Simulation and Evaluation on the Dynamic Performance of a Cryogenic Turbo-Based Reverse Brayton Refrigerator
Abstract
:1. Introduction
2. The Cryogenic Refrigerator
2.1. Process Analysis
2.2. Test Apparatus
3. Simulation and Evaluation Method
4. Result and Discussion
4.1. Simulation of Energy Consumption
4.2. Simulation of Energy Recovery
4.3. Experimental Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Symbols | |
Amin | Area of nozzle throat (m2) |
cs | Isentropic spouting velocity (m s−1) |
D1E | Expansion wheel diameter (m) |
D2B | Blower wheel diameter (m) |
k | Adiabatic exponent of air |
n | Rotating speed (rpm) |
nd | Design speed of blower (rpm) |
nZ | Polytropic exponent in nozzle |
p0E | Expander inlet pressure (Pa) |
pB | Blower inlet pressure (Pa) |
wC | Compression work per unit (W kg−1) |
WE | Expansion work (W) |
qmE | Mass flow rate of expander (kg s−1) |
Qd | Design inlet flow of blower (m3 min−1) |
R | Gas constant of air (J Kg−1 K−1) |
T0E | Expander inlet temperature (K) |
T0B | Blower inlet temperature (K) |
u1 | Expansion wheel inlet peripheral velocity (m s−1) |
Z0E | Compression factor in expander |
β | Friction and windage loss factor of blower |
Compression ratio | |
Expansion ratio | |
Isentropic compression efficiency | |
Isentropic expansion efficiency | |
Slip factor of blower |
References
- Lechon, Y.; Cabal, H.; Varela, M.; Saez, R.; Eherer, C.; Baumann, M.; Düweke, J.; Hamacher, T.; Tosato, G.C. A global energy model with fusion. Fusion Eng. Des. 2005, 75, 1141–1144. [Google Scholar] [CrossRef]
- Remeljej, C.W.; Hoadley, A.F.A. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes. Energy 2006, 31, 2005–2019. [Google Scholar] [CrossRef]
- Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space. Cryogenics 2014, 64, 172–181. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, S.; Chen, X.; Chen, S.; Lai, T. Study on the matching performance of a low temperature reverse Brayton air refrigerator. Energy Convers. Manag. 2015, 89, 339–348. [Google Scholar] [CrossRef]
- Hiraia, H.; Suzukia, Y.; Hirokawaa, M.; Kobayashia, H.; Kamiokaa, Y.; Iwakuma, M.; Shiohara, Y. Development of a turbine refrigerator for high temperature superconductor applications. Physica C 2009, 469, 1857–1861. [Google Scholar] [CrossRef]
- Li, Z.; Miao, F.; Yang, Z.; Chai, P.; Yang, S. Factors affecting human hand grasp type in tomato fruit-picking: A statistical investigation for ergonomic development of harvesting robot. Comput. Electron. Agric. 2019, 157, 90–97. [Google Scholar] [CrossRef]
- Biglia, A.; Comba, L.; Fabrizio, E.; Gay, P.; Mannini, A.; Mussinatto, A.; Aimonino, R.D. Reversed Brayton cycle for food freezing at very low temperatures: Energy performance and optimisation. Int. J. Refrig. 2017, 81, 82–95. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Pourfayaz, F.; Bidi, M. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy Convers. Manag. 2016, 110, 260–267. [Google Scholar] [CrossRef]
- Flynn, T. Cryogenic Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 21–35. [Google Scholar]
- Spence, S.W.T.; Doran, W.J.; Artt, D.W. Design, construction and testing of an air-cycle refrigeration system for road transport. Int. J. Refrig. 2004, 27, 503–510. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, Y.; Zhu, Y.; Chen, L.; Chen, S. Experimental study on the performance of an aircraft environmental control system. Appl. Therm. Eng. 2009, 29, 3284–3288. [Google Scholar] [CrossRef]
- Hirai, H.; Hirokawa, M.; Yoshida, S.; Nara, N.; Ozaki, S.; Hayashi, H. Neon turbo-Brayton cycle refrigerator for HTS power machines. AIP Conf. Proc. 2012, 1434, 1672–1679. [Google Scholar]
