Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pyrolysis of Biomass
2.2. Biochar Characterization
2.3. Composites Preparation
2.4. Composites Characterization
3. Results and Discussion
3.1. Biochar Characterization
3.1.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.2. Elemental Analysis and Molar Ratios
3.1.3. BET Surface Area
3.1.4. Morphological Analysis
3.2. Composites Characterization
3.2.1. Morphological Characterization
3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.3. Thermogravimetric Analysis (TGA)
3.2.4. Differential Scanning Calorimetry (DSC)
3.2.5. Mechanical Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Huggins, T.M.; Pietron, J.J.; Wang, H.; Ren, Z.J.; Biffinger, J.C. Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour. Technol. 2015, 195, 147–153. [Google Scholar] [CrossRef]
- Jafri, N.; Wong, W.Y.; Doshi, V.; Yoon, L.W.; Cheah, K.H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- Cheng, B.-H.; Zeng, R.J.; Jiang, H. Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour. Technol. 2017, 246, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Xiu, S.; Shahbazi, A.; Li, R. Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends Renew. Energy 2017, 3, 86–101. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Fang, J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2158–2207. [Google Scholar] [CrossRef]
- Cao, X.; Sun, S.; Sun, R. Application of biochar-based catalysts in biomass upgrading: A review. RSC Adv. 2017, 7, 48793–48805. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Cao, L.; Tsang, D.C.W.; Zhang, S.; Ok, Y.S. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 2017, 246, 254–270. [Google Scholar] [CrossRef]
- Cheng, F.; Li, X. Preparation and Application of Biochar-Based Catalysts for Biofuel Production. Catalysts 2018, 8, 346. [Google Scholar] [CrossRef]
- Grutzmacher, P.; Puga, A.P.; Bibar, M.P.S.; Coscione, A.R.; Packer, A.P.; de Andrade, C.A. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci. Total Environ. 2018, 625, 1459–1466. [Google Scholar] [CrossRef]
- Das, O.; Kim, N.K.; Hedenqvist, M.S.; Lin, R.J.T.; Sarmah, A.K.; Bhattacharyya, D. An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites. Environ. Manag. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties. Waste Manag. 2016, 29, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Behazin, E.; Misra, M.; Mohanty, A.K. Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites. Compos. Part B Eng. 2017, 118, 116–124. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Snowdon, M.R.; Mohanty, A.K.; Misra, M. Miscibility and Performance Evaluation of Biocomposites Made from Polypropylene/Poly(lactic acid)/Poly(hydroxybutyrate-co-hydroxyvalerate) with a Sustainable Biocarbon Filler. ACS Omega 2017, 2, 6446–6454. [Google Scholar] [CrossRef]
- Poulose, A.M.; Elnour, A.Y.; Anis, A.; Shaikh, H.; Al-Zahrani, S.M.; George, J.; Al-Wabel, M.I.; Usman, A.R.; Ok, Y.S.; Tsang, D.C.W.; et al. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics. Sci. Total Environ. 2018, 619, 311–318. [Google Scholar] [CrossRef]
- Shaikh Hamid, M. Effect of carbon fiber as secondary filler on the electrical, thermal and rheological properties of carbon fiber/polypropylene composites. J. Polym. Eng. 2018, 38, 545–553. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresour. Technol. 2012, 107, 411–418. [Google Scholar] [CrossRef]
- Chun, Y.; Sheng, G.; Chiou, C.T.; Xing, B. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Li, S.; Chen, G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Manag. 2018, 78, 198–207. [Google Scholar] [CrossRef]
