Analyzing the Impact of Variability and Uncertainty on Power System Flexibility
Abstract
:Featured Application
Abstract
1. Introduction
2. Flexibility Index: Ramping Capability Shortage Probability
2.1. System Ramping Capability (SRC), Ramping Capability Requirement (RCR)
2.2. Ramping Capability Shortage Probability
3. Scenarios for Variability and Uncertainty
3.1. Variability and Uncertainty and Their Relevance
3.2. Scenario Generation and Sensitivity Analysis
4. Case Study
4.1. Base Case Information
4.2. Results for the Scenarios
5. Conclusions
Funding
Conflicts of Interest
Nomenclature
Ai,t | Random variable representing availability of generator i at time t (1 if available, 0 otherwise) |
c | Element of Ct−Δt |
Ct-Δt | Set of combinations of Ai,t−Δt when Oi,t−Δt is nonzero for all i |
e | Element of Et |
Et | Set of NLFEt |
FLt | Forecast load at time t |
FNLt | Forecast net load at time t |
FVGt | Forecast variable generation at time t |
i | Index of generator |
I | Set of generators |
LFEt | Random variable representing load forecast error at time t |
NLFEt | Random variable representing net load forecast error at time t |
Oi,t | Value representing whether generator i is online at time t or not |
Pi,t | Output of generator i at time t |
Pmax,i | Maximum output level of generator i |
Prob(·) | Probability in parentheses |
Probc[·] | Probability of c if condition [∙] is satisfied, 0 otherwise. |
RCRt | Ramping capability requirement at time t |
rri | Ramp rate of generator i |
RSPt | Ramping capability shortage probability at time t |
SRCt | System ramping capability at time t |
t | Index of time |
Δt | Minimum interval between operating points |
VGFEt | Random variable representing variable generation forecast error at time t |
Appendix A. Failure and Repair Rates in Case Study
Unit # | Failure Rate (occurrences/h) | Repair Rate (occurrences/h) |
---|---|---|
1–5 | 1/2940 | 1/60 |
6–9 | 1/450 | 1/50 |
10 | 1/1960 | 1/40 |
11, 12 | 1/450 | 1/40 |
13 | 1/1960 | 1/40 |
14–16 | 1/1200 | 1/50 |
17–20 | 1/960 | 1/40 |
21–23 | 1/950 | 1/50 |
24 | 1/1150 | 1/100 |
25, 26 | 1/1100 | 1/150 |
References
- The Ministry of Trade, Industry and Energy. The 8th Basic Plan on Electricity Demand and Supply; MOTIE: Sejong-si, Korea, 2017.
- Min, C.-G.; Kim, M.-K. Net load carrying capability of generating units in power systems. Energies 2017, 10, 1221. [Google Scholar] [CrossRef]
- Min, C.-G.; Kim, M.-K. Flexibility-based reserve scheduling of pumped hydroelectric energy storage in korea. Energies 2017, 10, 1478. [Google Scholar]
- Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O’Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A. Flexibility in 21st Century Power Systems; U.S. National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012.
