Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review
Abstract
:1. Introduction
2. Theoretical Aspects
3. Dielectric-Based Passivation Layers
3.1. Approaches Used to Add the Passivation Layer
3.2. Contacting Approach
3.3. Light Management Techniques at Back Contact
3.4. Solar Simulator Results
3.5. Other Characterization Techniques for Further Characterizations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fraunhofer Institute for Solar Energy Systems, Photovoltaics Report. 2018. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 16 December 2018).
- Reinhard, P.; Chirilă, A.; Blösch, P.; Pianezzi, F.; Nishiwaki, S.; Buecheler, S. Review of progress toward 20% efficiency flexible cigs solar cells and manufacturing issues of solar modules. IEEE J. Photovolt. 2013, 3, 572–580. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 2018, 26, 427–436. [Google Scholar] [CrossRef]
- Feurer, T.; Reinhard, P.; Avancini, E.; Bissig, B.; Löckinger, J.; Fuchs, P.; Carron, R.; Weiss, T.P.; Perrenoud, J.; Stutterheim, S.; et al. Progress in thin film CIGS photovoltaics—Research and development, manufacturing, and applications. Prog. Photovolt. Res. Appl. 2017, 25, 645–667. [Google Scholar] [CrossRef]
- Mollica, F.; Goffard, J.; Jubailt, M.; Donsanti, F.; Collin, S.; Cattoni, A.; Lombez, L.; Naghavi, N. Comparative study of patterned TiO2 and Al2O3 layers as passivated back-contact for ultra-thin Cu(In, Ga)Se2 solar cells. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 2213–2217. [Google Scholar]
- Lundberg, O.; Edoff, M.; Stolt, L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 2005, 480–481, 520–525. [Google Scholar] [CrossRef]
- Mollica, F. Optimization of Ultra-Thin Cu(In,Ga)Se2 Based Solar Cells with Alternative Back-Contacts. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, June 2017. [Google Scholar]
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3—Based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. 2012, 30, 040802. [Google Scholar] [CrossRef]
- Salomé, P.M.P.; Vermang, B.; Ribeiro-Andrade, R.; Teixeira, J.P.; Cunha, J.M.V.; Mendes, M.L.; Haque, S.; Borme, J.; Águas, H.; Fortunato, E.; et al. Passivation of interfaces in thin film solar cells: Understanding the effects of a nanostructured rear point contact layer. Adv. Mater. Interfaces 2018, 5, 1701101. [Google Scholar] [CrossRef]
- Joel, J. Characterization of Al2O3 as CIGS Surface Passivation Layer in High-Efficiency CIGS Solar Cells. Ph.D. Thesis, Uppsala Universitet, Uppsala, Sweden, July 2014. [Google Scholar]
- Casper, P.; Hünig, R.; Gomard, G.; Kiowski, O.; Reitz, C.; Lemmer, U.; Powalla, M.; Hetterich, M. Optoelectrical improvement of ultra-thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer. Phys. Status Solidi RRL 2016, 10, 376–380. [Google Scholar] [CrossRef]
- Vermang, B.; Fjällström, V.; Pettersson, J.; Salomé, P.; Edoff, M. Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contact. Sol. Energy Mater. Sol. Cells 2013, 117, 505–511. [Google Scholar] [CrossRef]
