Bitumen and Bitumen Modification: A Review on Latest Advances
Abstract
:1. Introduction
1.1. Bitumen Functionality
1.2. Bitumen Chemistry
- Asphaltenes
- Malthenes (also called petrolenes)
1.2.1. Asphaltenes
1.2.2. Saturates
1.2.3. Resins
1.2.4. Aromatics
2. Bitumen Polymers
2.1. Thermoplastics Polymers
2.2. Thermoplastic Elastomers Modified Bitumen
2.3. Thermosets
2.4. Natural and Synthetic Rubber
2.4.1. Natural Rubber
2.4.2. Synthetic Rubber
3. Bitumen Chemical Modifiers
3.1. Sulfur Modifier
3.2. PPA-Based Techniques
3.3. Reactive Polymer Modifiers
3.4. Maleic Anhydride
3.5. Nanocomposite Modifiers
- Intercalated nanocomposites: these are obtained by the insertion of few molecular layers of polymer into the layered silicate structure. From the crystallographic point of view this insertion occurs in a regular way.
- Flocculated nanocomposites: conceptually, this is the same as intercalated nanocomposites. However, silicate layers are sometimes flocculated due to hydroxylated edge–edge interaction of the silicate layers.
- Exfoliated nanocomposites: in these compounds the individual clay layers are separated in a continuous polymer matrix by an average distance that depends on clay loading.
The Bitumen–Polymer–Clay Ternary System
4. PmBs in Warm Mix Asphalt (WMA) Technology
5. Concluding Remarks
- While plastomer-modified bitumens are suitable for improving the permanent deformation resistance of the bituminous compounds and asphalt concrete mixtures over high stresses, the absence of elasticity at low temperature limited the application of these bitumins.
- The field recorded data, as well as experimental works, showed that plastomer-modified bitumens, such as polyethylene and polypropylene, are the most common plastomers resulting in compatibility problems. This is due to their non-polar chemical nature.
- Despite the thermal and aging stability of plastomer-modified bitumens due to the absence of double bonds, the main problem resides in the stability of the blend (polymer + bitumen) during storage and difficulties to disperse them homogenously in the bitumen matrix.
- Thermoplastic elastomer copolymers, owing to their elastic component, are usually more effective than plastomers for bitumen modification in pavement applications. The modification ranges from low-modified containing 3% polymer to a high level with polymer content of 7%.
- Bitumen modification via styrene butadiene styrene (SBS) as the most commonly used elastomer has numerous benefits, including the improved thermal susceptibility, increased softening point, and slight decrease of penetration value at 25 °C. In addition, it has been observed that SBS can moderate the increase of stiffness due to oxidation processes.
- Bitumens modified with thermosetting polymers show a high elasticity and no viscous behavior. Asphalt mixtures produced with thermosetting polymer-modified bitumen have excellent adhesive ability, excellent resistance to deformation, excellent fatigue performance, and high stiffness modulus. Even though the PmBs with thermosetting plastics have relatively high adhesion to the mineral particles and high strength they are not common for paving applications. This is because the technological properties of PmB are almost immediately deteriorated by these polymers due to their hardening properties; secondly, the rigidity of the PmB is increased at low temperatures, which results in increased thermal sensitivity; thirdly, the use of TP complicates the system and raises its price; and, finally, the effectiveness of thermosetting plastics usually appears due to their large quantities in bitumen (more than 10 wt%)
- Natural rubber latex has potential for improving bitumen binder performance by enhancing the thermal sensitivity, flexibility, stability, and stripping. In addition, its inherent elastomeric properties proved its high potential in improving long-term pavement performance of asphalt concrete by increasing rutting resistance, fatigue life, etc. Natural rubber also decreases the optimum binder content in asphalt concretes, increasing its density and stability. However, natural rubber is a highly valuable biomaterial compared to other biopolymers, hence natural rubber has been commercialized into synthetic rubber. This is mainly because of the very large difference between the available produced amount and the demand. Still, there are some doubts regarding asphalt concrete performance and mechanical properties throughout the performance temperature range
- The synthetic rubber/bitumen system was investigated from a different point of view. It can be concluded that many factors can influence the performance and mechanical properties of rubberized binders including: the size and content of rubber, the chemical structure, particles surface properties (ambient granulating or cryogenically crushed tire rubber), blend production method, and temperature. A low content of rubber, around 4% (to the weight of bitumen) has almost no effect, or at least no significant effects, on the performance and mechanical properties of the binder, while more than 20% was found to be unsuitable.
- In spite of the proven advantages regarding the use of polymers in bitumen modification systems, several research works showed the difficulties regarding the incompatibility with the bitumen. Phase separation could occur in such modified bitumen.
- Several research works showed that the stability of the PmBs is highly dependent on the asphaltene and aromatic content of base bitumen: the less asphaltene, the more stable the modified compound that can be expected. However, polymer chemical structure and reactivity are also of paramount importance in bitumen/polymer system compatibility.
- Various solutions to remove drawbacks to currently used polymer modifiers, among which the use of chemical modifiers received great attention, have been employed in the last few decades. These solutions overcome some disadvantages of PmBs, but most cause some new problems. Thus, more research needs to be carried out in the future to solve these problems and find new ways to modify bitumen effectively and cheaply.
- Finally, few research works showed the effectiveness of waxes in improving some of the characteristics of base bitumens and modified bitumens. In addition, the presence of a determined amount of wax could improve the polymer compatibility.
Author Contributions
Funding
Conflicts of Interest
References
- European Committee for Standardization EN 12597: Bitumen and Bituminous Binders-Terminology; European Committee for Standardization: Brussels, Belgium, 2000.
- Paliukait, M.; Vaitkusa, A.; Zofkab, A. Evaluation of bitumen fractional composition depending on the crude oil type and production technology. In Proceedings of the 9th International Conference “Environmental Engineering” Selected Papers, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
- Read, J.; Witheoak, D. The Shell Bitumen Handbook, 5th ed.; Thomas Telford Publishing: London, UK, 2003. [Google Scholar]
- Lesueur, D. The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef] [PubMed]
- Olli-Ville, L. Low-Temperature Rheology of Bitumen and Its Relationships with Chemical and Thermal Properties. Ph.D. Thesis, School of Engineering, Aalto University, Espoo, Finland, 2015. [Google Scholar]
- D’Melo, D.; Taylor, R. Constitution and Structure of Bitumens. In The Shell Bitumen Handbook, 6th ed.; Hunter, R.N., Self, A., Read, J., Eds.; ICE Publishing: London, UK, 2015; ISBN 978-0727758378. [Google Scholar]
- McNally, T. Introduction to polymer modified bitumen (PmB). In Polymer Modified Bitumen Properties and Characterisation, 1st ed.; McNally, T., Ed.; Woodhead Publishing: Sawston, UK, 2011. [Google Scholar]
- Lu, X.; Isacsson, U.; Ekblad, J. Phase Separation of SBS Polymer Modified Bitumens. J. Mater. Civ. Eng. 1999, 11, 51–57. [Google Scholar] [CrossRef]
- Petersen, J.C. Chemical Composition of Asphalt as Related to Asphalt Durability: State of the Art. Transp. Res. Rec. 1984, 999, 13–30. [Google Scholar]
- Branthaver, J.F.; Petersen, J.C.; Robertson, R.E.; Duvall, J.J.; Kim, S.S.; Harnsberger, P.M.; Mill, T.; Ensley, E.K.; Barbour, F.A.; Schabron, J.F. Binder Characterization and Evaluation-vol 2 Chemistry; SHRP Report A-368; National Research Council: Washington, DC, USA, 1994. [Google Scholar]
- Mortazavi, M.; Moulthrop, J.S. SHRP Materials Reference Library; SHRP report A-646; National Research Council: Washington, DC, USA, 1993. [Google Scholar]
- Strategic Highway Research: Special Report 260. Committee for Study for a Future Strategic Highway Research Program, Strategic Highway Research; Transportation Research Board Special Report 260; National Research Council: Washington, DC, USA, 2001.
