Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study
Abstract
:1. Introduction
Research Significance
- -
- Replacement of RA by natural aggregates (NA) considering the effect of the difference in density or distribution of particle sizes. In this sense, some researchers have tried to obtain “identical” granulometric profiles, for example, which makes it possible to avoid this variable being imputable in the change of the properties studied. However, this technological requirement in industrial practice on a large scale is obviously unacceptable because of the costs involved in dividing the aggregates into fractions of sizes and then recomposing the ideal profile again. Regarding changes in density, there are experimental procedures that allow separating the old mortar fraction from the old natural aggregate, thus allowing the RA to have densities equivalent to those of an NA (but with an equally complicated industrial practice).
- -
- In other new alternatives, some researchers have chosen to use the RA replacing the NA without making specific considerations, and in this sense, its objective has been to establish the increase in cement consumption that is required to “balance” both mixtures. This scientific trend simplifies the industrialized commercial application of recycled concretes, since everything is limited to making increments of cement in the mixtures. However, this type of application has researchers who present important reflections: is it appropriate to use RA in a concrete that is called recycled (and therefore sustainable) when its solution is to use more cement (one of the construction materials) with maximum environmental impact?
2. Materials and Methods
2.1. Materials and Mixtures
2.2. Methods
2.3. Lineal Polarization Resistance (LPR)
2.4. Electrochemical Impedance Spectroscopy (EIS)
3. Results and Discussion
3.1. Compressive Strength
3.2. Total Porosity
3.3. Electrical Resistivity of Concrete
3.4. Corrosion Current Density of Reinforcement Steel
4. Conclusions
- The use of 30% or lower amounts of RCA does not significantly influence on total porosity and compressive strength. After 30% of RCA in the mixture, the total porosity increases and compressive strength decreases significantly.
- Corrosion of steel bars initiates more quickly in RAC than in conventional concrete. The more RA the RAC contains, the earlier corrosion in the steel begins.
- The corrosion of steel in conventional concrete and RAC accelerates with time. The more RA the RAC contains, the more rapidly the steel corrodes.
- The use of RA introduces more interfaces in concrete, which accelerates the steel corrosion process because the porosity increases and the electrical resistivity decreases.
- Steel corrosion and the electrical resistivity in concrete are not significantly influenced by replacing a maximum 30% of coarse aggregate with RCA.
- Steel corrosion and the electrical resistivity in concrete are not significantly influenced by replacing a maximum 20% of fine aggregate with RFA.
- Within the limitations and scatter of the present experiments, the degradation of durability parameters occurs with all RA specimens but is significantly greater where the RCA replacement is >30% and where the RFA is >20%.
Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Olorunsogo, F.; Padayachee, N. Performance of recycled aggregate concrete monitored by durability indexes. Cem. Concr. Res. 2002, 32, 179–185. [Google Scholar] [CrossRef]
- Salinas, M.A.; Macht, A.; Guevara, E.R. El manejo de los residuos de la construcción en el estado de México en el marco de la cooperación técnica alemena en México. DELOS 2008, 1, 6. [Google Scholar]
- Page, C.L.; Short, N.R.; EL Tarras, A. Diffusion of Chloride Ions in Hardened Cement Paste. Cem. Concr. Res. 1981, 11, 395–406. [Google Scholar] [CrossRef]
- Tuutti, K. Corrosion of Steel in Concrete; Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 1982. [Google Scholar]
