9531–9542. [Google Scholar] [CrossRef]
- Espinoza-González, C.; Ávila-Orta, C.; Martínez-Colunga, G.; Lionetto, F.; Maffezzoli, A. A measure of CNTs dispersion in polymers with branched molecular architectures by UDMA. IEEE Trans. Nanotechnol. 2016, 15, 731–737. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, F.F.; Zhao, X.P.; Li, Y.; Zhu, M.; Chen, D. Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. J. Phys. Chem. B 2008, 112, 12606–12611. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.-H.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Naftaly, M.; Miles, R.E. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE 2007, 95, 1658–1665. [Google Scholar] [CrossRef]
- Wietzke, S.; Jansen, C.; Reuter, M.; Jung, T.; Kraft, D.; Chatterjee, S.; Fischer, B.M.; Koch, M. Terahertz spectroscopy on polymers: A review of morphological studies. J. Mol. Struct. 2011, 1006, 41–51. [Google Scholar] [CrossRef]
- Amenabar, I.; Lopez, F.; Mendikute, A. In introductory review to THz non-destructive testing of composite mater. J. Infrared Millim. Terahertz Waves 2013, 34, 152–169. [Google Scholar] [CrossRef]
- Stoik, C.; Bohn, M.; Blackshire, J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT&E Int. 2010, 43, 106–115. [Google Scholar] [Green Version]
- Ospald, F.; Zouaghi, W.; Beigang, R.; Matheis, C.; Jonuscheit, J.; Recur, B.; Guillet, J.-P.; Mounaix, P.; Vleugels, W.; Bosom, P.N.; et al. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt. Eng. 2013, 53, 031208. [Google Scholar] [CrossRef] [Green Version]
- Casini, R.; Papari, G.; Andreone, A.; Marrazzo, D.; Patti, A.; Russo, P. Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy. Opt. Express 2015, 23, 18181–18192. [Google Scholar] [CrossRef] [Green Version]
- Marra, F.; D’Aloia, A.; Tamburrano, A.; Ochando, I.; De Bellis, G.; Ellis, G.; Sarto, M. Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymers 2016, 8, 272. [Google Scholar] [CrossRef]
- Skalsky, S.; Molloy, J.; Naftaly, M.; Sainsbury, T.; Paton, K.R. Terahertz time-domain spectroscopy as a novel metrology tool for liquid-phase exfoliated few-layer graphene. Nanotechnology 2018, 30, 025709. [Google Scholar] [CrossRef] [PubMed]
- Chamorro-Posada, P.; Vázquez-Cabo, J.; Rubiños-López, O.; Martín-Gil, J.; Hernández-Navarro, S.; Martín-Ramos, P.; Sánchez-Arévalo, F.M.; Tamashausky, A.V.; Merino-Sánchez, C.; Dante, R.C. THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides. Carbon 2018, 98, 484–490. [Google Scholar] [CrossRef]
- Whelan, P.R.; Huang, D.; Mackenzie, D.; Messina, S.A.; Li, Z.; Li, X.; Li, Y.; Booth, T.J.; Jepsen, P.U.; Shi, H.; et al. Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Opt. Express 2018, 26, 17,748–17,754. [Google Scholar] [CrossRef] [PubMed]
- El Fray, M.; Czugala, M. Polish artificial heart program. WIREs Nanomed. Nanobiotechnol. 2012, 4, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, Z.; El Fray, M. Influence of thermally exfoliated graphite on physicochemical, thermal and mechanical properties of copolyester nanocomposites. Polimery 2016, 61, 482–489. [Google Scholar] [CrossRef]
- Staniszewski, Z.; Sobolewski, P.; Piegat, A.; El Fray, M. The effects of nano-sized carbon fillers on the physico-chemical, mechanical, and biological properties of polyester nanocomposites. Eur. Polym. J. 2018, 107, 189–201. [Google Scholar] [CrossRef]
- Piegat, A.; El Fray, M. Polyethylene terephthalate modification with the monomer from renewable resources. Polimery 2007, 52, 885–888. [Google Scholar] [CrossRef]
- Kauling, A.P.; Seefeldt, A.T.; Pisoni, D.P.; Pradeep, R.C.; Bentini, R.; Oliveira, R.V.B.; Novoselov, K.S.; Castro Neto, A.H. The worldwide graphene flake production. Adv. Mater. 2018, 30, 1803784. [Google Scholar] [CrossRef]