- Jiménez-Mateos, J.M.; Quintero, L.C.; Rial, C. Characterization of petroleum bitumens and their fractions by thermogravimetric analysis and differential scanning calorimetry. Fuel 1996, 75, 1691–1700. [Google Scholar] [CrossRef]
- Speight, J.C. The Chemistry and Technology of Petroleum, 3rd ed.; Marcel Dekker: New York, NY, USA, 1999. [Google Scholar]
- Ashoori, S.; Sharifi, M.; Masoumi, M.; Salehi, M.M. The Relationship between SARA Fractions and Crude Oil Stability. Egypt. J. Pet. 2017, 26, 209–213. [Google Scholar] [CrossRef]
- Rostler, F.S. Fractional Composition: Analytical and Functional Significance; Hoiberg, A.J., Robert, E., Eds.; Krieger Publishing Company, Huntington: New York, NY, USA, 1979; Volume 2, pp. 151–222. [Google Scholar]
- Corbett, L.W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography and densimetric characterization. Anal. Chem. 1969, 41, 576–579. [Google Scholar] [CrossRef]
- Speight, J.C. Petroleum asphaltenes. Part 1. Asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol. 2004, 59, 467–477. [Google Scholar] [CrossRef]
- Mullins, O. Optical Interrogation of Aromatic Moieties in Crude Oils and Asphaltenes. In Structures and Dynamics of Asphaltenes; Mullins, O., Sheu, E.Y., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 21–77. ISBN 978-1-4899-1615-0. [Google Scholar]
- Piéri, N. Etude du Vieillissement Simulé et In-Situ des Bitumens Routiers Par IRTF et Fluorescence UV en Excitation-Emission Synchrones. Ph.D. Thesis, Aix-Marseille University, St-Joseph, France, 1995. [Google Scholar]
- Scotti, R.; Montanari, L. Molecular structure and intermolecular interaction of asphaltenes by FT-IR, NMR, EPR. In Structures and Dynamics of Asphaltenes; Mullins, O., Sheu, E.Y., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 79–113. ISBN 978-1-4899-1615-0. [Google Scholar]
- Bergmann, U.; Mullins, O.C.; Cramer, S.P. X-Ray Raman spectroscopy of carbon in asphaltene: Light element characterization with bulk sensitivity. Anal. Chem. 2000, 72, 2609–2612. [Google Scholar] [CrossRef]
- Michon, L.; Didier, M.; Jean-Pascal, P.; Bernard, H. Estimation of average structural parameters of bitumens by 13C Nuclear Magnetic Resonance spectroscopy. Fuel 1997, 76, 9–15. [Google Scholar] [CrossRef]
- Sheremata, J.M.; Gray, M.R.; Dettman, H.D.; McCaffrey, W.C. Quantitative molecular representation and sequential optimization of Athabasca asphaltenes. Energy Fuels 2004, 18, 1377–1384. [Google Scholar] [CrossRef]
- Murgich, J.; Abanero, J.; Strausz, O. Molecular Recognition in Aggregates Formed by Asphaltene and Resin Molecules from the Athabasca Oil Sand. Energy Fuels 1999, 13, 278–286. [Google Scholar] [CrossRef]
- Mullins, O. Review of the Molecular Structure and Aggregation of Asphaltenes and Petroleomics. Spe J. 2008, 13, 48–57. [Google Scholar] [CrossRef]
- Becker, J.R. Crude Oil Waxes, Emulsiones and Asphaltenes; PennWell: Tulsa, OK, USA, 1997. [Google Scholar]
- Dickie, J.P.; Yen, T.F. Macrostructures of the Asphaltic Fractions by Variuos Instrumental Methods. Anal. Chem. 1967, 5213, 1963–1968. [Google Scholar]
- Speight, J.C. Molecular Models for Petroleum Asphaltenes and Implication for Asphalt Science and Technology. In Proceedings of the International Symposium on the Chemistry of Bitumens, Rome, Italy, 5–8 June 1991; pp. 154–207. [Google Scholar]
- Yen, T.F.; Erdman, J.G.; Pollack, S.S. Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction. Anal. Chem. 1961, 33, 1587–1594. [Google Scholar] [CrossRef]
- Sadeghi, M.A.; Chilingarian, G.V.; Yen, T.F. X-Ray Diffraction of Asphaltenes. Energy Sources 1986, 8, 99–123. [Google Scholar] [CrossRef]
- Sheu, E.Y.; De Tar, M.M.; Storm, D.A. Surface activity and dynamics of asphaltenes. In Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refilling and Production; Sharma, M.K., Yen, T.F., Eds.; Plenum Press: New York, NY, USA, 1994; pp. 115–121. [Google Scholar]
- Roux, J.N.; Broseta, D.; Demésans, B. Study of asphaltene aggregation: Concentration and solvent quality effects. Langmuir 2001, 17, 5085–5092. [Google Scholar] [CrossRef]
- Pryanto, S.; Mansoori, G.A.; Suwono, A. Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent. Chem. Eng. Sci. 2001, 56, 6933–6939. [Google Scholar] [CrossRef]
- Mullins, O. Structures and Dynamics of Asphaltenes; Mullins, O., Sheu, E.Y., Eds.; Plenum Press: New York, NY, USA, 1998; ISBN 978-1-4899-1615-0. [Google Scholar]
- Fotland, P.; Anfindsen, H. Conductivity of asphaltenes. In Structures and Dynamics of Asphaltenes; Mullins, O., Sheu, E.Y., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 247–266. [Google Scholar]
- Taylor, S.E. The electrodeposition of asphaltenes and implication for asphaltene structure and stability in crude and residual oils. Fuels 1998, 77, 821–828. [Google Scholar] [CrossRef]
- Swanson, J.M. A contribution to the physical chemistry of the asphalts. J. Phys. Chem. 1942, 46, 141–150. [Google Scholar] [CrossRef]
- Marruska, S.; Rao, B.M.L. The role of polar species in the aggregation of asphaltenes. Fuel Sci. Technol. Int. 1987, 5, 119–168. [Google Scholar] [CrossRef]
- Fotland, P.; Anfidsen, H.; Fadnes, F.H. Detection of asphaltene precipitation and amounts precipitated by measurement of electrical conductivity. Fluid Phase Equilib. 1993, 82, 157–164. [Google Scholar] [CrossRef]
- Mozaffari, S.; Tchoukov, P.; Atias, J.; Czarnecki, J.; Nazemifard, N. Effect of Asphaltene Aggregation on Rheological Properties of Diluted Athabasca Bitumen. Energy Fuels 2015, 29, 5595–5599. [Google Scholar] [CrossRef]
- Mozaffari, S.; Tchoukov, P.; Mozaffari, A.; Atias, J.; Czarnecki, J.; Nazemifarda, N. Capillary driven flow in nanochannels—Application to heavy oil rheology studies. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 178–187. [Google Scholar] [CrossRef]
- Fang, L.; Shaghayegh, D.; Nelya, A.; Charles, M.; Sanjoy, B.; Pauchard, V. Mixture Effect on the Dilatation Rheology of Asphaltenes-Laden Interfaces. Langmuir 2017, 33, 1927–1942. [Google Scholar]
- Duran, J.A.; Casas, Y.; Xiang, L.; Zhang, L.; Zeng, H.; Yarranton, H.W. Nature of Asphaltene Aggregates. Energy Fuels 2018, 1. [Google Scholar] [CrossRef]
- Gawel, I.; Czechowski, F. Study of saturated components in asphalt. Pet. Sci. Technol. 1997, 15, 729–742. [Google Scholar] [CrossRef]
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef] [PubMed]
- Koots, J.A.; Speight, J.G. Relation of petroleum resins to asphaltenes. Fuel 1975, 54, 179–184. [Google Scholar] [CrossRef]
