Optical Parameters for Using Visible-Wavelength Reflectance or Fluorescence Imaging to Detect Bird Excrements in Produce Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hyperspectral Imaging System
2.2. Sample Acquisition
2.3. Hyperspectral Data Acquisition
2.4. Analysis
3. Results and Discussion
3.1. Goals
3.2. Using Spectra for Detection
3.3. Practical Aspects of Detection
3.4. Implications
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreaks data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- CDC. CDC Estimates of Foodborne Illness in the United States: Findings. 2011. Available online: https://www.cdc.gov/foodborneburden/pdfs/factsheet_a_findings_updated4-13.pdf (accessed on 27 September 2018).
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbial. 2018, 73, 177–208. [Google Scholar] [CrossRef] [PubMed]
- Weller, D.L. Pathogens, Precipitation, Poop and Produce: The Ecology and Control of Foodborne Pathogens in Produce Preharvest Environments. Ph.D. Thesis, Cornell University, New York, NY, USA, 2018. [Google Scholar]
- FDA. Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables. 2008. Available online: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ProducePlantProducts/ucm064458.htm (accessed on 27 September 2018).
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre-and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. [Google Scholar] [CrossRef] [PubMed]
- LGMA. Commodity Specific Food Safety Guidelines for the Production and Harvest of Lettuce and Leafy Greens. 2013. Available online: http://www.lgma.ca.gov/wp-content/uploads/2014/09/California-LGMA-metrics-08-26-13-Final.pdf (accessed on 27 August 2018).
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microbial Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.S.; Cheasty, T.; Jones, K. Isolation of Vero cytotoxin-producing Escherichia coli O157 from wild birds. J. Appl. Microbiol. 1997, 82, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Varela, A.R.; Manageiro, V.; Ferreira, E.; Guimarães, M.A.; da Costa, P.M.; Caniça, M.; Manaia, C.M. Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. J. Glob. Antimicrob. Resist. 2015, 3, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wang, X.C.; Dzakpasu, M. Genetic characterization of fecal impacts of seagull migration on an urban scenery lake. Water Res. 2017, 117, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, L.R.; Haack, S.K.; Wolcott, M.J.; Whitman, R.L. Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces. J. Appl. Microbiol. 2003, 94, 865–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alm, E.W.; Daniels-Witt, Q.R.; Learman, D.R.; Ryu, H.; Jordan, D.W.; Gehring, T.M.; Santo Domingo, J. Potential for gulls to transport bacteria from human waste sites to beaches. Sci. Total Environ. 2018, 615, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Lefcourt, A.M.; Kim, M.S.; Chen, Y.R. Detection of fecal contamination on apples with nanosecond-scale time-resolved imaging of laser-induced fluorescence. Appl. Opt. 2005, 44, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Lefcout, A.M.; Kim, M.S.; Chen, Y.R.; Kang, S. Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples. Comput. Electron. Agric. 2006, 54, 22–35. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Kistler, R.; Gadsden, S.A.; Kim, M.S. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities. Appl. Sci. 2016, 7, 3. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Siemens, M.C. Interactions of insolation and shading on ability to use fluorescence imaging to detect fecal contaminated spinach. Appl. Sci. 2017, 7, 1041. [Google Scholar] [CrossRef]
- Everard, C.D.; Kim, M.S.; O’Donnell, C.P. Distinguishing Bovine Fecal Matter on Spinach Leaves Using Field Spectroscopy. Appl. Sci. 2016, 6, 246. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Wiederoder, M.S.; Liu, N.T.; Kim, M.S.; Lo, Y.M. Development of a portable hyperspectral imaging system for monitoring the efficacy of sanitation procedures in food processing facilities. J. Food Eng. 2013, 117, 59–66. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Kim, M.S. Technique for normalizing intensity histograms of images when the approximate size of the target is known: Detection of feces on apples using fluorescence imaging. Comput. Electron. Agric. 2006, 50, 135–147. [Google Scholar] [CrossRef]
- Everard, C.D.; Kim, M.S.; Cho, H.; O’Donnell, C.P. Hyperspectral fluorescence imaging using violet LEDs as excitation sources for fecal matter contaminate identification on spinach leaves. J. Food Meas. Charact. 2016, 10, 56–63. [Google Scholar] [CrossRef]
- Everard, C.D.; Kim, M.S.; Siemens, M.C.; Cho, H.; Lefcourt, A.; O’Donnell, C.P. A multispectral imaging system using solar illumination to distinguish faecal matter on leafy greens and soils. Biosyst. Eng. 2018, 171, 258–264. [Google Scholar] [CrossRef]
- Lonsdale, K.; Sutor, D.J. Uric acid dihydrate in bird urine. Science 1971, 172, 958–959. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lefcourt, A.M.; Chen, Y.R. Optimal fluorescence excitation and emission bands for detection of fecal contamination. J. Food Prot. 2003, 66, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- CDC. Multistate Outbreak of E Coli O157:H7 Infections Linked to Romaine Lettuce (Final Update, June 28, 2018). Available online: https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html (accessed on 26 September 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefcourt, A.M.; Siemens, M.C.; Rivadeneira, P. Optical Parameters for Using Visible-Wavelength Reflectance or Fluorescence Imaging to Detect Bird Excrements in Produce Fields. Appl. Sci. 2019, 9, 715. https://doi.org/10.3390/app9040715
Lefcourt AM, Siemens MC, Rivadeneira P. Optical Parameters for Using Visible-Wavelength Reflectance or Fluorescence Imaging to Detect Bird Excrements in Produce Fields. Applied Sciences. 2019; 9(4):715. https://doi.org/10.3390/app9040715
Chicago/Turabian StyleLefcourt, Alan M., Mark C. Siemens, and Paula Rivadeneira. 2019. "Optical Parameters for Using Visible-Wavelength Reflectance or Fluorescence Imaging to Detect Bird Excrements in Produce Fields" Applied Sciences 9, no. 4: 715. https://doi.org/10.3390/app9040715
APA StyleLefcourt, A. M., Siemens, M. C., & Rivadeneira, P. (2019). Optical Parameters for Using Visible-Wavelength Reflectance or Fluorescence Imaging to Detect Bird Excrements in Produce Fields. Applied Sciences, 9(4), 715. https://doi.org/10.3390/app9040715