- Yang, S.; Chen, S.; Chen, X.; Zhang, X.; Hou, Y. Study on the coupling performance of a turboexpander compressor applied in cryogenic reverse Brayton air refrigerator. Energy Convers. Manag. 2016, 122, 386–399. [Google Scholar] [CrossRef]
- Yang, S.; Fu, B.; Hou, Y.; Chen, S.; Li, Z.; Wang, S. Transient cooling and operational performance of the cryogenic part in reverse Brayton air refrigerator. Energy 2019, 167, 921–938. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, Y.; Zhu, Y.; Chen, L.; Chen, S. Study on the transient cooling characteristics of air refrigerator. Cryogenics 2003, 134, 25–32. (In Chinese) [Google Scholar]
- Junwei, C.; Wan, S.; Bin, L.; Tao, L.; Yu, H. Study on the dynamic cooling performance of a −150 °C reverse Brayton cycle air cryocooler. J. Xi’an Jiaotong Univ. 2013, 47, 60–63. [Google Scholar]
- Ahmadi, M.H.; Ahmadi, M.A. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle. Energy Convers. Manag. 2015, 89, 147–155. [Google Scholar] [CrossRef]
- Fazlollahi, F.; Bown, A.; Ebrahimzadeh, E.; Baxter, L.L. Design and analysis of the natural gas liquefaction optimization process-Energy Storage of Cryogenic Carbon Capture (CCC-ES). Energy 2015, 90, 244–257. [Google Scholar] [CrossRef]
- Fazlollahi, F.; Bown, A.; Saeidi, S.; Ebrahimzadeh, E.; Baxter, L.L. Transient natural gas liquefaction process comparison-dynamic heat exchanger under transient changes in flow. Appl. Therm. Eng. 2016, 109, 775–788. [Google Scholar] [CrossRef]
- Michelsen, F.A.; Halvorsen, I.J.; Lund, B.F.; Wahl, P.E. Modeling and simulation for control of the TEALARC liquified natural gas process. Ind. Eng. Chem. Res. 2010, 49, 7389–7397. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, J.; Wang, W.; Wang, R. Dynamic simulation of a single nitrogen expansion cycle for natural gas liquefaction under refrigerant inventory operation. Appl. Therm. Eng. 2018, 128, 747–761. [Google Scholar] [CrossRef]
- Whitfield, A.; Baines, N.C. Design of Radial Turbomachines, 1st ed.; Longman Press: Harlow, UK, 1990; pp. 126–130. [Google Scholar]
- Averous, D.; Hammadi, K.; Pingaud, H.; Joulia, X.; Guittard, P. Dynamic simulation of Brazed Plate-Fin Heat Exchangers. Comput. Chem. Eng. 1999, 23, S447–S450. [Google Scholar] [CrossRef]
Parameters | Pressure/MPa (abs.) | Temperature/K | Rotating Speed/rpm | Flow Rate/kg s−1 |
---|---|---|---|---|
Range | 0–1.000 | 55.0–320.0 | 0–300,000 | 0.003–0.060 |
Accuracy | ±0.25% | ±0.1 | ±1 | ±1.5% |
Parameter | Test 1 | Simulation 1 | Test 2 | Simulation 2 |
---|---|---|---|---|
Expander inlet pressure (MPa) | 0.398–0.401 | 0.400 | 0.398–0.400 | 0.400 |
Expander inlet temperature (K) | 294.3–294.9 | 295.0 | 294.0–295.2 | 295.0 |
Expander outlet pressure (MPa) | 0.107 | 0.107 | 0.107 | 0.107 |
Operation method | Feedback control | pB = 0.100 MPa |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, Z.; Fu, B. Simulation and Evaluation on the Dynamic Performance of a Cryogenic Turbo-Based Reverse Brayton Refrigerator. Appl. Sci. 2019, 9, 531. https://doi.org/10.3390/app9030531
Yang S, Liu Z, Fu B. Simulation and Evaluation on the Dynamic Performance of a Cryogenic Turbo-Based Reverse Brayton Refrigerator. Applied Sciences. 2019; 9(3):531. https://doi.org/10.3390/app9030531
Chicago/Turabian StyleYang, Shanju, Zhan Liu, and Bao Fu. 2019. "Simulation and Evaluation on the Dynamic Performance of a Cryogenic Turbo-Based Reverse Brayton Refrigerator" Applied Sciences 9, no. 3: 531. https://doi.org/10.3390/app9030531
APA StyleYang, S., Liu, Z., & Fu, B. (2019). Simulation and Evaluation on the Dynamic Performance of a Cryogenic Turbo-Based Reverse Brayton Refrigerator. Applied Sciences, 9(3), 531. https://doi.org/10.3390/app9030531