- Yarranton, H.W.; Fox, W.A.; Svrcek, W.Y. Effect of Resins on Asphaltene Self-Association and Solubility. Can. J. Chem. Eng. 2007, 85, 635–642. [Google Scholar] [CrossRef]
- Boutevin, B.; Pietrasanta, Y.; Robin, J.J. Bitumen-Polymer Blends for Coatings Applied to Roads and Public Constructions. Prog. Org. Coat. 1989, 17, 221–249. [Google Scholar] [CrossRef]
- Polacco, G.; Stastna, J.; Biondi, D.; Zanzotto, L. Relation Between Polymer Architecture and Nonlinear Viscoelastic Behaviour of Modified Asphalts. Curr. Opin. Colloid Interface Sci. 2006, 11, 230–245. [Google Scholar] [CrossRef]
- Walkering, C.P.; Vonk, W.C.; Whiteoak, C.D. Improved Asphalt Properties Using SBS modified Bitumens. Shell Bitum. Rev. 1992, 66, 9–11. [Google Scholar]
- Rodrigues, C.; Hanumanthgari, R. Polymer modified bitumens and other modified binders. In The Shell Bitumen Handbook, 6th ed.; Hunter, R.N., Self, A., Read, J., Eds.; ICE Publishing: London, UK, 2015; ISBN 978-0727758378. [Google Scholar]
- Becker, Y.; Méndez, M.P.; Rodríguez, Y. Polymer Modified Asphalt. Vis. Tecnol. 2001, 9, 39–50. [Google Scholar]
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Punith, V.S.; Veeraragavan, A. Behaviour of asphalt concrete mixtures with reclaimed poly ethylene as additive. J. Mater. Civ. Eng. 2007, 19, 500–507. [Google Scholar] [CrossRef]
- Lesueur, D.; Gérard, J.-F. Polymer modified Asphalts as Viscoelastic Emulsions. J. Rheol. 1998, 42, 1059–1074. [Google Scholar] [CrossRef]
- Isacsson, U.; Lu, X. Testing and Appraisal of Polymer Modified Road Bitumens-State of the Art. Mater. Struct. 1995, 28, 139–159. [Google Scholar] [CrossRef]
- Stastna, J.; Zanzotto, L.; Vacin, O.J. Viscosity Function in Polymer-modified Asphalts. J. Colloid Interface Sci. 2003, 259, 200–207. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Sheikhmotevali, A.H. Investigating Effects of Ethylene Vinyl Acetate and Gilsonite Modifiers Upon Performance of Base Bitumen Using Superpave Tests Methodology. Constr. Build. Mater. 2012, 36, 1001–1007. [Google Scholar] [CrossRef]
- Stroup-Gardiner, M.; Newcomb, D.E. Polymer Literature Review; September. Report N°: MN/RC-95/27; Minnesota Department of Transportation: Saint Paul, MN, USA, 1995. [Google Scholar]
- Iatridi, Z.; Tsitsilianis, C. Water-Soluble Stimuli Responsive Star-Shaped Segmented Macromolecules. Polymers 2011, 3, 1911–1933. [Google Scholar] [CrossRef]
- Available online: https://www.eastman.com/Markets/Tackifier_Center/Pages/Block_Copolymer.aspx (accessed on 3 July 2018).
- Chen, J.S.; Liao, M.C.; Shiah, M.S. Asphalt Modified by Styrene-Butadiene-Styrene Triblock Copolymer: Morphology and Model. J. Mater. Civ. Eng. 2002, 14, 224–229. [Google Scholar] [CrossRef]
- Airey, G.D. Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Masson, J.F.; Collins, P.; Robertson, G.; Woods, J.R.; Margeson, J. Thermodynamics Phase Diagrams and Stability of Bitumen-Polymer Blends. Energy Fuels 2003, 17, 714–724. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Y.; Zhang, Y.; Fan, Y. Rheological Characterization of Storage-Stable SBS-Modified Asphalts. Polym. Test. 2002, 21, 295–302. [Google Scholar] [CrossRef]
- Wang, T.; Yi, T.; Yuzhen, Z. Compatibility of SBS-modified Asphalt. Pet. Sci. Technol. 2010, 28, 764–772. [Google Scholar] [CrossRef]
- Galooyak, S.S.; Dabir, B.; Nazarbeygi, A.E.; Moeini, A. Rheological Properties and Storage Stability of Bitumen/SBS/Montmorillonite Composites. Constr. Build. Mater. 2010, 24, 300–307. [Google Scholar] [CrossRef]
- Krauss, G. Modification of Asphalt by Block Polymers of Butadiene and Styrene. Rubber Chem. Technol. 1982, 55, 1389–1402. [Google Scholar] [CrossRef]
- Wloczysiak, P.; Vidal, A.; Papirer, E.; Gauvin, P. Relationships Between Rheological Properties, Morphological Characteristics and Composition of Bitumen-Styrene Butadiene Styrene Copolymers Mixes. I. A Three Phase System. J. Appl. Polym. Sci. 1998, 65, 1595–1607. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Compatibility and Storage Stability of Styrene-Butadiene-Styrene Copolymer Modified Bitumens. Mater. Struct. 1997, 30, 618–626. [Google Scholar] [CrossRef]
- Nikolaides, A. Highway Engineering Pavements, Materials and Control of Quality, 1st ed.; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2014; ISBN 9781466579972. [Google Scholar]
- Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychack, M. Polymer modified bitumen: Review. Chem. Chem. Technol. 2016, 10, 631–636. [Google Scholar] [CrossRef]
- Dinnen, A. Epoxy bitumen binders for critical road conditions. In Proceedings of the 2nd Eurobitume, Cannes, France, 7–9 October 1981; p. 294. [Google Scholar]
- Chan, C.H.; Sabu, T.; Pothan, L.A.; Maria, H.J. Composites and Nanocomposites. In Natural Rubber Materials (Vol. 2); Royal Society of Chemistry: Cambridge, UK, 2013; ISBN 978-1-84973-631-2. [Google Scholar]
- Kohjiya, S. Chemistry, Manufacture and Applications of Natural Rubber, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2014; ISBN 9780857096838. [Google Scholar]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier: Oxford, UK, 2009; ISBN 9780080548197. [Google Scholar]
- Mark, J.E. (Ed.) Physical Properties of Polymers Handbook, 2nd ed.; Springer-Verlag: New York, NY, USA, 1996; ISBN 978-0-387-31235-4. [Google Scholar]
- Studebaker, M.L. Effect of Curing Systems on Selected Physical Properties of Natural Rubber Vulcanizates. Rubber Chem. Technol. 1966, 39, 1359–1381. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, Y.; Zhao, K.; Sumalee, A. The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. Int. J. Pavement Eng. 2017, 8, 547–559. [Google Scholar] [CrossRef]
- Shaffie, E.; Ahmad, J.; Arshad, A.K.; Kamarudin, F. Stripping Performance and Volumetric Properties Evaluation of Hot Mix Asphalt (HMA) Mix Design Using Natural Rubber Latex Polymer Modified Binder (NRMB). In INCIEC; Springer: Singapore, 2014. [Google Scholar]
- Saad, A.A.; Yusof, I.B.; Hermadi, M.; Marwan, B.S.; Alfergani, M.B.S. Pavement Performance with Carbon Black and Natural Rubber (Latex). Int. J. Eng. Adv. Technol. 2013, 2, 124–129. [Google Scholar]
- Krishnapriya, M.G. Performance Evaluation of Natural Rubber Modified Bituminous Mixes. Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2015, 5, 121–134. [Google Scholar]
- Nrachai, T.; Chayatan, P.; Direk, L. The modification of asphalt with natural rubber latex. Proc. East. Asia Soc. Transp. Stud. 2005, 5, 679–694. [Google Scholar]
- Okieimen, F.E.; Akinlabi, A.K. Processing characteristics and physico-mechanical properties of natural rubber and liquid natural rubber blends. J. Appl. Polym. Sci. 2002, 85, 1070–1076. [Google Scholar] [CrossRef]
