TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts
Abstract
:Featured Application
Abstract
1. Introduction
2. Absorption Spectroscopy
2.1. Direct Absorption Spectroscopy
2.2. Wavelength Modulation Spectroscopy
3. Experiment Details
4. Direct Absorption Measurement and Correction
5. WMS-2f Measurement and Correction
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eng, R.S.; Butler, J.F.; Linden, K.J. Tunable diode laser spectroscopy—An invited review. Opt. Eng. 1980, 19, 945–960. [Google Scholar] [CrossRef]
- Werle, P. A review of recent advances in semiconductor laser based gas monitors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 197–236. [Google Scholar] [CrossRef]
- Nwaboh, J.A.; Werhahn, O.; Ortwein, P.; Schiel, D.; Ebert, V. Laser-spectrometric gas analysis: CO2-TDLAS at 2 µm. Meas. Sci. Technol. 2012, 24, 015202. [Google Scholar] [CrossRef]
- Wang, F.; Cen, K.F.; Li, N.; Jeffries, J.; Huang, Q.X.; Yan, J.H.; Chi, Y. Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy. Meas. Sci. Technol. 2010, 21, 045301. [Google Scholar] [CrossRef]
- Farooq, A.; Jeffries, J.B.; Hanson, R.K. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 2008, 90, 619–628. [Google Scholar] [CrossRef]
- Kamimoto, T.; Deguchi, Y.; Shisawa, Y.; Kitauchi, Y.; Eto, Y. Development of fuel composition measurement technology using laser diagnostics. Appl. Therm. Eng. 2016, 102, 596–603. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Q.; Huang, Q.; Zhang, H.; Yan, J.; Cen, K. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology. Opt. Commun. 2015, 346, 53–63. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Z.; Li, F.; Lin, Y.; Xu, L. Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography. Meas. Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Li, J.S.; Durry, G.; Cousin, J.; Joly, L.; Parvitte, B.; Zeninari, V. Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2332–2340. [Google Scholar] [CrossRef]
- Wen, X.F.; Lee, X.; Sun, X.M.; Wang, J.L.; Hu, Z.M.; Li, S.G.; Yu, G.R. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia 2012, 168, 549–561. [Google Scholar] [CrossRef]
- Durry, G.; Li, J.S.; Vinogradov, I.; Titov, A.; Joly, L.; Cousin, J.; Decarpenterie, T.; Amarouche, N.; Liu, X.; Parvitte, B.; et al. Near infrared diode laser spectroscopy of C2H2, H2O, CO2, and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission. Appl. Phys. B 2010, 99, 339–351. [Google Scholar] [CrossRef]
- Barbu, T.L.; Zéninari, V.; Parvitte, B.; Courtoisa, D.; Durrya, G. Line strengths and self-broadening coefficients of carbon dioxide isotopologues (13CO2, and 18O12C16O) near 2.04 μm for the in situ laser sensing of the Martian atmosphere. J. Quant. Spectrosc. Radiat. Transf. 2006, 98, 264–276. [Google Scholar] [CrossRef]
- Barbu, T.L.; Vinogradov, I.; Durry, G.; Korablev, O.; Chassefière, E.; Bertaux, J.-L. TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2, and their isotopes in the Martian atmosphere. Adv. Space Res. 2006, 38, 718–725. [Google Scholar] [CrossRef]
- Li, J.; Parchatka, U.; Fischer, H. Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements. Appl. Phys. B 2012, 108, 951–963. [Google Scholar] [CrossRef]
- Pogãn, A.; Wagner, S.; Werhahn, O.; Eberta, V. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor. Appl. Spectrosc. 2015, 69, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Tadic, I.; Parchatka, U.; Königstedt, R.; Fischer, H. In-flight stability of quantum cascade laser-based infrared absorption spectroscopy measurements of atmospheric carbon monoxide. Appl. Phys. B 2017, 123, 146. [Google Scholar] [CrossRef]
- Underwood, R.; Gardiner, T.; Finlayson, A.; Few, J.; Wilkinson, J.; Bell, S.; Merrison, J.; Iversonb, J.J.; de Podesta, M. A combined non-contact acoustic thermometer and infrared hygrometer for atmospheric measurements. Meteorol. Appl. 2016, 22, 830–835. [Google Scholar] [CrossRef]
- Nwaboh, J.A.; Qu, Z.; Werhahn, O.; Ebert, V. Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements. Appl. Opt. 2017, 56, E84–E93. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 2003, 14, 1459–1468. [Google Scholar] [CrossRef]
- Phillips, W.J.; Plemmons, D.H.; Galyen, N.A. HITRAN/HITEMP Spectral Databases and Uncertainty Propagation by Means of Monte Carlo Simulation with Application to Tunable Diode Laser Absorption Diagnostics; No. AEDC-TR-11-T-2; Office of the Deputy Undersecretary of Defense (Science and Technology) Washington DC Joint Technology Office on Hypersonic: Washington, DC, USA, 2011; pp. 15–17.