- Vermang, B.; Fjallstrom, V.; Gao, X.; Edoff, M. Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts. IEEE J. Photovolt. 2014, 4, 486–492. [Google Scholar] [CrossRef]
- Vermang, B.; Wätjen, J.T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Kotipalli, R.; Henry, F.; Flandre, D. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 2014, 22, 1023–1029. [Google Scholar] [CrossRef]
- Vermang, B.; Wätjen, J.T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Kotipalli, R.; Henry, F.; Flandre, D. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2015, 582, 300–303. [Google Scholar] [CrossRef]
- Choi, S.; Kamikawa, Y.; Nishinaga, J.; Yamada, A.; Shibata, H.; Niki, S. Lithographic fabrication of point contact with Al2O3 rear-surface-passivated and ultra-thin Cu(In,Ga)Se2 solar cells. Thin Solid Films 2018, 665, 91–95. [Google Scholar] [CrossRef]
- Ledinek, D.; Salome, P.; Hagglund, C.; Zimmermann, U.; Edoff, M. Rear Contact Passivation for High Bandgap Cu(In, Ga)Se2 Solar Cells with a Flat Ga profile. IEEE J. Photovolt. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Vermang, B.; Wätjen, J.T.; Frisk, C.; Fjällström, V.; Rostvall, F.; Edoff, M.; Salomé, P.; Borme, J.; Nicoara, N. Introduction of Si PERC rear contacting design to boost efficiency of Cu(In,Ga)Se2 solar cells. IEEE J. Photovolt. 2014, 4, 1644–1649. [Google Scholar] [CrossRef]
- Yin, G.; Knight, M.W.; Lare, M.-C.v.; Garcia, M.M.S.; Polman, A.; Schmid, M. Optoelectronic Enhancement of Ultrathin CuIn1-xGaxSe2 Solar Cells by Nanophotonic Contacts. Adv. Opt. Mater. 2017, 5, 1–11. [Google Scholar]
- Lare, M.-C.v.; Yin, G.; Polman, A.; Schmid, M. Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns. ACS Nano 2015, 9, 9603–9613. [Google Scholar] [CrossRef] [PubMed]
- Vermang, B.; Rostvall, F.; Fjällström, V.; Edoff, M. Potential-induced optimization of ultra-thin rear surface passivated CIGS solar cells. Phys. Status Solidi RRL 2014, 8, 908–911. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Knight, M.W.; Lare, M.-C.v.; Garcia, M.M.S.; Polman, A.; Schmid, M. Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se2 Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 31646–31652. [Google Scholar] [CrossRef]
- Bose, S.; Cunha, J.M.V.; Suresh, S.; Wild, J.D.; Lopes, T.S.; Barbosa, J.R.S.; Silva, R.; Borme, J.; Fernanaes, P.A.; Vermang, B.; et al. Optical Lithography Patterning of SiO2 Layers for Interface Passivation of Thin Film Solar Cells. Sol. RRL 2018, 2, 1800212. [Google Scholar] [CrossRef]
- Ledinek, D.; Donzel-Gargand, O.; Sköld, M.; Keller, J.; Edoff, M. Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers. Sol. Energy Mater. Sol. Cells 2018, 187, 160–169. [Google Scholar] [CrossRef]
- Suresh, S.; Wild, J.D.; Kohl, T.; Buldu, D.G.; Brammertz, G.; Meuris, M.; Poortmans, J.; Isabella, O.; Zeman, M.; Vermang, B. A study to improve light confinement and rear-surface passivation in a thin Cu(In,Ga)Se2 solar cell. Thin Solid Films 2018, 669, 399–403. [Google Scholar] [CrossRef]
