Hearing in Noise: The Importance of Coding Strategies—Normal-Hearing Subjects and Cochlear Implant Users
Abstract
:1. Introduction
1.1. Sound Coding Strategies
1.2. Influence of Noise
1.3. Simulation with Normal-Hearing Subjects
2. Material & Methods
2.1. Participants
2.1.1. Normal-Hearing Subjects
2.1.2. Cochlear Implant Subjects
2.2. Stimuli
2.2.1. Fournier’s Disyllabic Lists
2.2.2. Noise
2.3. Hardware
2.4. Experimental Conditions and Procedures
2.4.1. Normal-Hearing Subjects
2.4.2. Cochlear Implant Users
- verification of the patient’s medical file;
- a short training session to help the patient understand the instructions.
2.5. Implant Simulation
- The input signal goes through a pre-emphasis filter, which is a high-pass filter (cut-off frequency 1.2 kHz and slope 3 dB/octave).
- The signal is then sampled (16 kHz sampling frequency, 16 bit quantization). A short-term fast Fourier transform (STFFT) is applied to the samples and the frame length is 128 points (8 ms). There is a frame overlap of 6 ms (75% overlap) and a set of pulses is calculated for each frame. Sixty-four spectral bins are extracted in each frame (amplitude and phase). The step between two bins is 125 Hz.
- In each band, the energy is calculated using the Parseval’s formula (the squares of the amplitude of each beam are added). In the FC coding, all the channels were taken. For the CP coding strategy, only the eight most energetic channels were kept. The value n = 8 is a standard in CIs [28].
- Each channel is represented by a narrowband spectrum coming from a white noise spectrum. The amplitude of the narrowband follows the energy detected in the corresponding channel. The synthesis filters covered the corresponding analysis bands but were 70 Hz narrower (35 Hz less on each side). Moreover, filters used here were 20th order Butterworth bandpass filters to avoid channel interaction. The first two-channels were represented by sine waves.
- The output signal is obtained by summing the selected channels (8 for the CP strategy; 20 for the FC strategy).
2.6. Mathematical Analysis of the Data
2.6.1. Comparison of the Percentages
2.6.2. Curve Fitting with a Sigmoid Function
- the SNR corresponding to 50% of the maximum recognition denoted here by x50%;
- the “slope” (SNR interval, given in dB, between 25 and 75% of the maximum recognition) which is denoted here by Δ25–75%;
- the top asymptote ymax showing the maximum recognition score.
- y is the recognition percentage,
- x is the SNR,
- a is ymax,
- c is x50%, and
- b is linked to the slope: b = 2.2/Δ25–75% => Δ25–75% = 2.2/b.
2.6.3. Bonferroni Correction
3. Results
3.1. Normal-Hearing Subjects
3.1.1. Recognition Percentages
3.1.2. Statistical Analysis
3.1.3. Sigmoid Parameters
3.2. Cochlear Implant Users
3.2.1. Recognition Percentages
3.2.2. Statistical Analysis
3.2.3. Sigmoid Parameters
4. Discussion
4.1. On the Coding Strategy
4.2. Cochlear Implant Users and Normal-Hearing Subjects
4.3. Listening in Noise
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Characteristic | N |
---|---|
Gender | |
Male | 23 |
Female | 22 |
Ear | |
Right | 32 |
Left | 13 |
Origin of deafness | |
Congenital | 17 |
Acquired | 18 |
Unknown | 10 |
Age in years at implantation | |
1–5 years | 9 |
6–10 years | 3 |
11–20 years | 6 |
>20 years | 27 |
Duration in years of implant use | |
1–5 years | 14 |
6–10 years | 14 |
11–15 years | 7 |
16–20 years | 9 |
>20 years | 1 |
Duration of deafness in years | |
1–10 years | 4 |
11–20 years | 18 |
21–30 years | 4 |
31–40 years | 8 |
>40 years | 5 |
Unknown | 7 |
Cochlear implant | |
Cochlear | 13 |
Med-El | 12 |
Advanced Bionics | 7 |
Neurelec/Oticon Medical | 13 |
Coding strategy | |
Channel-picking (SPEAK, ACE…) | 26 |
Fixed-channel (FS4, HiRes…) | 19 |
References
- NIDCD. Available online: https://www.nidcd.nih.gov/ (accessed on 14 June 2017).
