In Vivo Experimental Study on the Enhancement of Optical Clearing Effect by Laser Irradiation in Conjunction with a Chemical Penetration Enhancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments In Vivo
2.2. Experiments In Vitro
3. Results and Discussion
3.1. Laser Irradiation and Thiazone Treatment-Induced Changes in Reflectance Spectra of Skin In Vivo
3.2. Combined Treatment of Different Doses of Laser Irradiation and Thiazone-Induced Changes in Reflectance Spectra of Skin In Vivo
3.3. Changes in Transmittance of Skin In Vitro with Different Treatments
4. Conclusions
- Mono-treatment of laser irradiation is less effective than combined treatment, and insignificant optical clearing effect is observed with the mono-treatment of thiazone.
- Combined treatment with a lower dose of 1064 nm Nd:YAG laser irradiation achieves improved optical clearing effect. Under the effect of 0.5 J/cm2 laser irradiation dose, the reflectance decreases by 25.2%, 23.7%, and 17.6% at 475, 575, and 615 nm, respectively.
- The optimum laser irradiation dose exists in the combined treatment. The combined penetration enhancement at 0.7 J/cm2 dose achieves the best optical clearing effect in only 10 min. The final optical clearing effect is also the best, decreasing by approximately 30% of the original value.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tuchin, V.V.; Maksimova, I.L.; Zimnyakov, D.A.; Kon, I.L.; Mavlyutov, A.H.; Mishin, A.A. Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 1997, 2, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Tsu, L.; Chen, E.; Ishak, T.S.; Iskandar, S.M.; Chess, S.; Nelson, J.S. Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2005, 36, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Galanzha, E.; Tuchin, V.; Solovieva, A.; Stepanova, T.; Luo, Q.; Cheng, H. Skin backreflectance and microvascular system functioning at the action of osmotic agents. J. Phys. D Appl. Phys. 2003, 36, 1739. [Google Scholar] [CrossRef]
- Stumpp, O.; Chen, B.; Welch, A.J. Using sandpaper for noninvasive transepidermal optical skin clearing agent delivery. J. Biomed. Opt. 2006, 11, 041118. [Google Scholar] [CrossRef] [PubMed]
- Tuchin, V.; Altshuler, G.; Gavrilova, A.; Pravdin, A.; Tabatadze, D.; Childs, J.; Yaroslavsky, I. Optical clearing of skin using flashlamp-induced enhancement of epidermal permeability. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2006, 38, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, Q. Evaluation of skin optical clearing enhancement with azone as a penetration enhancer. Opt. Commun. 2007, 279, 223–228. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, J.; Zhi, Z.; Wen, X.; Luo, Q. Imaging dermal blood flow through the intact rat skin with an optical clearing method. J. Biomed. Opt. 2010, 15, 026008. [Google Scholar] [CrossRef] [Green Version]
- Bui, A.K.; McClure, R.A.; Chang, J.; Stoianovici, C.; Hirshburg, J.; Yeh, A.T.; Choi, B. Revisiting optical clearing with dimethyl sulfoxide (dmso). Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2009, 41, 142–148. [Google Scholar] [CrossRef]
- Peck, K.D.; Ghanem, A.-H.; Higuchi, W.I. Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm. Res. 1994, 11, 1306–1314. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Duan, S.; Chen, Z.; Zhu, D. Improvement of In Vivo Rat Skin Optical Clearing with Chemical Penetration Enhancers. In Photonic Therapeutics and Diagnostics VII; International Society for Optics and Photonics: San Francisco, CA, USA, 2011. [Google Scholar]
- Zhong, H.; Guo, Z.; Wei, H.; Guo, L.; Wang, C.; He, Y.; Xiong, H.; Liu, S. Synergistic effect of ultrasound and thiazone–peg 400 on human skin optical clearing in vivo. Photochem. Photobiol. 2010, 86, 732–737. [Google Scholar] [CrossRef]
- Wang, J.; Shi, R.; Zhu, D. Switchable skin window induced by optical clearing method for dermal blood flow imaging. J. Biomed. Opt. 2012, 18, 061209. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Guo, L.; Zhang, C.; Feng, W.; Li, P.; Ding, Z.; Zhu, D. A useful way to develop effective in vivo skin optical clearing agents. J. Biophotonics 2017, 10, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, Q. Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 56–61. [Google Scholar] [CrossRef]
- Yoon, J.; Son, T.; Choi, E.-h.; Choi, B.; Nelson, J.S.; Jung, B. Enhancement of optical skin clearing efficacy using a microneedle roller. J. Biomed. Opt. 2008, 13, 021103. [Google Scholar] [CrossRef] [Green Version]
- Rylander, C.G.; Milner, T.E.; Baranov, S.A.; Nelson, J.S. Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2008, 40, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Bose, V.G.; Langer, R.; Weaver, J.C. Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. 1993, 90, 10504–10508. [Google Scholar] [CrossRef]
- Song, J.Y.; Kang, H.A.; Kim, M.Y.; Park, Y.M.; Kim, H.O. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion. Dermatol. Surg. 2004, 30, 390–394. [Google Scholar]
- Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE J. Am. Opt. Eng. 2007. [Google Scholar] [CrossRef]
- Liu, C.; Zhi, Z.; Tuchin, V.V.; Luo, Q.; Zhu, D. Enhancement of skin optical clearing efficacy using photo-irradiation. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2010, 42, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, J.; Yue, Y.; Luo, Q.; Zhu, D. 1064 nm-nd: Yag lasers with different output modes enhancing transdermal delivery: Physical and physiological mechanisms. J. Biomed. Opt. 2013, 18, 061228. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Wavelength/nm | 1064 |
Pulse width/ns | 6 |
Speckle/mm | 2.52 × π |
Irradiation dose/(J/cm2) | 0.5, 0.7, 0.9 |
Pulse number np | 60 |
Frequency/Hz | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, B. In Vivo Experimental Study on the Enhancement of Optical Clearing Effect by Laser Irradiation in Conjunction with a Chemical Penetration Enhancer. Appl. Sci. 2019, 9, 542. https://doi.org/10.3390/app9030542
Liu X, Chen B. In Vivo Experimental Study on the Enhancement of Optical Clearing Effect by Laser Irradiation in Conjunction with a Chemical Penetration Enhancer. Applied Sciences. 2019; 9(3):542. https://doi.org/10.3390/app9030542
Chicago/Turabian StyleLiu, Xinyi, and Bin Chen. 2019. "In Vivo Experimental Study on the Enhancement of Optical Clearing Effect by Laser Irradiation in Conjunction with a Chemical Penetration Enhancer" Applied Sciences 9, no. 3: 542. https://doi.org/10.3390/app9030542
APA StyleLiu, X., & Chen, B. (2019). In Vivo Experimental Study on the Enhancement of Optical Clearing Effect by Laser Irradiation in Conjunction with a Chemical Penetration Enhancer. Applied Sciences, 9(3), 542. https://doi.org/10.3390/app9030542