- Geižutis, A.; Krotkus, A.; Bertulis, K.; Molis, G.; Adomavičius, R.; Urbanowicz, A.; Balakauskas, S.; Valaika, S. Terahertz radiation emitters and detectors. Opt. Mater. 2008, 30, 786–788. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.-L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl. Opt. 1999, 38, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.M.; Helm, H.; Jepsen, P.U. Chemical recognition with broadband THz spectroscopy. Proc. IEEE 2007, 95, 1592–1604. [Google Scholar] [CrossRef]
- Zou, X.; Shang, J.; Leaw, J.; Luo, Z.; Luo, L.; La-o-vorakiat, C.; Cheng, L.; Cheong, S.A.; Su, H.; Zhu, J.-X.; et al. Terahertz conductivity of twisted bilayer graphene. Phys. Rev. Lett. 2013, 110, 067401. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.S.; Kim, G.J.; Jeon, S.G. Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 2006, 49, 513–517. [Google Scholar]
- Fedulova, E.V.; Nazarov, M.M.; Angeluts, A.A.; Kitai, M.S.; Sokolov, V.I.; Shkurinov, A.P. Studying of dielectric properties of polymers in the terahertz frequency range. Proc. SPIE 2012, 8337, 83370I. [Google Scholar]
- Talebian, E.; Talebian, M. A general review on the derivation of Clausius–Mossotti relation. Optik 2013, 124, 2324–2326. [Google Scholar] [CrossRef]
- Scheller, M.; Jansen, C.; Koch, M. Applications of effective medium theories in the terahertz regime. In Recent Optical and Photonic Technologies; Kim, K.Y., Ed.; IntechOpen: London, UK, 2010; pp. 231–250. [Google Scholar]
- Smith, N.V. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 2001, 64, 155106. [Google Scholar] [CrossRef]
- Shimakawa, K.; Kasap, S. Dynamics of carrier transport in nanoscale materials: Origin of non-Drude behavior in the terahertz frequency range. Appl. Sci. 2016, 6, 50. [Google Scholar] [CrossRef]
- Lloyd-Hughes, J.; Jeon, T.-I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 2012, 33, 871–925. [Google Scholar] [CrossRef]
- Richter, C.; Schmuttenmaer, C.A. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat. Nanotechnol. 2010, 5, 769–772. [Google Scholar] [CrossRef]
- Chen, G.; Shrestha, R.; Amori, A.; Staniszewski, Z.; Jukna, A.; Korliov, A.; Richter, C.; Fray, M.E.; Krauss, T.; Sobolewski, R. Terahertz time-domain spectroscopy characterization of carbon nanostructures embedded in polymer. J. Phys. Conf. Ser. 2017, 906, 012002. [Google Scholar] [CrossRef] [Green Version]
- Dadrasnia, E.; Lamela, H.; Kuppam, M.B.; Garet, F.; Coutza, J.-L. Determination of the DC electrical conductivity of multiwalled carbon nanotube films and graphene layers from noncontact time-domain terahertz measurements. Adv. Condens. Matter Phys. 2014, 2014, 370619. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroliov, A.; Chen, G.; Goodfellow, K.M.; Vamivakas, A.N.; Staniszewski, Z.; Sobolewski, P.; Fray, M.E.; Łaszcz, A.; Czerwinski, A.; Richter, C.P.; et al. Terahertz Time-Domain Spectroscopy of Graphene Nanoflakes Embedded in Polymer Matrix. Appl. Sci. 2019, 9, 391. https://doi.org/10.3390/app9030391
Koroliov A, Chen G, Goodfellow KM, Vamivakas AN, Staniszewski Z, Sobolewski P, Fray ME, Łaszcz A, Czerwinski A, Richter CP, et al. Terahertz Time-Domain Spectroscopy of Graphene Nanoflakes Embedded in Polymer Matrix. Applied Sciences. 2019; 9(3):391. https://doi.org/10.3390/app9030391
Chicago/Turabian StyleKoroliov, Anton, Genyu Chen, Kenneth M. Goodfellow, A. Nick Vamivakas, Zygmunt Staniszewski, Peter Sobolewski, Mirosława El Fray, Adam Łaszcz, Andrzej Czerwinski, Christiaan P. Richter, and et al. 2019. "Terahertz Time-Domain Spectroscopy of Graphene Nanoflakes Embedded in Polymer Matrix" Applied Sciences 9, no. 3: 391. https://doi.org/10.3390/app9030391
APA StyleKoroliov, A., Chen, G., Goodfellow, K. M., Vamivakas, A. N., Staniszewski, Z., Sobolewski, P., Fray, M. E., Łaszcz, A., Czerwinski, A., Richter, C. P., & Sobolewski, R. (2019). Terahertz Time-Domain Spectroscopy of Graphene Nanoflakes Embedded in Polymer Matrix. Applied Sciences, 9(3), 391. https://doi.org/10.3390/app9030391