- Vermang, B.; Goverde, H.; Tous, L.; Lorenz, A.; Choulat, P.; Horzel, J.; John, J.; Poortmans, J.; Mertens, R. Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%. Prog. Photovolt. Res. Appl. 2012, 20, 269–273. [Google Scholar] [CrossRef]
- Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D. Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface. AIP Adv. 2015, 5, 107101. [Google Scholar] [CrossRef]
- Keller, J.; Chen, W.-C.; Riekehr, L.; Kubart, T.; Törndahl, T.; Edoff, M. Bifacial Cu(In,Ga)Se2 solar cells using hydrogen-doped In2O3 films as a transparent back contact. Prog. Photovolt. Res. Appl. 2018, 26, 846–858. [Google Scholar] [CrossRef]
- Ohm, W.; Riedel, W.; Aksünger, U.; Greiner, D.; Kaufmann, C.A.; Lux-Steiner, M.C.; Gledhill, S. Bifacial Cu(In,Ga)Se2 solar cells with submicron absorber thickness: Back-contact passivation and light management. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–5. [Google Scholar]
- Edoff, M.; Joel, J.; Vermang, B.; Hagglund, C. Back contact passivation effects in Bi-facial thin CIGS solar cells. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 3527–3530. [Google Scholar]
- Titova, V.; Veith-Wolf, B.; Startsev, D.; Schmidt, J. Effective passivation of crystalline silicon surfaces by ultrathin atomic-layer-deposited TiOx layers. Energy Procedia 2017, 124, 441–447. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Hsu, C.-H.; Lien, S.-Y.; Chen, S.-Y.; Huang, W.; Yang, C.-H.; Kung, C.-Y.; Zhu, W.-Z.; Xiong, F.-B.; Meng, X.-G. Surface passivation of silicon using hfo2 thin films deposited by remote plasma atomic layer deposition system. Nanoscale Res. Lett. 2017, 12, 324. [Google Scholar] [CrossRef] [PubMed]
Dielectric and Its Thickness | Deposition Technique | Contacting Approach | Light Management | ARC | Na Supply | Ga Grading | tCIGS (µm) | Average | ||
---|---|---|---|---|---|---|---|---|---|---|
Voc (mV) | Jsc (mA/cm2) | FF (%) | ||||||||
Al2O3-18 nm [9] | ALD | e-beam lithography | - | - | + | + | 0.35 | 627 ± 11 | 21.56 ± 1 | 71.8 ± 3.3 |
Al2O3-2 nm [12] | ALD | CBD of CdS NPs | - | - | + | + | 1.50 | 638 ± 3 | 30 ± 0.6 | 78.8 ± 0.3 |
Al2O3-5 nm [13] | ALD | CBD of CdS NPs | - | - | + | + | 0.48 | 650 ± 5 | 22 ± 1 | - |
Al2O3-5 nm [13] | ALD | CBD of CdS NPs | - | - | + | + | 1.58 | 635 ± 5 | 30 ± 1 | 78.8 |
Al2O3-25 nm [14] | DC Sputtering | CBD of CdS NPs | - | + | + | - | 0.4 | 624 ± 2 | 29 ± 0.4 | 72.6 ± 0.5 |
Al2O3-50 nm [14] | DC Sputtering | CBD of CdS NPs | - | + | + | - | 0.4 | 644 ± 6 | 30.2 ± 0.8 | 67.8 ± 1.7 |
Al2O3-5 nm [14] | ALD | CBD of CdS NPs | MgF2 | + | + | - | 0.4 | 633 ± 2 | 31.1 ± 0.1 | 68.7 ± 1.9 |
Al2O3-(10/15) nm [15] | DC Sputtering | (HIPP) Mo NPs | Mo NPs * | - | + | - | 0.35 | 508 ± 39 | 22.1 ± 0.4 | 57 ± 3 |
Al2O3-(10/15) nm [15] | DC Sputtering | (HIPP) Mo NPs | Mo NPs * | + | + | + | 0.38 | 530 ± 31 | 25.7 ± 0.4 | 65 ± 2 |
Al2O3-5 nm [16] | ALD | Photo-lithography | - | + | - | - | 1.89 | 737 ± 22 | 32.3 ± 1.6 | 76.6 ± 0.9 |