- Ibeagi, U.M.; Okereke, S.; Okpareke, O.C.; Ukoha, P.O. Studies on the Modifications of Asphalt Binder Using Some Selected Polymers. Int. J. Chem. Sci. 2012, 10, 2048–2056. [Google Scholar]
- Azahar, N.B.M.; Hassan, N.A.; Jaya, R.P.; Mahmud, M.Z.H. An overview on natural rubber application for asphalt modification. Int. J. Agric. For. Plant. 2016, 2, 212–218. [Google Scholar]
- Vural Kök, B.; Çolak, H. Laboratory comparison of crumb rubber and SBS modified bitumen and hot mix asphalt. Constr. Build. Mater. 2011, 25, 3204–3212. [Google Scholar]
- Wang, H.; You, Z.; Mills-Bealeb, J.; Haoa, P. Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber. Constr. Build. Mater. 2012, 26, 583–590. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Karim, M.R. Waste tyre rubber in asphalt pavement modification. Mater. Res. Innov. 2014, 18 (Suppl. 6), S6–S9. [Google Scholar] [CrossRef]
- Grechanovskii, V.A.; Ya Poddubnyi, I.; Ivanova, L.S. Molecular Structure and Macroscopic Properties of Synthetic Cis-Poly(Isoprene). Rubber Chem. Technol. 1974, 47, 342–356. [Google Scholar] [CrossRef]
- Flory, P.J. Effects of Molecular Structure on Physical Properties of Butyl Rubber. Rubber Chem. Technol. 1946, 19, 552–598. [Google Scholar] [CrossRef]
- Olivares, H.F.; Schultz, W.B.; Fernández, A.M.; Moro, B.C. Rubber-modified Hot Mix Asphalt Pavement by Dry Process. Int. J. Pavement Eng. 2009, 10, 277–288. [Google Scholar] [CrossRef]
- Hassan, N.A.; Airey, G.D.; Jaya, R.P.; Mashros, N.; Aziz, M.M. A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. J. Teknol. 2014, 70, 127–134. [Google Scholar]
- Lo Presti, D. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
- Standard Specification for Asphalt-Rubber Binder, D 6114–97; ASTM: West Conshohocken, PA, USA, 2002.
- Valkering, C.P.; Vonk, W. Thermoplastic rubbers for the modification of bitumens: Improved elastic recovery for high deformation resistance of asphalt mixes. In Proceedings of the 15th Australian Road Research Board (ARRB) Conference, Darwin, Australia, 26–31 August 1999; pp. 1–19. [Google Scholar]
- Krutz, N.C.; Siddharthan, R.; Stroup-Gardiner, M. Investigation of rutting potential using static creep testing on polymer-modified asphalt concrete mixtures. Transp. Res. Rec. 1991, 1317, 100–118. [Google Scholar]
- Collins, J.H.; Bouldin, M.G.; Gelles, R.; Berker, A. Improved performance of paving asphalts by polymer modification (with discussion). In Proceedings of the Association of Asphalt Paving Technologists Technical Sessions, Seattle, DC, USA, 4–6 March 1991; pp. 43–79. [Google Scholar]
- Bouldin, M.G.; Collins, J.H.; Berker, A. Rheology and microstructure of polymer/asphalt blends. Rubber Chem. Technol. 1991, 64, 577–600. [Google Scholar] [CrossRef]
- Wardlaw, K.R.; Shuler, S. (Eds.) Polymer Modified Asphalt Binders; ASTM: West Conshohocken, PA, USA, 1992; ISBN 0-8031-1413-3. [Google Scholar]
- Stock, A.F.; Arand, W. Low temperature cracking in polymer modified binders. In Proceedings of the Asphalt Paving Technology, Austin, TX, USA, 22–24 March 1993; pp. 23–53. [Google Scholar]
- Aglan, H. Polymeric additives and their role in asphaltic pavements. Part I: Effect of additive type on the fracture and fatigue behavior. J. Elastomers Plast. 1993, 25, 307–321. [Google Scholar] [CrossRef]
- Bahia, H.U.; Anderson, D.A. Glass transition behavior and physical hardening of asphalt binders (with discussion). In Proceedings of the Asphalt Paving Technology, Austin, TX, USA, 22–24 March 1993; pp. 93–129. [Google Scholar]
- Elmore, W.E.; Thomas, W.K.; Mansour, S.; Bolzan, P. Long-Term Performance Evaluation of Polymer-Modified Asphalt Concrete Pavements; Report No.: FHWA-TX-94+1306-1F; Federal Highway Administration: Washington, DC, USA, 1993.
- Bonemazzi, F.; Braga, V.; Corrieri, R.; Giavarini, C. Characteristics of polymers and polymer-modified binders. Transp. Res. Rec. 1996, 1535, 36–47. [Google Scholar] [CrossRef]
- Brulè, B. Polymer-modified asphalt cements used in the road construction industry: Basic principles. Transp. Res. Rec. 1996, 1535, 48–53. [Google Scholar] [CrossRef]
- Adedeji, A.; Grünfelder, T.; Bates, F.S.; Macosko, C.W.; Stroup-Gardiner, M.; Newcomb, D.E. Asphalt modified by SBS triblock copolymer: Structures and properties. Polym. Eng. Sci. 1996, 36, 1707–1723. [Google Scholar] [CrossRef]
- Shin, E.E.; Bhurke, A.; Edward, S.; Rozeveld, S.; Drzal, L.T. Microstructure, morphology, and failure modes of polymer-modified asphalts. Transp. Res. Rec. 1996, 1535, 61–73. [Google Scholar] [CrossRef]
- Loeber, L.; Durand, A.; Muller, G.; Morel, J.; Sutton, O.; Bargiacchi, M. New investigations on the mechanism of polymer–bitumen interaction and their practical application for binder formulation. In Proceedings of the 1st Eurasphalt & Eurobitume Congress, Congress Paper No. 5115, Strasbourg, France, 7–10 May 1996. [Google Scholar]
- Gahvari, F. Effects of thermoplastic block copolymers on rheology of asphalt. J. Mater. Civ. Eng. 1997, 9, 111–116. [Google Scholar] [CrossRef]
- Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of stable polypropylene-modified bitumens. Fuel 1996, 75, 681–686. [Google Scholar] [CrossRef]
- Rojo, E.; Fernàndez, M.; Peña, J.J.; Peña, B. Rheological aspects of blends of metallocene-catalysed atactic polypropylenes with bitumen. Polym. Eng. Sci. 2004, 44, 1792–1799. [Google Scholar] [CrossRef]
- González, O.; Muñoz, M.E.; Santamaría, A. Bitumen/polyethylene blends: Using m-LLDPEs to improve stability and viscoelastic properties. Rheol. Acta 2006, 45, 603–610. [Google Scholar] [CrossRef]
- Henderson, G. Bituminous Binders and Process of Making Same from Coal-Tar Pitch. U.S. Patent 1264932, 30 July 1917. [Google Scholar]
- Gagle, D.W.; Draper, H.L. High Ductility Asphalt. U.S. Patent 4130516, 12 April 1976. [Google Scholar]
- Wen, G.; Zhang, Y.; Zhang, Y.; Sun, K.; Chen, Z. Vulcanization characteristics of asphalt/SBS blends in the presence of sulphur. J. Appl. Polym. Sci. 2001, 82, 989–996. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Y.; Zhang, Y.; Sun, K. Improved properties of SBS modified asphalt with dynamic vulcanization. Polym. Eng. Sci. 2002, 42, 1070–1081. [Google Scholar] [CrossRef]