- Fetterman, B.L.; Domico, E.H. Speech recognition in background noise of cochlear implant patients. Otolaryngol. Head Neck Surg. 2002, 126, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Clark, G. Cochlear Implants: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2006; ISBN 978-0-387-21550-1. [Google Scholar]
- Blamey, P.; Artieres, F.; Başkent, D.; Bergeron, F.; Beynon, A.; Burke, E.; Dillier, N.; Dowell, R.; Fraysse, B.; Gallégo, S.; et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: An update with 2251 patients. Audiol. Neurotol. 2013, 18, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, J.; Müller, J.; Pfennigdorff, T.; Schön, F.; Helms, J.; von Ilberg, C.; Baumgartner, W.; Gstöttner, W.; Ehrenberger, K.; Arnold, W.; et al. Speech understanding in quiet and in noise with the CIS speech coding strategy (MED-EL Combi-40) compared to the multipeak and spectral peak strategies (nucleus). ORL J. Otorhinolaryngol. Relat. Spec. 1996, 58, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, J.; Hohl, S.; Stürzebecher, E.; Pfennigdorff, T.; Gstöettner, W. Comparison of speech recognition with different speech coding strategies (SPEAK, CIS and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system. Audiology 2001, 40, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.W.; Holden, L.K.; Whitford, L.A.; Plant, K.L.; Psarros, C.; Holden, T.A. Speech recognition with the nucleus 24 SPEAK, ACE and CIS speech coding strategies in newly implanted adults. Ear Hear 2002, 23, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.J.; Grasmeder, M.; Passow, S.; Mawmann, D.; Vischer, M.; Jappel, A.; Baumgartner, W.; Stark, T.; Müller, J.; Brill, S.; et al. Comparison of musical activities of cochlear implant users with different speech-coding strategies. Ear Hear 2007, 28, 49S–51S. [Google Scholar] [CrossRef] [PubMed]
- Dorman, M.F.; Loizou, P.C.; Spahr, A.J.; Maloff, E. A comparison of the speech understanding provided by acoustic models of fixed-channel and channel-picking signal processors for cochlear implants. J. Speech Lang. Hear. Res. 2002, 45, 783–788. [Google Scholar] [CrossRef]
- Shannon, R.V.; Fu, Q.-J.; Galvin, J. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol. Suppl. 2004, 124, 50–54. [Google Scholar] [CrossRef]
- Verschuur, C.A. Effect of stimulation rate on speech perception in adult users of the Med-El CIS speech processing strategy. Int. J. Audiol. 2005, 44, 58–63. [Google Scholar] [CrossRef]
- Wilson, B.S.; Finley, C.C.; Lawson, D.T.; Wolford, R.D.; Eddington, D.K.; Rabinowitz, W.M. Better speech recognition with cochlear implants. Nature 1991, 352, 236–238. [Google Scholar] [CrossRef]
