Phase Offset Tracking for Free Space Digital Coherent Optical Communication System
Abstract
:1. Introduction
2. System Model
2.1. Atmosphere Channel Model
2.2. Receiver Model
3. Phase Offset Estimation Algorithm
3.1. Viterbi-Viterbi Phase Offset Estimation Algorithm
3.2. The Phase Offset Estimation Method Combining Viterbi-Viterbi Algorithm with Kalman Filter
4. Number Results
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Niu, M.; Cheng, J.; Holzman, J.F. Error rate analysis of M-Ary coherent free-space optical communication systems with k-distributed turbulence. IEEE Trans. Commun. 2011, 59, 664–668. [Google Scholar] [CrossRef]
- Li, M.; Hong, Y.; Zeng, C.; Song, Y.; Zhang, X. Investigation on the UAV-to-satellite optical communication systems. IEEE J. Sel. Areas Commun. 2018, 36, 2128–2138. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Niu, M.; Song, X.; Cheng, J.; Holzman, J.F. Performance analysis of coherent wireless optical communications with atmospheric turbulence. Opt. Express 2012, 20, 6515–6521. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Cheng, J.; Holzman, J.F. MIMO architecture for coherent optical wireless communication: System design and performance. J. Opt. Commun. Netw. 2013, 5, 411–420. [Google Scholar] [CrossRef]
- Ipp, E. Coherent detection in optical fiber systems. Opt. Express 2008, 16, 753–791. [Google Scholar] [CrossRef]
- Li, G. Recent advances in coherent optical communication. Adv. Opt. Photonics 2009, 1, 279–307. [Google Scholar] [CrossRef]
- Yang, L.; Shoufeng, T.; Shuai, C. Design of a delayed XOR phase detector for an optical phase-locked loop toward high-speed coherent laser communication. Appl. Optics 2018, 57, 3770–3780. [Google Scholar]
- Shamsul, A.; Arda, S.; Mingzhi, L.; Rodwell, M.J.; Coldren, L.A. Heterodyne locking of a fully integrated optical phase-locked loop with on-chip modulators. Opt. Lett. 2017, 42, 3745–3748. [Google Scholar]
- Faruk, M.S.; Louchet, H.; Erkılınç, M.S.; Savory, S.J. DSP algorithms for recovering single-carrier Alamouti coded signals for PON applications. Opt. Express 2016, 24, 24083–24091. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.; Gregory, M.; Rosenkranz, W. Coherent receiver design based on digital signal processing in optical high-speed intersatellite links with M-phase-shift keying. Opt. Eng. 2016, 55, 111614. [Google Scholar] [CrossRef]
- Kazovsky, L.G.; Kalogerakis, G.; Shaw, W.T. Homodyne phase-shift-keying systems: Past challenges and future opportunities. J. Light. Technol. 2006, 24, 4876–4884. [Google Scholar] [CrossRef]
- Robinson, B.S.; Schieler, C.M.; Geisler, D.J.; Stevens, M.L.; Hamilton, S.A.; Yarnall, T.M. Multi-aperture digital coherent combining for free-space optical communication receivers. Opt. Express 2016, 24, 12661–12671. [Google Scholar]
- Hoffmann, S.; Peveling, R.; Pfau, T.; Adamczyk, O.; Eickhoff, R.; Reinhold, N. Multiplier-free real-time phase tracking for coherent QPSK receivers. IEEE Photonics Technol. Lett. 2009, 21, 137–139. [Google Scholar] [CrossRef]
- Zafra, S.O.; Pang, X.; Jacobsen, G.; Popov, S.; Sergeyev, S. Phase noise tolerance study in coherent optical circular QAM transmissions with Viterbi-Viterbi carrier phase estimation. Opt. Express 2014, 22, 30579–30585. [Google Scholar] [CrossRef] [PubMed]
- Fatadin, I.; Ives, D.; Savory, S.J. Differential carrier phase recovery for QPSK optical coherent systems with integrated tunable lasers. Opt. Express 2013, 21, 10166–10171. [Google Scholar] [CrossRef] [PubMed]
- Katsis, A.; Nistazakis, H.E.; Tombras, G.S. Bayesian and frequentist estimation of the performance of free space optical channels under weak turbulence conditions. J. Franklin Inst. 2009, 346, 315–327. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media, 2nd ed.; SPIE Press: Washington, DC, USA, 2005; pp. 481–496. [Google Scholar]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with MATLAB; CRC Press: New York, NY, USA, 2012; pp. 133–135. [Google Scholar]
- Wang, Y.; Serpedin, E.; Ciblat, P. Optimal blind nonlinear least-squares carrier phase and frequency offset estimation for general QAM modulations. IEEE Trans. Wirel. Commun. 2003, 2, 1040–1054. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Huang, Y.; Wang, Q.; He, D.; Peng, Z.; Li, Q. Phase Offset Tracking for Free Space Digital Coherent Optical Communication System. Appl. Sci. 2019, 9, 836. https://doi.org/10.3390/app9050836
Li H, Huang Y, Wang Q, He D, Peng Z, Li Q. Phase Offset Tracking for Free Space Digital Coherent Optical Communication System. Applied Sciences. 2019; 9(5):836. https://doi.org/10.3390/app9050836
Chicago/Turabian StyleLi, Hongwei, Yongmei Huang, Qiang Wang, Dong He, Zhenming Peng, and Qing Li. 2019. "Phase Offset Tracking for Free Space Digital Coherent Optical Communication System" Applied Sciences 9, no. 5: 836. https://doi.org/10.3390/app9050836
APA StyleLi, H., Huang, Y., Wang, Q., He, D., Peng, Z., & Li, Q. (2019). Phase Offset Tracking for Free Space Digital Coherent Optical Communication System. Applied Sciences, 9(5), 836. https://doi.org/10.3390/app9050836