- Chen, J.S.; Huang, C.C. Fundamental characterization of SBS-modified asphalt mixed with sulphur. J. Appl. Polym. Sci. 2006, 103, 2817–2825. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Wu, S. Effect of ageing on rheological properties of storage-stable SBS/sulphur-modified asphalts. J. Hazard Mater. 2010, 182, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yu, J.; Han, J. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS-and SBS/sulphur-modified asphalts. Constr. Build. Mater. 2011, 25, 129–137. [Google Scholar] [CrossRef]
- Masson, J.-F.; Gagné, M. Polyphosphoric Acid (PPA)-Modified Bitumen: Disruption of the Asphaltenes Network Based on the Reaction of Non-basic Nitrogen with PPA. Energy Fuels 2008, 22, 3402–3406. [Google Scholar] [CrossRef]
- Miknis, F.P.; Thomas, K.P. NMR Analysis of Polyphosphoric Acid-modified Bitumens. Road Mater. Pavement Des. 2008, 9, 59–72. [Google Scholar] [CrossRef]
- Jaroszek, H. Polyphosphoric acid (PPA) in road asphalts modification. CHEMIK 2012, 66, 1340–1345. [Google Scholar]
- García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels 2017, 31, 5003–5010. [Google Scholar]
- Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological modification of bitumen with maleic anhydride and dicarboxylic acids. Fuel 1999, 78, 101–110. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, F.; Chen, Z. Reaction of asphalt and maleic anhydride: Kinetics and mechanism. Chem. Eng. J. 2010, 164, 230–237. [Google Scholar] [CrossRef]
- Cong, P.; Chen, S.; Chen, H. Preparation and properties of bitumen modified with the maleic anhydride grafted styrene-butadiene-styrene triblock copolymer. Polym. Eng. Sci. 2011, 51, 1273–1279. [Google Scholar] [CrossRef]
- Marzocchi, A.; Roberts, M.G.; Bolen, C.E. Asphalt Compositions Modified with Organo-Silane Compounds. U.S. Patent US4292371A, 24 March 1980. [Google Scholar]
- Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.; Chen, H. Effect of silane coupling agent on improving the adhesive properties between asphalt binder and aggregates. Constr. Build. Mater. 2018, 169, 591–600. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen chemical modification by thiourea dioxide. Fuel 2011, 90, 2294–2300. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, S.; Zhang, Y.; Zhang, Y. Preparation and properties of styrene–butadiene–styrene copolymer/kaolinite clay compound and asphalt modified with the compound. Polym. Degrad. Stab. 2005, 87, 309–317. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, S.; Zhang, Y.; Zhang, Y. Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts. Eur. Polym. J. 2006, 42, 446–457. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, S.; Zhang, Y.; Zhang, Y. Low-density polyethylene/silica compound modified asphalts with high-temperature storage stability. J. Appl. Polym. Sci. 2006, 101, 472–479. [Google Scholar] [CrossRef]
- Yu, J.; Wang, L.; Zeng, X.; Wu, S.; Li, B. Effect of montmorillonite on properties of styrene–butadiene–styrene copolymer modified bitumen. Polym. Eng. Sci. 2007, 47, 1289–1295. [Google Scholar] [CrossRef]
- Polacco, G.; Kříž, P.; Filippi, S.; Stastna, J.; Biondi, D.; Zanzotto, L. Rheological properties of asphalt/SBS/clay blends. Eur. Polym. J. 2008, 44, 3512–3521. [Google Scholar] [CrossRef]
- Zhang, B.; Xi, M.; Zhang, D.; Zhang, H.; Zhang, B. The effect of styrene-butadiene-rubber/montmorillonite modification on the characteristics and properties of asphalt. Constr. Build. Mater. 2009, 23, 3112–3117. [Google Scholar] [CrossRef]
- Golestani, B.; Nejad, F.M.; Galooyak, S.S. Performance evaluation of linear and nonlinear nanocomposite modified asphalts. Constr. Build. Mater. 2012, 35, 197–203. [Google Scholar] [CrossRef]
- Jasso, M.; Bakos, D.; MacLeod, D.; Zanzotto, L. Preparation and properties of conventional asphalt modified by physical mixtures of linear SBS and montmorillonite clay. Constr. Build. Mater. 2013, 38, 759–765. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, J.; Wang, H.; Xue, L. Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen. Mater. Chem. Phys. 2011, 129, 769–776. [Google Scholar] [CrossRef]
- Zanzotto, L.; Stastna, J.; Vacin, O. Thermomechanical properties of several polymer modified asphalts. Appl. Rheol. 2000, 10, 134–144. [Google Scholar]
- Hesp, S.; Hoare, T.R.; Roy, S.D. Low-temperature fracture in reactive ethylene-terpolymer-modified asphalt binders. Int. J. Pavement Eng. 2002, 3, 153–159. [Google Scholar] [CrossRef]
- Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. J. Colloid Interface Sci. 2004, 280, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.H.; Nien, Y.-H.; Chen, J.-H.; Chen, W.-C.; Chen, J.-S. Thermal and rheological properties of maleated polypropylene modified asphalt. Polym. Eng. Sci. 2005, 45, 1152–1158. [Google Scholar] [CrossRef]
- Fu, H.; Xie, L.; Dou, D.; Li, L.; Yu, M.; Yao, S. Storage stability and compatibility of asphalt binder modified by SBS graft copolymer. Constr. Build. Mater. 2007, 21, 1528–1533. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, M.; Wang, Y.; Ren, Y. Characterization of end functionalized styrene butadiene–styrene copolymers and their application in modified asphalt. J. Appl. Polym. Sci. 2007, 103, 8–16. [Google Scholar] [CrossRef]
- Navarro, F.J.; Partal, P.; García-Morales, M.; Martinez-Boza, F.J.; Gallegos, C. Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer. Fuel 2007, 86, 2291–2299. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhang, Y. The research of GMA-g-LDPE modified Qinhuangdao bitumen. Constr. Build. Mater. 2008, 22, 1067–1073. [Google Scholar]
- Martin-Alfonso, M.J.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Use of an MDI functionalized reactive polymer for the manufacture of modified bitumen with enhanced properties for roofing applications. Eur. Polym. J. 2008, 44, 1451–1461. [Google Scholar] [CrossRef]
- Martin-Alfonso, M.J.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Role of water in the development of new isocyanate-based bituminous products. Ind. Eng. Chem. Res. 2008, 47, 6933–6940. [Google Scholar] [CrossRef]
- Martin-Alfonso, M.J.; Partal, P.; Navarro, F.J.; García-Morales, M.; Bordado, J.C.M.; Diogo, A.C. Effect of processing temperature on the bitumen/ MDI–PEG reactivity. Fuel Process. Technol. 2009, 90, 525–530. [Google Scholar] [CrossRef]
- Navarro, F.J.; Partal, P.; García-Morales, M.; Martín-Alfonso, M.J.; Martínez-Boza, F.; Gallegos, C.; Bordado, J.C.M.; Diogo, A.C. Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: A comparative analysis. J. Ind. Eng. Chem. 2009, 15, 458–464. [Google Scholar] [CrossRef]
- Carrera, V.; Partal, P.; García-Morales, M.; Gallegos, C.; Páez, A. Influence of bitumen colloidal nature on the design of isocyanate-based bituminous products with enhanced rheological properties. Ind. Eng. Chem. Res. 2009, 48, 8464–8470. [Google Scholar] [CrossRef]