- Xiao, J.; Lu, D.; Ying, J. Durability of Recycled Aggregate Concrete: An Overview. J. Adv. Concr. Technol. 2013, 11, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Baroghel-Bouny, V.; Sato, R.; Fujimoto, Y.; Dohi, T. Durability indicators: A basic tool for performance-based evaluation and prediction of reinforced concrete durability. In Proceedings of the International Seminar on Durability and Life Cycle Evaluation of Concrete Structures, Hiroshima, Japan, September 2004. [Google Scholar]
- Wenner, F. A method for measuring earth resistivity. J. Wash. Acad. Sci. 1915, 5, 561–563. [Google Scholar] [CrossRef]
- Alonso, C.; Andrade, C.; González, J.A. Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cem. Concr. Res. 1988, 189, 687–698. [Google Scholar] [CrossRef]
- Bentur, A.; Diamond, S.; Berke, N.S. Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice; E & FN Spon CRC Press: London, UK, 1997. [Google Scholar]
- Gómez-Soberón, J. Porosity of recycled concrete with substitution of recycled concrete aggregate—An experimental study. Cem. Concr. Res. 2002, 32, 1301–1311. [Google Scholar] [CrossRef]
- Poon, C.S.; Shui, Z.H.; Lam, L.; Fok, H.; Kou, S.C. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 2004, 34, 31–36. [Google Scholar] [CrossRef]
- Etxeberría, M.; Vázquez, E.; Marí, A. Microstructure analysis of hardened recycled aggregate concrete. Mag. Concr. Res. 2006, 58, 683–690. [Google Scholar] [CrossRef]
- Tumidajski, P.J.; Shumacher, A.S.; Perron, S.; Gu, P.; Beaudoin, J.J. On the relationship between porosity and electrical resistivity in cementitious systems. Cem. Concr. Res. 1996, 26, 539–544. [Google Scholar] [CrossRef]
- Tumidajski, P.J. Relationship between resistivity, diffusivity and microstructural descriptors for mortars with silica fume. Cem. Concr. Res. 2005, 35, 1262–1268. [Google Scholar] [CrossRef]
- Polder, R.; Andrade, C.; Elsener, B.; Vennesland, O.E.; Gulikers, J.; Weidert, R.; Raupach, M. Test methods for on site measurement of resistivity of concrete. Mater. Struct. 2000, 33, 603–611. [Google Scholar] [CrossRef]
- Corral-Higuera, R.; Arredondo-Rea, S.P.; Neri-Flores, M.A.; Gómez-Soberón, J.M.; Castorena-González, J.H.; Martínez-Villafañe, A.; Almaral-Sánchez, J.L.; Almeraya-Calderón, F. Chloride Ion Penetrability and Corrosion Behavior of Steel in Concrete with Sustainability Characteristics. Int. J. Electrochem. Sci. 2011, 6, 958–970. [Google Scholar]
- Fajardo, G.; Valdez, P.; Pacheco, J. Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides. Constr. Build. Mater. 2009, 23, 768–774. [Google Scholar] [CrossRef]
- Gámez-García, D.C.; Saldaña-Márquez, H.; Gómez-Soberón, J.M.; Corral-Higuera, R. Feasibility study and characterization of aggregates for structural concrete. Ingeniería y Desarrollo 2007, 35, 200–221. [Google Scholar] [CrossRef]
- Głuchowski, A.; Sas, W.; Dzięcioł, J.; Soból, E.; Szymański, A. Permeability and Leaching Properties of Recycled Concrete Aggregate as an Emerging Material in Civil Engineering. Appl. Sci. 2019, 9, 81. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Deus, J.M.; Díaz, B.; Freire, L.; Nóvoa, X.R. The electrochemical behaviour of steel rebars in concrete: An Electrochemical Impedance Spectroscopy study of the effect of temperature. Electrochim. Acta 2014, 131, 106–115. [Google Scholar] [CrossRef]
- Cabeza, M.; Keddam, M.; Nóvoa, X.R.; Sánchez, I.; Takenouti, H. Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochim. Acta 2006, 51, 1831–1841. [Google Scholar] [CrossRef]
- Torrents, J.M.; Roncero, J.; Gettu, R. Utilization of impedance spectroscopy for studying the retarding effect of a superplasticizer on the setting of cement. Cem. Concr. Res. 1998, 28, 1325–1333. [Google Scholar] [CrossRef]
- Dilbas, H.; Simsek, M.; Cakir, O. An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr. Build. Mater. 2014, 61, 50–59. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; de Juan, M.S. Durability of recycled aggregate concrete. Constr. Build. Mater. 2013, 40, 1054–1065. [Google Scholar] [CrossRef]