- Qazi, O.U.R.; van Dijk, B.; Moonen, M.; Wouters, J. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility. Hear. Res. 2013, 299, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Garnham, C.; O’Driscoll, M.; Ramsden, R.; Saeed, S. Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear Hear 2002, 23, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Loizou, P.C. A new sound coding strategy for suppressing noise in cochlear implants. J. Acoust. Soc. Am. 2008, 124, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Jeanvoine, A.; Gnansia, D.; Truy, E.; Berger-Vachon, C. Contribution of Noise Reduction Algorithms: Perception Versus Localization Simulation in the Case of Binaural Cochlear Implant (BCI) Coding. In Emerging Trends in Computational Biology, Bioinformatics and System Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 307–324. [Google Scholar]
- Wang, Q.; Liang, R.; Rahardja, S.; Zhao, L.; Zou, C.; Zhao, L. Piecewise-Linear Frequency Shifting Algorithm for Frequency Resolution Enhancement in Digital Hearing Aids. Appl. Sci. 2017, 7, 335. [Google Scholar] [CrossRef]
- Kallel, F.; Frikha, M.; Ghorbel, M.; Hamida, A.B.; Berger-Vachon, C. Dual-channel spectral subtraction algorithms based speech enhancement dedicated to a bilateral cochlear implant. Appl. Acoust. 2012, 73, 12–20. [Google Scholar] [CrossRef]
- Seldran, F.; Gallego, S.; Thai-Van, H.; Berger-Vachon, C. Influence of coding strategies in electric-acoustic hearing: A simulation dedicated to EAS cochlear implant, in the presence of noise. Appl. Acoust. 2014, 76, 300–309. [Google Scholar] [CrossRef]
- Dorman, M.F.; Loizou, P.C.; Fitzke, J.; Tu, Z. Recognition of monosyllabic words by cochlear implant patients and by normal-hearing subjects listening to words processed through cochlear implant signal processing strategies. Ann. Otol. Rhinol. Laryngol. Suppl. 2000, 185, 64–66. [Google Scholar] [CrossRef]
- Loizou, P.C.; Dorman, M.F.; Tu, Z.; Fitzke, J. Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors. Ann. Otol. Rhinol. Laryngol. Suppl. 2000, 185, 67–68. [Google Scholar] [CrossRef]
- Dorman, M.F.; Loizou, P.C.; Fitzke, J. The identification of speech in noise by cochlear implant patients and normal-hearing listeners using 6-channel signal processors. Ear Hear 1998, 19, 481–484. [Google Scholar] [CrossRef]
- Winn, M.B.; Rhone, A.E.; Chatterjee, M.; Idsardi, W.J. The use of auditory and visual context in speech perception by listeners with normal hearing and listeners with cochlear implants. Front. Psychol. 2013, 4, 824. [Google Scholar] [CrossRef]
- Perreaut, K.; Gallego, S.; Berger-Vachon, C.; Millioz, F. Influence of Microphone Encrusting on the Efficiency of Cochlear Implants Preliminary Study with a Simulation of CIS and “n-of-m” Strategies. AMSE J. Ser. Model. C 2014, 75, 199–208. [Google Scholar]
- Hornickel, J.; Skoe, E.; Kraus, N. Subcortical Laterality of Speech Encoding. Audiol. Neurotol. 2009, 14, 198–207. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Belin, P.; Penhune, V.B. Structure and function of auditory cortex: Music and speech. Trends Cogn. Sci. (Regul. Ed.) 2002, 6, 37–46. [Google Scholar] [CrossRef]
- Traunmüller, H. Analytical expressions for the tonotopic sensory scale. J. Acoust. Soc. Am. 1990, 88, 97–100. [Google Scholar]
- Wouters, J.; McDermott, H.J.; Francart, T. Sound Coding in Cochlear Implants: From electric pulses to hearing. IEEE Signal Process. Mag. 2015, 32, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Streiner, D.L.; Norman, G.R. Correction for multiple testing: Is there a resolution? Chest 2011, 140, 16–18. [Google Scholar] [CrossRef]