- Carrera, V.; Garcia-Morales, M.; Partal, P.; Gallegos, C. Novel bitumen/isocyanate-based reactive polymer formulations for the paving industry. Rheol. Acta 2010, 49, 563–572. [Google Scholar] [CrossRef]
- Shivokhin, M.; Garcia-Morales, M.; Partal, P.; Cuadri, A.A. Rheological behaviour of polymer-modified bituminous mastics: A comparative analysis between physical and chemical modification. Constr. Build. Mater. 2012, 27, 234–240. [Google Scholar] [CrossRef]
- Syroezhko, A.M.; Begak, O.Y.; Fedorov, V.V.; Gusarova, E.N. Modification of paving asphalts with sulphur. Russ. J. Appl. Chem. 2003, 76, 491–496. [Google Scholar] [CrossRef]
- Petrossi, U. Modifizierte Bitumen und Verahren zu Ihrer Herstellung. U.S. Patent 3803066, 22 February 1971. [Google Scholar]
- Maldonado, P.; Mas, J.; Phung, T.K. Process for Preparing Bitumen-Polymer Compositions. U.S. Patent 4145322, 20 March 1979. [Google Scholar]
- Martınez-Estrada, A.; Chávez-Castellanos, A.E.; Herrera-Alonso, M.; Herrera-Najera, R. Comparative study of the effect of sulphur on the morphology and rheological properties of SB- and SBS-modified asphalt. J. Appl. Polym. Sci. 2010, 115, 3409–3422. [Google Scholar] [CrossRef]
- Chevillard, C.; Buras, P.; Kelly, K.P.; Butler, J.R. Method for Preparation of Stable Bitumen Polymer Compositions. U.S. Patent 6441065, 27 July 2004. [Google Scholar]
- Ho, S.; MacLeod, D.; Brown, J.; Gee, L.; Zanzotto, L. Process of Polymer Modified Asphalt Preparation. U.S. Patent 0118395 A1, 14 January 2014. [Google Scholar]
- Sun, D.; Ye, F.; Shi, F.; Lu, W. Storage stability of SBS-modified road asphalt: Preparation, morphology, and rheological properties. Pet. Sci. Technol. 2006, 24, 1067–1077. [Google Scholar] [CrossRef]
- Gedik, A.; Lav, A.H. Analytical, morphological, and rheological behavior of sulfur-extended-binder. Can. J. Civ. Eng. 2016, 43, 532–541. [Google Scholar] [CrossRef]
- Hagenbach, G.; Maldonado, P.; Maurice, J. Process for Preparing Bitumen-Polymer Compositions, Application to These Compositions of the Obtention of Coverings and Mother Solution of Polymers Usable for the Obtention of the Said Compositions. U.S. Patent 4554313A, 9 June 1983. [Google Scholar]
- Lee, D. Modification of asphalt and asphalt paving mixtures by sulfur additives. Ind. Eng. Chem. Prod. Res. Dev. 1975, 14, 171–177. [Google Scholar] [CrossRef]
- De Filippis, P.; Giavarini, C.; Santarelli, M.L. Reaction of visbreaker bitumens with sulfur. Pet. Sci. Technol. 1997, 15, 743–753. [Google Scholar] [CrossRef]
- De Filippis, P.; Giavarini, C.; Santarelli, M.L. Sulphur-extended asphalt: Reaction kinetics of H2S evolution. Fuel 1998, 77, 459–463. [Google Scholar] [CrossRef]
- Kelly, K.P.; Butler, J.R. Method for Preparation of Stable Bitumen Polymer Compositions. U.S. Patent 6180697 Bl, 5 July 2002. [Google Scholar]
- Butler, J.R.; Kelly, K.P. Method for Preparing Asphalt and Polymer Compositions Incorporating Multi-Component Crosslinking Agents. U.S. Patent 6,407,152 Bl, 28 November 2000. [Google Scholar]
- Butler, J.R.; Kelly, K.P.; Buras, P. Method for Preparation of Stable Bitumen Polymer Compositions. U.S. Patent 0073761A1, 4 September 1999. [Google Scholar]
- Schermer, W.E.M.; Steernberg, K. Preparation Process for Polymer-Modified Bitumen. U.S. Patent 5719216A, 21 September 1996. [Google Scholar]
- Kodrat, I.; Sohn, D.; Hesp, S.A.M. Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified materials. Transp. Res. Rec. 2007, 1998, 47–55. [Google Scholar] [CrossRef]
- Ashry, E.S.H.; Awad, L.; El Zaher, M.A.; Elkharashe, E.; Bkheat, A.A. Modification of asphalt properties. Prog. Rubber Plast. Recycl. Technol. 2008, 24, 273–285. [Google Scholar] [CrossRef]
- Huang, S.C.; Turner, T.; Miknis, F.; Thomas, K. Long-term aging characteristics of polyphosphoric acid-modified asphalts. Transp. Res. Rec. 2008, 2051, 1–7. [Google Scholar] [CrossRef]
- Masson, J.F.; Collins, P.; Woods, J.R.; Bundalo-Perc, S.; Margeson, J. Chemistry and effects of polyphosphoric acid on the microstructure, molecular mass, glass transition temperatures and performance grades of asphalts. J. Assoc. Asph. Paving Technol. 2009, 78, 403–430. [Google Scholar]
- Baumgardner, G.L. Why and how of polyphosphoric acid modification—An industry perspective. J. Assoc. Asph. Paving Technol. 2010, 79, 663–678. [Google Scholar]
- Bennert, T.; Martin, J.V. Polyphosphoric acid in combination with styrene butadiene styrene block copolymer-laboratory mixture evaluation. J. Assoc. Asph. Paving Technol. 2010, 79, 773–791. [Google Scholar]
- D’Angelo, J.A. Effect of poly phosphoric acid on asphalt binder properties. J. Assoc. Asph. Paving Technol. 2010, 79, 679–693. [Google Scholar]
- McGennis, R.B. Case study: Implementation of polyphosphoric acid modification of asphalt binders and related experience. J. Assoc. Asph. Paving Technol. 2010, 79, 793–816. [Google Scholar]
- Romagosa, E.E.; Maldonado, R.; Fee, D.; Dongre, R. Polyphosphoric acid binder modification. J. Assoc. Asph. Paving Technol. 2010, 79, 743–771. [Google Scholar]
- Li, X.; Clyne, T.; Reinke, G.; Johnson, E.N. Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid. Transp. Res. Rec. 2011, 2210, 47–56. [Google Scholar] [CrossRef]
- Huang, S.C.; Miknis, F.P.; Schuster, W.; Salmans, S.; Farrar, M.; Boysen, R. Rheological and chemical properties of hydrated lime and polyphosphoric acid-modified asphalts with long-term aging. J. Mater. Civ. Eng. 2011, 23, 628–637. [Google Scholar] [CrossRef]
- De Fatima, A.A.M.; de Freitas, V.C.L.; Pasa, V.M.D.; Leite, L.F.M. Weathering aging of modified asphalt binders. Fuel Process. Technol. 2013, 115, 19–25. [Google Scholar]
- Zhang, F.; Hu, C. Influence of aging on thermal behaviour and characterization of SBR compound-modified asphalt. J. Anal. Calorim. 2014, 115, 1211–1218. [Google Scholar] [CrossRef]
- Orange, G.; Jean-Valery, M.; Menapace, A.; Hemsley, M.; Baumgardner, G.L. Rutting and moisture resistance of asphalt mixtures containing polymer and polyphosphoric acid modified bitumen. Road Mater. Pavement Des. 2004, 5, 323–354. [Google Scholar] [CrossRef]
- Baumgardner, G.L.; Masson, J.-F.; Hardee, J.R.; Menapace, A.M.; William, A.G. Polyphosphoric acid modified asphalt: Proposed mechanisms. J. Assoc. Asph. Paving Technol. 2005, 74, 283–305. [Google Scholar]
- Thomas, K.P.; Turner, T.F. Polyphosphoric-acid modification of asphalt binders—Impact on rheological and thermal properties. Road Mater. Pavement Des. 2008, 9, 181–205. [Google Scholar] [CrossRef]