- Chen, J.; Li, C.; Zhou, M.; Liu, J.; Kan, R.; Xu, Z. Measurement of CO2, concentration at high-temperature based on tunable diode laser absorption spectroscopy. Infrared Phys. Technol. 2017, 80, 131–137. [Google Scholar] [CrossRef]
- Joly, L.; Gibert, F.; Grouiez, B.; Grossela, A.; Parvittea, B.; Durry, G.; Ze´ninari, V. A complete study of CO2, line parameters around 4845 cm−1, for Lidar applications. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 426–434. [Google Scholar] [CrossRef]
- Pogány, A.; Ott, O.; Werhahn, O.; Ebert, V. Towards traceability in CO2, line strength measurements by TDLAS at 2.7 µm. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 147–157. [Google Scholar]
- Cai, T.; Gao, G.; Wang, M.; Wang, G.; Liu, Y.; Gao, X. Experimental study of carbon dioxide spectroscopic parameters around 2.0 µm region for combustion diagnostic applications. J. Quant. Spectrosc. Radiat. Transf. 2017, 201, 136–147. [Google Scholar] [CrossRef]
- Sur, R.; Spearrin, R.M.; Peng, W.Y.; Strand, C.L.; Jeffries, J.B.; Enns, G.M.; Hanson, R.K. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm. J. Quant. Spectrosc. Radiat. Transf. 2016, 175, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Doucen, R.L.; Cousin, C.; Boulet, C.; Henry, A. Temperature dependence of the absorption in the region beyond the 4.3-micron band head of CO2. I—Pure CO2 case. Appl. Opt. 1985, 24, 3899–3907. [Google Scholar] [CrossRef] [PubMed]
- Cousin, C.; Doucen, R.L.; Boulet, C.; Henry, A. Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2. 2: N2 and O2 broadening. Appl. Opt. 1985, 24, 3899–3907. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.Y.; Hartmann, J.M. Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 um CO2 band. J. Quant. Spectrosc. Radiat. Transf. 1989, 42, 311–317. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Wu, B.; Xia, H.; Pang, T.; Wang, G.X.; Sun, P.S.; Dong, F.Z.; Wang, Y. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Phys. Sin. 2013, 62, 1706–1721. [Google Scholar]
- Shu, X.W. An Investigation of Temperature Compensation of HCL Gas Online Monitoring Based on TDLAS Method. Spectrosc. Spectr. Anal. 2010, 30, 1352–1356. [Google Scholar]
- Zhang, Z.; Zou, D.; Chen, W.; Zhao, H.J.; Xu, K.X. Temperature influence in the TDLAS detection of escaping ammonia. Opto-Electron. Eng. 2014. [Google Scholar] [CrossRef]
- Qi, R.B.; He, S.K.; Li, X.T.; Wang, X.Z. Simulation of TDLAS direct absorption based on HITRAN database. Spectrosc. Spectr. Anal. 2015, 35, 172–177. [Google Scholar]
- He, Y.; Zhang, Y.J.; You, K.; Gao, Y.W.; Zhao, N.J.; Liu, W.Q. Volatilization characteristics analysis of ammonia from soil by straw returning to the field based on the infrared spectroscopy technology. J. Infrared Millim. Waves 2017, 36, 397–402. [Google Scholar]
- Liu, C.; Xu, L.; Cao, Z. Measurement of no uniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods. Appl. Opt. 2013, 52, 4827–4842. [Google Scholar] [CrossRef] [PubMed]