- Skinner, M.W.; Arndt, P.L.; Staller, S.J. Nucleus 24 advanced encoder conversion study: Performance versus preference. Ear Hear 2002, 23, 2S–17S. [Google Scholar] [CrossRef]
- Kallel, F.; Laboissiere, R.; Ben Hamida, A.; Berger-Vachon, C. Influence of a shift in frequency distribution and analysis rate on phoneme intelligibility in noisy environments for simulated bilateral cochlear implants. Appl. Acoust. 2013, 74, 10–17. [Google Scholar] [CrossRef]
- Riss, D.; Hamzavi, J.-S.; Blineder, M.; Flak, S.; Baumgartner, W.-D.; Kaider, A.; Arnoldner, C. Effects of stimulation rate with the fs4 and hdcis coding strategies in cochlear implant recipients. Otol. Neurotol. 2016, 37, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.S.; Sun, X.; Schatzer, R.; Wolford, R.D. Representation of fine structure or fine frequency information with cochlear implants. Int. Congr. Ser. 2004, 1273, 3–6. [Google Scholar] [CrossRef]
- Dorman, M.F.; Loizou, P.C. The identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations of processors with two to nine channels. Ear Hear 1998, 19, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, D.E.; Taylor, N.E.; Li, J.; Gazanfari, D.K.; Talavage, T.M.; Laflen, J.B.; Neuberger, H.; Svirsky, M.A. Information theoretic evaluation of a noiseband-based cochlear implant simulator. Hear. Res. 2015, 333, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Friesen, L.M.; Shannon, R.V.; Baskent, D.; Wang, X. Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 2001, 110, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Loizou, P.C.; Dorman, M.; Tu, Z. On the number of channels needed to understand speech. J. Acoust. Soc. Am. 1999, 106, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
Channel | Centre Frequency (Hz) | Analysis | Synthesis | Carrier | ||
---|---|---|---|---|---|---|
Lower Cut-off | Higher Cut-off | Lower Cut-off | Higher Cut-off | |||
1 | 250 | 190 | 310 | 225 | 275 | sine |
2 | 375 | 315 | 435 | 350 | 400 | sine |
3 | 500 | 440 | 560 | 475 | 525 | noise band |
4 | 625 | 565 | 685 | 600 | 650 | noise band |
5 | 750 | 690 | 810 | 725 | 775 | noise band |
6 | 875 | 815 | 935 | 850 | 900 | noise band |
7 | 1000 | 940 | 1060 | 975 | 1025 | noise band |
8 | 1125 | 1065 | 1185 | 1100 | 1150 | noise band |
9 | 1313 | 1250 | 1375 | 1285 | 1340 | noise band |
10 | 1563 | 1500 | 1625 | 1535 | 1590 | noise band |
11 | 1813 | 1750 | 1875 | 1785 | 1840 | noise band |
12 | 2125 | 2000 | 2250 | 2035 | 2215 | noise band |
13 | 2500 | 2375 | 2625 | 2410 | 2590 | noise band |
14 | 2938 | 2750 | 3125 | 2785 | 3090 | noise band |
15 | 3438 | 3250 | 3625 | 3285 | 3590 | noise band |
16 | 4000 | 3750 | 4250 | 3785 | 4215 | noise band |
17 | 4688 | 4375 | 5000 | 4410 | 4965 | noise band |
18 | 5500 | 5125 | 5875 | 5160 | 5840 | noise band |
19 | 6438 | 6000 | 6875 | 6035 | 6840 | noise band |
20 | 7438 | 7000 | 7875 | 7035 | 7840 | noise band |