Al2O3-5 nm [16] | ALD | Photo-lithography | - | + | - | - | 0.38 | 644 ± 22 | 23.8 ± 2.1 | 66.7 ± 1.5 |
Al2O3- 27 nm [17] | ALD | e-beam lithography | - | - | + | + | 0.60 | 732 ± 3 | 18.8 ± 0.4 | 68 ± 3 |
Al2O3- 27 nm [17] | ALD | e-beam lithography | - | - | + | + | 0.85 | 721 ± 10 | 20 ± 0.2 | 69 ± 0 |
Al2O3- 27 nm [17] | ALD | e-beam lithography | - | - | + | + | 1.45 | 747 ± 4 | 22.9 ± 0.7 | 70 ± 1 |
Al2O3-10 nm [18] | - | e-beam lithography | - | + | + | - | 0.24 | 659 ± 5 | 23.3 ± 0.5 | 77.0 ± 0.6 |
Al2O3-25 nm ** [11] | ALD | Photo-lithography | - | - | - | + | 0.5 | 547 ± 4 | 24.6 ± 0.2 | 68 ± 2 |
Al2O3-50 nm ** [11] | ALD | Photo-lithography | - | - | - | + | 0.5 | 550 ± 1 | 24.6 ± 0 | 68 ± 1 |
MgF2-100 nm ** [11] | Thermal evaporation | Photo-lithography | MgF2 * | - | - | + | 0.5 | 562 ± 3 | 24.8 ± 0.2 | 71 ± 0 |
SiO2 NPs *** [19] | Spin coating | SCIL | - | + | - | + | 0.39 | 533 ± 3 | 30.5 ± 0.2 | 53.9 ± 2.0 |
SiO2 NPs *** [19] | Spin coating | SCIL | Ag Mirror | + | - | + | 0.39 | 558 ± 2 | 32.4 ± 0.2 | 55.2 ± 1.7 |
Al2O3-15 nm [5] | ALD | Nano-imprint lithography | - | - | - | - | 0.40 | 458 | 23.6 | 53 |
TiO2-50 nm [5] | Spin coating | Nano-imprint lithography | - | - | - | - | 0.40 | 422 | 19.3 | 53 |
Al2O3-15 nm [5] | ALD | Nano-imprint lithography | - | - | + | - | 0.42 | 604 | 20.9 | 73 |
TiO2-50 nm [5] | Spin coating | Nano-imprint lithography | - | - | + | - | 0.42 | 606 | 19.5 | 63 |
SiO2-NPs [20] | e-beam evaporation | SCIL | SiO2 NPs * | - | - | + | 0.46 | 592 | 30.6 | 68.2 |
Al2O3 **** [21] | ALD | CBD of CdS NPs | - | - | + | - | 0.40 | 644 ± 6 | 28.4 ± 0.2 | 67.8 ± 1.7 |
SiO2 NM [22] | Thermal evaporation | Nano-sphere lithography | SiO2 NPs * | - | - | + | 0.37 | 589 | 27.5 | 70.3 |
SiO2-25 nm ***** [23] | CVD | Photo-lithography | - | - | + | + | 0.45 | 607 ± 5 | 18.2 ± 0.3 | 52.2 ± 8.9 |
Al2O3-6.3 nm [24] | ALD | Tunneling | - | - | + | + | 1 | 555 | 34 | 70 |
Al2O3-7 nm [25] | ALD | CBD of CdS NPs | - | - | + | - | 0.43 | 597 ± 7 | 22.9 ± 0.3 | 62.1 ± 2 |
Al2O3-7 nm [25] | ALD | CBD of CdS NPs | Ag NPs | - | + | - | 0.43 | 560 ± 7 | 23.3 ± 0.3 | 60.1 ± 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birant, G.; de Wild, J.; Meuris, M.; Poortmans, J.; Vermang, B. Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review. Appl. Sci. 2019, 9, 677. https://doi.org/10.3390/app9040677
Birant G, de Wild J, Meuris M, Poortmans J, Vermang B. Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review. Applied Sciences. 2019; 9(4):677. https://doi.org/10.3390/app9040677
Chicago/Turabian StyleBirant, Gizem, Jessica de Wild, Marc Meuris, Jef Poortmans, and Bart Vermang. 2019. "Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review" Applied Sciences 9, no. 4: 677. https://doi.org/10.3390/app9040677
APA StyleBirant, G., de Wild, J., Meuris, M., Poortmans, J., & Vermang, B. (2019). Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review. Applied Sciences, 9(4), 677. https://doi.org/10.3390/app9040677