- You, K.; Zhang, Y.J.; Wang, L.M.; Li, H.B.; He, Y. Improving the Stability of Tunable Diode Laser Sensor for Natural Gas Leakage Monitoring. Adv. Mater. Res. 2013, 760–762, 84–87. [Google Scholar] [CrossRef]
- Yao, C.; Wang, Z.; Wang, Q.; Bian, Y.; Chen, C.; Zhang, L.; Ren, W. Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane. Appl. Opt. 2018, 57, 8005–8010. [Google Scholar] [CrossRef] [PubMed]
- Gharavi, M. Quantification of near-IR tunable diode laser measurements in flames. In Proceedings of the 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, USA, 25–28 March 2001. [Google Scholar]
- Gordon, I.E.; Rothmana, L.S.; Hill, C.; Kochanovac, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Liu, J.T.; Jeffries, J.B.; Hanson, R.K. Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra. Appl. Opt. 2004, 43, 6500–6509. [Google Scholar] [CrossRef]
True Concentration | Inferred Concentration | ||||
---|---|---|---|---|---|
298 K | 308 K | 318 K | 328 K | 338 K | |
10% | 0.30% | 5.66% | 1.33% | 2.51% | −2.25% |
12% | −2.78% | −0.58% | 1.35% | −1.24% | −2.62% |
14% | 0.28% | −0.60% | −0.38% | −2.88% | −3.35% |
16% | −1.24% | 0.09% | 0.65% | −4.70% | −3.58% |
18% | 3.74% | 1.52% | 1.59% | 1.56% | −3.14% |
20% | −1.21% | 3.54% | 0.61% | −3.72% | −2.83% |
S(T) | 298 K | 308 K | 318 K | 328 K | 338 K |
---|---|---|---|---|---|
Database | 3.8967 | 3.8147 | 3.7318 | 3.6483 | 3.5648 |
Calculated | 4.0639 | 3.9329 | 3.8824 | 3.5011 | 3.2471 |
True Concentration | Inferred Concentration | ||||
---|---|---|---|---|---|
298 K | 308 K | 318 K | 328 K | 338 K | |
10% | −2.86% | −3.02% | −2.60% | −2.62% | −2.67% |
12% | 1.49% | 0.99% | 0.43% | 0.46% | 1.04% |
14% | 0.68% | 1.64% | 1.84% | 1.73% | 1.31% |
16% | 2.89% | 1.43% | 1.15% | 1.51% | 1.06% |
18% | −1.50% | 0.31% | 0.54% | 0.10% | 0.32% |
20% | −0.89% | −1.64% | −1.65% | −1.48% | −1.35% |
True Concentration | Inferred Concentration | ||||
---|---|---|---|---|---|
298 K | 308 K | 318 K | 328 K | 338 K | |
10% | −2.30% | −2.58% | −1.97% | −1.94% | −2.25% |
12% | 1.52% | 0.83% | 0.11% | 0.02% | 0.66% |
14% | −0.16% | 1.43% | 1.56% | 1.27% | 1.17% |
16% | 2.85% | 1.13% | 0.82% | 1.48% | 1.14% |
18% | −1.34% | 0.23% | 0.66% | 0.30% | 0.25% |
20% | −0.73% | −1.32% | −1.41% | −1.40% | −1.22% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Yao, S.; Ren, W.; Lu, Z.; Li, Z. TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts. Appl. Sci. 2019, 9, 442. https://doi.org/10.3390/app9030442
Zhu X, Yao S, Ren W, Lu Z, Li Z. TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts. Applied Sciences. 2019; 9(3):442. https://doi.org/10.3390/app9030442
Chicago/Turabian StyleZhu, Xiaorui, Shunchun Yao, Wei Ren, Zhimin Lu, and Zhenghui Li. 2019. "TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts" Applied Sciences 9, no. 3: 442. https://doi.org/10.3390/app9030442
APA StyleZhu, X., Yao, S., Ren, W., Lu, Z., & Li, Z. (2019). TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts. Applied Sciences, 9(3), 442. https://doi.org/10.3390/app9030442