- Oliviero Rossi, C.; Spadafora, A.; Teltayev, B.; Izmailova, G.; Amerbayev, Y.; Bortolotti, V. Polymer modified bitumen: Rheological properties and structural characterization. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 390–397. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C. The research for SBS and SBR compound modified asphalts with polyphosphoric acid and sulphur. Constr. Build. Mater. 2013, 43, 461–468. [Google Scholar] [CrossRef]
- Selvavathi, V.; Sekar, V.A.V.; Sriram, V.; Sairam, B. Modifications of bitumen by elastomer and reactive polymer—A comparative study. Pet. Sci. Technol. 2002, 20, 535–547. [Google Scholar] [CrossRef]
- Pérez-Lepe, A.; Martınez-Boza, F.J.; Attane, P.; Gallegos, C. Destabilization mechanism of polyethylene-modified bitumen. J. Appl. Polym. Sci. 2006, 100, 260–267. [Google Scholar] [CrossRef]
- Bulatović, V.O.; Rek, V.; Markovic, J. Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate. Polym. Eng. Sci. 2014, 54, 1056–1065. [Google Scholar] [CrossRef]
- Perez-Lepe, A.; Martínez-Boza, F.J.; Gallegos, C. High temperature stability of different polymer-modified bitumens: A rheological evaluation. J. Appl. Polym. Sci. 2007, 103, 1166–1174. [Google Scholar] [CrossRef]
- Kawakami, A.; Ando, K. Curable Composition. U.S. Patent 7452930B2, 24 October 2006. [Google Scholar]
- Duty, R.C.; Liu, H.F. Study of the reaction of maleic anhydride with Illinois bituminous coal. Fuel 1980, 59, 546–550. [Google Scholar] [CrossRef]
- Zher’akova, G.; Kochkan’an, R. Reactivity and structure investigation of coals in reaction with dienophiles. Fuel 1990, 69, 898–901. [Google Scholar] [CrossRef]
- Nadkarni, V.M.; Shenoy, A.V.; Mathew, J. Thermomechanical behaviour of modified asphalts. J. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 478–484. [Google Scholar] [CrossRef]
- Becker, Y.M.; Muller, A.J.; Rodriguez, Y. Use of rheological compatibility criteria to study SBS modified asphalts. J. Appl. Polym. Sci. 2003, 90, 1772–1782. [Google Scholar]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Blumstein, A. Polymerization of adsorbed monolayers: II. Thermal degradation of the inserted polymers. J. Polym. Sci. A 1965, 3, 2665–2673. [Google Scholar] [CrossRef]
- Krishnamoorti, R.; Vaia, R.A.; Giannelis, E.P. Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 1996, 8, 1728–1734. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Q.; Berglund, L.; Jiaqi, F. Polyamide 6-clay nanocomposites/polypropylene-grafted-maleic anhydride alloys. Polymer 2001, 42, 8235–8239. [Google Scholar] [CrossRef]
- Tjong, S.C.; Bao, S.P. Impact fracture toughness of polyamide-6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 585–595. [Google Scholar] [CrossRef]
- González, I.; Eguiazábal, J.I.; Nazábal, J. Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend: Effects of clay loading on morphology and mechanical properties. Eur. Polym. J. 2006, 42, 2905–2913. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, C.; Elkovitch, M.; Lee, L.J.; Koelling, K.W. Processing and properties of polymeric nano-composites. Polym. Eng. Sci. 2001, 41, 2036–2046. [Google Scholar] [CrossRef]
- Yurekli, K.; Karim, A.; Amis, E.J.; Krishnamoorti, R. Influence of layered silicates on the phase-separated morphology of PS—PVME Blends. Macromolecules 2003, 36, 7256–7267. [Google Scholar] [CrossRef]
- Si, M.; Araki, T.; Ade, H.; Kilcoyne, A.L.D.; Fisher, R.; Sokolov, J.C.; Rafailovich, M.H. Compatibilizing bulk polymer blends by using organoclays. Macromolecules 2006, 39, 4793–47801. [Google Scholar] [CrossRef]
- Vo, L.T.; Giannelis, E.P. Compatibilizing poly(vinylidene fluoride)/Nylon-6 blends with nanoclay. Macromolecules 2007, 40, 8271–8276. [Google Scholar] [CrossRef]
- Chow, W.S.; MohdIshak, Z.A.; Karger-Kocsis, J. Morphological and rheological properties of polyamide 6/poly(propylene)/organoclay nanocomposites. Macromol. Mater. Eng. 2005, 290, 122–127. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, Y.; Tong, L. Free-volume hole properties of two kinds thermoplastic nanocomposites based on polymer blends probed by positron annihilation lifetime spectroscopy. J. Appl. Polym. Sci. 2006, 102, 2463–2469. [Google Scholar] [CrossRef]
- Filippi, S. Effects of organoclay on morphology and properties of nanocomposites based on LDPE/PA-6 Blends without and with SEBS-g-MA compatibilizer. Polym. Eng. Sci. 2009, 49, 1187–1197. [Google Scholar] [CrossRef]
- Wang, Y.P.; Liu, D.J.; Li, Y.F.; Gao, J.M. Preparation and properties of asphalts modified with SBS/organobentonite blends. Polym. Polym. Compos. 2006, 14, 403–411. [Google Scholar] [CrossRef]
- Merusi, F.; Giuliani, F.; Filippi, S.; Polacco, G. A model combining structure and properties of a 160/220 bituminous binder modified with polymer/clay nanocomposites. A rheological and morphological study. Mater. Struct. 2013, 47, 819–838. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wu, Y.; Sun, W.; Wang, Y. Investigation on thermo-rheological properties and stability of SBR modified asphalts containing palygorskite clay. J. Appl. Polym. Sci. 2009, 113, 2524–2535. [Google Scholar] [CrossRef]
- Sureshkumar, M.S.; Filippi, S.; Polacco, G.; Kazatchkov, I.; Stastna, J.; Zanzotto, L. Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites. Eur. Polym. J. 2010, 46, 621–633. [Google Scholar] [CrossRef]
- Sureshkumar, M.S.; Stastna, J.; Polacco, G.; Filippi, S.; Kazatchkov, I.; Zanzotto, L. Rheology of bitumen modified by EVA—Organoclay nanocomposites. J. Appl. Polym. Sci. 2010, 118, 557–565. [Google Scholar]
- Rossi, D.; Filippi, S.; Merusi, F.; Giuliani, F.; Polacco, G. Internal Structure of Bitumen/Polymer/Wax Ternary Mixtures for Warm Mix Asphalt. J. Appl. Polym. Sci. 2013, 129, 3341–3354. [Google Scholar] [CrossRef]
- Edwards, Y.; Redelius, P. Rheological Effects of Waxes in Bitumen. Energy Fuels 2003, 17, 511–520. [Google Scholar] [CrossRef]
- Warth, A.B. The Chemistry and Technology of Waxes; Reinhold: Waldwick, NJ, USA, 1956. [Google Scholar]
- Thanh, N.X.; Hsieh, M.; Philip, R.P. Waxes and Asphaltenes in Crude Oils. Org. Geochem. 1999, 30, 119–132. [Google Scholar] [CrossRef]
- Edwards, Y.; Isacsson, U. Wax in Bitumen, Part 1-Classifications and General Aspects. Road Mater. Pavement Des. 2005, 6, 281–309. [Google Scholar] [CrossRef]
- Edwards, Y.; Isacsson, U. Wax in Bitumen, Part 2-Characterization and Effects. Road Mater. Pavement Des. 2005, 6, 439–468. [Google Scholar] [CrossRef]