- Denholm, P.; Hand, M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 2011, 39, 1817–1830. [Google Scholar] [CrossRef]
- Min, C.-G.; Kim, M.-K. Flexibility-based evaluation of variable generation acceptability in korean power system. Energies 2017, 10, 825. [Google Scholar] [CrossRef]
- Min, C.-G.; Kim, M.-K. Impact of the complementarity between variable generation resources and load on the flexibility of the korean power system. Energies 2017, 10, 1719. [Google Scholar] [CrossRef]
- Navid, N.; Rosenwald, G. Market solutions for managing ramp flexibility with high penetration of renewable resource. IEEE Trans. Sustain. Energy 2012, 3, 784–790. [Google Scholar] [CrossRef]
- Halamay, D.A.; Brekken, T.K.; Simmons, A.; McArthur, S. Reserve requirement impacts of large-scale integration of wind, solar, and ocean wave power generation. IEEE Trans. Sustain. Energy 2011, 2, 321–328. [Google Scholar] [CrossRef]
- Tabone, M.D.; Callaway, D.S. Modeling variability and uncertainty of photovoltaic generation: A hidden state spatial statistical approach. IEEE Trans. Power Syst. 2015, 30, 2965–2973. [Google Scholar] [CrossRef]
- Caciotta, M.; Giarnetti, S.; Leccese, F. In Hybrid neural network system for electric load forecasting of telecomunication station. In Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009; pp. 657–661. [Google Scholar]
- Ilić, S.; Selakov, A.; Vukmirović, S.; Erdeljan, A.; Kulić, F. Short-term load forecasting in large scale electrical utility using artificial neural network. J. Sci. Ind. Res. 2013, 72, 739–745. [Google Scholar]
- Ilić, S.A.; Vukmirović, S.M.; Erdeljan, A.M.; Kulić, F.J. Hybrid artificial neural network system for short-term load forecasting. Therm. Sci. 2012, 16, 215–224. [Google Scholar] [CrossRef]
- Kurbatsky, V.; Tomin, N.; Sidorov, D.; Spiryaev, V. In Electricity prices neural networks forecast using the hilbert-huang transform. In Proceedings of the 9th International Conference on Environment and Electrical Engineering (EEEIC), Prague, Czech Republic, 16–19 May 2010; pp. 381–383. [Google Scholar]
- Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Eenergy 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Kiviluoma, J.; Meibom, P.; Tuohy, A.; Troy, N.; Milligan, M.; Lange, B.; Gibescu, M.; O’Malley, M. Short-term energy balancing with increasing levels of wind energy. IEEE Trans. Sustain. Energy 2012, 3, 769–776. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Zhu, F.; Hu, X.; Ji, W.; Yang, S.; Wang, K.; Feng, S. Unit commitment model considering flexible scheduling of demand response for high wind integration. Energies 2015, 8, 13688–13709. [Google Scholar] [CrossRef]
- Han, X.; Liao, S.; Ai, X.; Yao, W.; Wen, J. Determining the minimal power capacity of energy storage to accommodate renewable generation. Energies 2017, 10, 468. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, J.; Guan, Y. Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 2012, 27, 800. [Google Scholar] [CrossRef]
- Bessa, R.; Moreira, C.; Silva, B.; Matos, M. Handling renewable energy variability and uncertainty in power systems operation. Wires Energy Environ. 2014, 3, 156–178. [Google Scholar] [CrossRef]
- Osório, G.J.; Shafie-khah, M.; Lujano-Rojas, J.M.; Catalão, J.P. Scheduling model for renewable energy sources integration in an insular power system. Energies 2018, 11, 144. [Google Scholar] [CrossRef]
- Marneris, I.G.; Biskas, P.N.; Bakirtzis, A.G. Stochastic and deterministic unit commitment considering uncertainty and variability reserves for high renewable integration. Energies 2017, 10, 140. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Sun, Y.-Z.; Fang, H.-L. Scenario generation of wind power based on statistical uncertainty and variability. IEEE Trans. Sustain. Energy 2013, 4, 894–904. [Google Scholar] [CrossRef]
- Hu, B.; Wu, L.; Marwali, M. On the robust solution to scuc with load and wind uncertainty correlations. IEEE Trans. Power Syst. 2014, 29, 2952–2964. [Google Scholar] [CrossRef]
- Qadrdan, M.; Wu, J.; Jenkins, N.; Ekanayake, J. Operating strategies for a gb integrated gas and electricity network considering the uncertainty in wind power forecasts. IEEE Trans. Sustain. Energy 2014, 5, 128–138. [Google Scholar] [CrossRef]
- Ela, E.; O’Malley, M. Studying the variability and uncertainty impacts of variable generation at multiple timescales. IEEE Trans. Power Syst. 2012, 27, 1324. [Google Scholar] [CrossRef]
- Weng, Z.; Shi, L.; Xu, Z.; Lu, Q.; Yao, L.; Ni, Y. Fuzzy power flow solution considering wind power variability and uncertainty. Int. Trans. Electr. Energy Syst. 2015, 25, 547–572. [Google Scholar] [CrossRef]
- Luo, J.; Shi, L.; Ni, Y. A solution of optimal power flow incorporating wind generation and power grid uncertainties. IEEE Access 2018, 6, 19681–19690. [Google Scholar] [CrossRef]
- Min, C.-G.; Park, J.K.; Hur, D.; Kim, M.-K. A risk evaluation method for ramping capability shortage in power systems. Energy 2016, 113, 1316–1324. [Google Scholar] [CrossRef]
- Allan, R.N. Reliability Evaluation of Power Systems; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Solomon, A.; Kammen, D.M.; Callaway, D. Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Appl. Energ. 2016, 168, 130–145. [Google Scholar] [CrossRef]
- Borges, C.L.T. An overview of reliability models and methods for distribution systems with renewable energy distributed generation. Renew. Sustain. Energy Rev. 2012, 16, 4008–4015. [Google Scholar] [CrossRef]
- Hunt, B.R.; Lipsman, R.L.; Rosenberg, J.M. A Guide to Matlab: For Beginners and Experienced Users; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Korea Power Exchange. Electric Power Statistics Information System. Available online: http://epsis.kpx.or.kr/epsis/ekesStaticMain.do?cmd=001001&flag=&locale=EN (accessed on 17 December 2018).