- Khatib, J.M. Properties of concrete incorporating fine recycled aggregate. Cem. Concr. Res. 2005, 35, 763–769. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 2010, 32, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, L.; de Brito, J. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Comp. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Poon, C.S.; Shui, Z.H.; Lam, L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 2004, 18, 461–468. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete. J. Wuhan Univ. Technol. Mater. Ed. Sci. 2006, 21, 130–136. [Google Scholar]
- Wirquin, E.; Hadjieva-Zaharieva, R.; Buyle-Bodin, F. Utilisation de l’absorption d’eau des bétons comme critères de leur durabilité—Application aux bétons de granulats recyclés. Mater. Struct. 2000, 33, 403–408. [Google Scholar] [CrossRef]
- Levy, S.; Helène, P. Durability of concrete mixed with fine recycled aggregates. Exacta 2007, 5, 25–34. [Google Scholar] [CrossRef]
- Bungey, J.H.; Millard, S.G.; Grantham, M.G. Testing of Concrete in Structures, 4th ed.; Taylor & Francis: New York, NY, USA, 2006. [Google Scholar]
- Andreu, G.; Miren, E. Experimental analysis of properties of high performance recycled aggregate concrete. Constr. Build. Mater. 2014, 52, 227–235. [Google Scholar] [CrossRef]
- Zega, C.J.; di Maio, A.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Dong, J.; Wu, Y.; Wang, H.; Li, X.; Xu, Q. Steel corrosion and corrosion-induced cracking in recycled aggregate concrete. Corros. Sci. 2014, 85, 241–250. [Google Scholar] [CrossRef]
- Dodds, W.; Christodoulou, C.; Goodier, C.; Austin, S.; Dunne, D. Durability performance of sustainable structural concrete: Effect of coarse crushed concrete aggregate on rapid chloride migration and accelerated corrosion. Constr. Build. Mater. 2017, 155, 511–521. [Google Scholar] [CrossRef] [Green Version]
Absorption (%) | 6.91 |
Density g/cm3 | 2.36 |
Porosity % | 17.87 |
Compressive strength (MPa) | 28.15 |
* Density (g/cm3) | * Absorption % | ** Fineness Modulus | ** Maximum Size (mm) | |
---|---|---|---|---|
NCA | 2.56 | 1.19 | - | 25.4 |
NFA | 2.59 | 1.88 | 2.53 | 4.76 |
RCA | 2.38 | 6.27 | - | 25.4 |
RFA | 2.28 | 11.86 | 3.38 | 4.76 |
Material (kg/m3) | Identification of the Mixtures | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
NAT | RCA-20 | RCA-30 | RCA-60 | RCA-100 | RFA-20 | RFA-30 | RFA-60 | RFA-100 | RA-100 | |
Water | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 |
NCA | 1050 | 840 | 735 | 420 | 0 | 1050 | 1050 | 1050 | 1050 | 0 |
RCA | 0 | 210 | 315 | 630 | 1050 | 0 | 0 | 0 | 0 | 1050 |
NFA | 700 | 700 | 700 | 700 | 700 | 560 | 490 | 280 | 0 | 0 |
RFA | 0 | 0 | 0 | 0 | 0 | 140 | 210 | 420 | 700 | 700 |
PCC | 350 | 350 | 350 | 350 | 350 | 350 | 350 | 350 | 350 | 350 |
Aggregates were used in their superficially dried saturated state to avoid altering the w/c ratio. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arredondo-Rea, S.P.; Corral-Higuera, R.; Gómez-Soberón, J.M.; Gámez-García, D.C.; Bernal-Camacho, J.M.; Rosas-Casarez, C.A.; Ungsson-Nieblas, M.J. Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study. Appl. Sci. 2019, 9, 617. https://doi.org/10.3390/app9040617
Arredondo-Rea SP, Corral-Higuera R, Gómez-Soberón JM, Gámez-García DC, Bernal-Camacho JM, Rosas-Casarez CA, Ungsson-Nieblas MJ. Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study. Applied Sciences. 2019; 9(4):617. https://doi.org/10.3390/app9040617
Chicago/Turabian StyleArredondo-Rea, S. P., R. Corral-Higuera, J. M. Gómez-Soberón, D. C. Gámez-García, J. M. Bernal-Camacho, C. A. Rosas-Casarez, and M. J. Ungsson-Nieblas. 2019. "Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study" Applied Sciences 9, no. 4: 617. https://doi.org/10.3390/app9040617
APA StyleArredondo-Rea, S. P., Corral-Higuera, R., Gómez-Soberón, J. M., Gámez-García, D. C., Bernal-Camacho, J. M., Rosas-Casarez, C. A., & Ungsson-Nieblas, M. J. (2019). Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study. Applied Sciences, 9(4), 617. https://doi.org/10.3390/app9040617