- Lu, X.; Kalman, B.; Redelius, P. A New Test Method for Determination of Wax Content in Crude Oils, Residues and Bitumen. Fuel 2008, 87, 1543–1551. [Google Scholar] [CrossRef]
- Lu, X.; Langton, M.; Olofsson, P.; Redelius, P. Wax Morphology in Bitumen. J. Mater. Sci. 2005, 40, 1893–1900. [Google Scholar] [CrossRef]
- Michon, L.C.; Netzel, D.A.T.; Turner, F.; Martin, D.; Planche, J.P. A 13C NMR and DSC Study of the Amorphous and Crystalline Phases in Asphalts. Energy Fuels 1999, 13, 603–610. [Google Scholar] [CrossRef]
- Lu, X.; Redelius, P. Compositional and Structural Characterization of Waxes Isolated from Bitumens. Energy Fuels 2006, 20, 653–660. [Google Scholar] [CrossRef]
- Lu, X.; Redelius, P. Effect of Bitumen Wax on Asphalt Mixture Performance. Constr. Build. Mater. 2007, 21, 1961–1970. [Google Scholar] [CrossRef]
- Lee, H.; Wong, W. Effect of wax on basic and rheological properties of bitumen with similar Penetration-grades. Constr. Build Mater. 2009, 23, 507–514. [Google Scholar] [CrossRef]
- Wong, W.; Li, G. Analysis of the effect of wax content on bitumen under performance grade classification. Constr. Build. Mater. 2009, 23, 2504–2510. [Google Scholar] [CrossRef]
- Giuliani, F.; Merusi, F. Flow Characteristics and Viscosity Functions in Asphalt Binders Modified by Wax. Int. J. Pavement Res. Technol. 2009, 2, 51–60. [Google Scholar]
- Merusi, F.; Caruso, A.; Roncella, R.; Giuliani, F. Moisture Susceptibility and Stripping Resistance of Asphalt Mixture Modified with Different Synthetic Waxes. Transp. Res. Rec. 2010, 2180, 110–120. [Google Scholar] [CrossRef]
- Merusi, F.; Giuliani, F. Rheological Characterization of Wax-Modified Asphalt Binders at High Service Temperatures. Mater. Struct. 2011, 44, 1809–1820. [Google Scholar] [CrossRef]
- Edwards, Y.; Tasdemir, Y.; Butt, A. An Energy Saving and Environmental Friendly Wax Concept for Polymer Modified Mastic Asphalt. Mater. Struct. 2010, 43, 123–131. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.J.; Amirkhasian, S.N. Effects of Warm Mix Asphalts Additives on Performance Properties of Polymer Modified Asphalt Binders. Can. J. Civ. Eng. 2010, 37, 17–24. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.J.; Amirkhasian, S.N. Performance Evaluation of Recycled PMA Binders Containing Warm Mix Asphalt Additives. J. Test. Eval. 2011, 39, 728–734. [Google Scholar]
- Akisetty, C.K.; Lee, S.J.; Amirkhanian, S.N. Laboratory Investigation of the Influence of Warm Asphalt Additives on Long-Term Performance Properties of CRM Binders. Int. J. Pavement Eng. 2011, 11, 153–160. [Google Scholar] [CrossRef]
- Gonzalez, V.; Martinez-Boza, F.J.; Navarro, F.J.; Gallegos, C.; Perez-Lepe, A.; Paez, A. Thermomechanical Properties of Bitumen Modified with Crumb Rubber and Polymeric Additives. Fuel Process. Technol. 2010, 91, 1033–1039. [Google Scholar] [CrossRef]
- Akisetty, C.K.; Gandhi, T.; Lee, S.J.; Amirkhanian, S.N. Analysis of Rheological Properties of Rubberized Binders Containing Warm Asphalt Additives. Can. J. Civ. Eng. 2010, 37, 763–771. [Google Scholar] [CrossRef]
Type of Modifier | Examples | Abbreviation |
---|---|---|
thermoplastic elastomers | Styrene–butadiene elastomer | SBE |
Styrene–butadiene–styrene elastomer (linear or radial) | SBS | |
Styrene–ISOPRENE–STYRENE elastomer | SIS | |
Styrene–ethylene–butadiene–Styrene elastomer Ethylene-propylene-diene terpolymer | SEBS | |
Isobutene–isoprene random copolymer | IIR | |
Polyisobutene | PIB | |
Polybutadiene | PBD | |
Polyisoprene | PI | |
latex | Natural rubber | NR |
thermoplastic polymers | Ethylene–vinyl acetate | EVA |
Ethylene–methyl acrylate | EMA | |
Ethylene–butyl acrylate | EBA | |
Atactic polypropylene | APP | |
Polyethylene | PE | |
Polypropylene | PP | |
Polyvinyl chloride | PVC | |
Polystyrene | PS | |
thermosetting polymers | Epoxy resin | |
Polyurethane resin | PU | |
Acrylic resin | ||
Phenolic resin | ||
chemical modifiers | Organometallic compounds | |
Sulfur | S | |
Phosphoric acid, polyphosphoric acid | PA, PPA | |
Sulfonic acid, sulfuric acid | ||
Carboxylic anhydrides or acid esters | ||
Dibenzoyl peroxide | ||
Silanes | ||
Organic or inorganic sulfides | ||
Urea | ||
recycled materials | Crumb rubber, plastics | |
fibers | Lignin | |
Cellulose | ||
Alumino-magnesium silicate | ||
Glass fibers | ||
Asbestos | ||
Polyester | ||
Polypropylene | PP | |
adhesion improvers | Organic amines | |
Amides | ||
anti-oxidants | Phenols | |
Organo-zinc or organo-lead compounds | ||
natural asphalts | Trinidad Lake Asphalt | LA |
Gilsonite | ||
Rock asphalt |
Thermoplastics Polymers (see Section 2.1) | Polyethylene (PE) |
Polypropylene (PP) | |
Ethylene-Vinyl-Acetate (EVA) | |
PVC | |
EBA | |
Thermoplastic Elastomers (see Section 2.2) | Styrene-Butadiene-Styrenhe-Block copolymers (SBS) |
Styrene-Isoprene-Styrene-Block copolymers (SIS) | |
Thermosets (see Section 2.3) | Epoxy resin |
Polyurethane resin | |
Acrylic resin | |
Phenolic resin | |
Natural and Synthetic Rubbers (see Section 2.4) | Styrene-Butadiene rubber (SBR) |
Natural rubber | |
Polydiolefins | |
Reclaimed Tire rubber | |
Bitumen Chemical Modifier (see Section 3) | Sulphur (S) |
Polyphosphoric acid (PPA) | |
Reactive Polymers | |
Maleic Anhydride (MAH) | |
Nanocomposite Modifiers | |
Warm Mix Asphalt methodology (see Section 4) |
Formulation | S (°C) | |||
---|---|---|---|---|
SEBS %(w/w) | SEBS/KC (w/w) | Top (St) | Bottom (Sb) | ΔS |
3 | 100/0 | 53.0 | 50.0 | 3.0 |
3 | 100/50 | 52.5 | 52.8 | −0.3 |
4 | 100/0 | 57.0 | 53.8 | 3.2 |
4 | 100/10 | 56.5 | 50.8 | 5.7 |
4 | 100/30 | 55.0 | 52.0 | 3.0 |
4 | 100/50 | 55.5 | 55.8 | −0.3 |
4 | 100/50 a | 59.0 | 52.0 | 7.0 |
4 | 100/70 | 52 | 52.5 | −0.5 |
5 | 100/0 | 70.5 | 58.0 | 12.5 |
5 | 100/50 | 57.0 | 58.0 | −1.0 |
6 | 100/0 | 85.0 | 67.5 | 17.5 |
6 | 100/50 | 59 | 60.5 | −0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
Porto M, Caputo P, Loise V, Eskandarsefat S, Teltayev B, Oliviero Rossi C. Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences. 2019; 9(4):742. https://doi.org/10.3390/app9040742
Chicago/Turabian StylePorto, Michele, Paolino Caputo, Valeria Loise, Shahin Eskandarsefat, Bagdat Teltayev, and Cesare Oliviero Rossi. 2019. "Bitumen and Bitumen Modification: A Review on Latest Advances" Applied Sciences 9, no. 4: 742. https://doi.org/10.3390/app9040742
APA StylePorto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Oliviero Rossi, C. (2019). Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9(4), 742. https://doi.org/10.3390/app9040742