Normal-Hearing Subjects | Fixed-Channel (n = 20) | Channel-Picking (n = 20) | p (Wilcoxon) | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|
SNR +9 dB | m | 98.50 | 99.25 | 0.374 | 0.31 (small) |
σ | 2.86 | 1.83 | |||
SNR +6 dB | m | 98.25 | 95.00 | 0.046 | 0.60 (medium) |
σ | 3.35 | 6.88 | |||
SNR +3 dB | m | 92.75 | 84.75 | 0.019 | 0.89 (strong) |
σ | 5.95 | 11.29 | |||
SNR 0 dB | m | 57.25 | 45.50 | 0.020 | 0.68 (medium) |
σ | 16.97 | 17.54 | |||
SNR −3 dB | m | 7.00 | 2.00 | 0.065 | 0.53 (medium) |
σ | 12.50 | 3.40 |
Normal-Hearing Subjects | Fixed-Channel (n = 20) | Channel-Picking (n = 20) | p (Wilcoxon) | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|
x50% | m | –0.28 | 0.39 | 0.038 | 0.85 (strong) |
σ | 0.85 | 0.73 | |||
Δ25–75% | m | 2.19 | 2.54 | 0.287 | 0.27 (small) |
σ | 1.38 | 1.23 | |||
ymax | m | 98.5 | 99.25 | 0.374 | 0.31 (small) |
σ | 2.86 | 1.83 |
Cochlear-Implant Users | Fixed-Channel (n = 19) | Channel-Picking (n = 26) | Effect Size (Cohen’s d) | |
---|---|---|---|---|
SNR +18 dB | m | 74.21 | 80.19 | 0.28 (small) |
σ | 28.44 | 16.09 | ||
SNR +15 dB | m | 71.05 | 77.12 | 0.27 (small) |
σ | 25.14 | 20.16 | ||
SNR +12 dB | m | 70.26 | 65.58 | 0.17 (very small) |
σ | 28.31 | 25.39 | ||
SNR +9 dB | m | 62.37 | 56.15 | 0.21 (small) |
σ | 30.38 | 28.01 | ||
SNR +6 dB | m | 48.68 | 36.35 | 0.48 (small) |
σ | 25.43 | 25.56 | ||
SNR +3 dB | m | 37.11 | 25.77 | 0.50 (medium) |
σ | 22.69 | 22.08 | ||
SNR 0 dB | m | 19.47 | 12.69 | 0.35 (small) |
σ | 19.71 | 18.4 | ||
SNR −3 dB | m | 7.37 | 5.77 | 0.15 (very small) |
σ | 9.91 | 10.46 |
Cochlear-Implant Users | Fixed-Channel (n = 19) | Channel-Picking (n = 26) | p (Mann–Whitney) | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|
x50% | m | 3.95 | 6.17 | 0.042 | 0.73 (medium) |
σ | 2.43 | 3.20 | |||
Δ25–75% | m | 7.52 | 6.09 | 0.189 | 0.40 (small) |
σ | 3.61 | 3.48 | |||
ymax | m | 89.78 | 86.24 | 0.460 | 0.28 (small) |
σ | 10.66 | 14.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucis, P.-A.; Berger-Vachon, C.; Hermann, R.; Millioz, F.; Truy, E.; Gallego, S. Hearing in Noise: The Importance of Coding Strategies—Normal-Hearing Subjects and Cochlear Implant Users. Appl. Sci. 2019, 9, 734. https://doi.org/10.3390/app9040734
Cucis P-A, Berger-Vachon C, Hermann R, Millioz F, Truy E, Gallego S. Hearing in Noise: The Importance of Coding Strategies—Normal-Hearing Subjects and Cochlear Implant Users. Applied Sciences. 2019; 9(4):734. https://doi.org/10.3390/app9040734
Chicago/Turabian StyleCucis, Pierre-Antoine, Christian Berger-Vachon, Ruben Hermann, Fabien Millioz, Eric Truy, and Stéphane Gallego. 2019. "Hearing in Noise: The Importance of Coding Strategies—Normal-Hearing Subjects and Cochlear Implant Users" Applied Sciences 9, no. 4: 734. https://doi.org/10.3390/app9040734
APA StyleCucis, P. -A., Berger-Vachon, C., Hermann, R., Millioz, F., Truy, E., & Gallego, S. (2019). Hearing in Noise: The Importance of Coding Strategies—Normal-Hearing Subjects and Cochlear Implant Users. Applied Sciences, 9(4), 734. https://doi.org/10.3390/app9040734