Scenario # | Net Load | Increased Variability | Uncertainty |
---|---|---|---|
S1 | High (>100%) | Particular range | Fixed |
S2 | Fixed, 0% | Particular range | |
S3 | Medium (100%) | Particular range | Fixed |
S4 | Fixed, 0% | Particular range | |
S5 | Low (<100%) | Particular range | Fixed |
S6 | Fixed, 0% | Particular range |
Scenario, S# | Net Load | Increased Variability of the Net Load at 19 h | Uncertainty of the Net Load at 19 h |
---|---|---|---|
S1 | 120% | 0% to 20% | Fixed, i.e., 5% |
S2 | 120% | Fixed, 0% | 0% to 20% |
S3 | 110% | 0% to 20% | Fixed, i.e., 5% |
S4 | 110% | Fixed, 0% | 0% to 20% |
S5 | 100% | 0% to 20% | Fixed, i.e., 5% |
S6 | 100% | Fixed, 0% | 0% to 20% |
S7 | 90% | 0% to 20% | Fixed, i.e., 5% |
S8 | 90% | Fixed, 0% | 0% to 20% |
S9 | 80% | 0% to 20% | Fixed, i.e., 5% |
S10 | 80% | Fixed, 0% | 0% to 20% |
Scenario, S# | Net Load | Increased Variability of the Net Load at 19 h | Uncertainty of the Net Load at 19 h |
---|---|---|---|
S1 | 120% | N/A | Fixed, i.e., 5% |
S2 | 120% | Fixed, 0% | N/A |
S3 | 110% | N/A | Fixed, i.e., 5% |
S4 | 110% | Fixed, 0% | N/A |
S5 | 100% | N/A | Fixed, i.e., 5% |
S6 | 100% | Fixed, 0% | 0% to 5% |
S7 | 90% | 0% to 11% | Fixed, i.e., 5% |
S8 | 90% | Fixed, 0% | 0% to 10% |
S9 | 80% | 0% to 20% | Fixed, i.e., 5% |
S10 | 80% | Fixed, 0% | 0% to 15% |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, C.-G. Analyzing the Impact of Variability and Uncertainty on Power System Flexibility. Appl. Sci. 2019, 9, 561. https://doi.org/10.3390/app9030561
Min C-G. Analyzing the Impact of Variability and Uncertainty on Power System Flexibility. Applied Sciences. 2019; 9(3):561. https://doi.org/10.3390/app9030561
Chicago/Turabian StyleMin, Chang-Gi. 2019. "Analyzing the Impact of Variability and Uncertainty on Power System Flexibility" Applied Sciences 9, no. 3: 561. https://doi.org/10.3390/app9030561
APA StyleMin, C. -G. (2019). Analyzing the Impact of Variability and Uncertainty on Power System Flexibility. Applied Sciences, 9(3), 561. https://doi.org/10.3390/app9030561