- Behazin, E.; Ogunsona, E.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M.; Anyia, A.O. Mechanical, Chemical, and Physical Properties of Wood and Perennial Grass Biochars for Possible Composite Application. BioResources 2015, 11, 1334–1348. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Usman, A.R.; Abduljabbar, A.; Vithanage, M.; Ok, Y.S.; Ahmad, M.; Ahmad, M.; Elfaki, J.; Abdulazeem, S.S.; Al-Wabel, M.I. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. J. Anal. Appl. Pyrolysis 2015, 115, 392–400. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Z.; Chen, B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci. Rep. 2016, 6, 22664. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Nanoindentation assisted analysis of biochar added biocomposites. Compos. Part B Eng. 2016, 91, 219–227. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Kwon, J.H.; Han, T.H.; Durmus, A. Effect of wood-derived charcoal content on properties of wood plastic composites. Mater. Res. 2015, 18, 654–659. [Google Scholar] [CrossRef]
- Das, O.; Bhattacharyya, D.; Sarmah, A.K. Sustainable eco–composites obtained from waste derived biochar: A consideration in performance properties, production costs, and environmental impact. J. Clean. Prod. 2016, 129, 159–168. [Google Scholar] [CrossRef]
- Shenoy, A.V. Rheology of Filled Polymer Systems; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Hakeem, K.R.; Jawaid, M.; Alothman, O.Y. Agricultural Biomass Based Potential Materials; Springer: Berlin, Germany, 2015. [Google Scholar]
- Fu, S.; Song, P.; Liu, X. 19—Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. In Advanced High Strength Natural Fibre Composites in Construction; Fan, M., Fu, F., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 479–508. [Google Scholar] [CrossRef]
- Srinivasan, P.; Sarmah, A.K.; Smernik, R.; Das, O.; Farid, M.; Gao, W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications. Sci. Total Environ. 2015, 512, 495–505. [Google Scholar] [CrossRef]
- Uchimiya, M.; Wartelle, L.H.; Klasson, K.T.; Fortier, C.A.; Lima, I.M. Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. J. Agric. Food Chem. 2011, 59, 2501–2510. [Google Scholar] [CrossRef] [PubMed]
- Bikiaris, D. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites. Materials 2010, 3, 2884–2946. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Wu, C. Crystallization Behavior of Polypropylene Filled with Modified Carbon Black. Polym. J. 2007, 39, 722–730. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Biocomposites with Size-Fractionated Biocarbon: Influence of the Microstructure on Macroscopic Properties. ACS Omega 2016, 1, 636–647. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites. Waste Manag. 2015, 38, 132–140. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Structure–mechanics property relationship of waste derived biochars. Sci. Total Environ. 2015, 538, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Ikram, S.; Das, O.; Bhattacharyya, D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2016, 91 Pt 1, 177–188. [Google Scholar] [CrossRef]
Sample ID | Composition (wt %) |
---|---|
Neat PP | PP (100) |
BC300/PP | BC300 (20) + PP (80) |
BC400/PP | BC400 (20) + PP (80) |
BC500/PP | BC500 (20) + PP (80) |
BC600/PP | BC600 (20) + PP (80) |
BC700/PP | BC700 (20) + PP (80) |
Sample | Yield % | Ultimate Analysis | Proximate Analysis | Molar Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C % | H % | N % | O % (*) | Moisture % | Ash % | H/C | O/C | (O+N)/C | ||
BC300 | 43 | 63.65 (4.44) | 3.82 (0.33) | 1.01 (0.06) | 18.78 (4.83) | 4.47 (0.26) | 12.74 (0.02) | 0.72 (0.01) | 0.22 (0.07) | 0.24 (0.07) |
BC400 | 38 | 64.95 (0.84) | 2.96 (0.04) | 0.89 (0.01) | 17.04 (0.80) | 3.80 (0.12) | 14.16 (0.12) | 0.55 (0.01) | 0.20 (0.01) | 0.22 (0.01) |
BC500 | 35 | 70.75 (1.24) | 2.33 (0.06) | 0.86 (0.01) | 9.85 (1.29) | 3.20 (0.09) | 16.21 (0.20) | 0.40 (0.00) | 0.10 (0.01) | 0.12 (0.02) |
BC600 | 33 | 74.76 (0.88) | 1.60 (0.04) | 0.71 (0.00) | 7.13 (1.94) | 2.43 (0.10) | 17.8 (0.04) | 0.26 (0.00) | 0.05 (0.01) | 0.06 (0.01) |
BC700 | 32 | 72.76 (1.95) | 0.90 (0.01) | 0.65 (0.01) | 5.32 (0.91) | 2.87 (0.05) | 18.37 (0.18) | 0.14 (0.01) | 0.08 (0.02) | 0.09 (0.02) |
Mass % | C | O | Mg | Al | Si | S | Cl | K | Ca | O/C |
---|---|---|---|---|---|---|---|---|---|---|
Sample | ||||||||||
BC300 | 57.00 | 32.72 | 0.86 | 0.24 | 1.71 | 0.63 | 1.83 | 3.47 | 1.54 | 0.57 |
BC400 | 59.62 | 29.70 | 0.26 | - | 1.42 | 0.53 | 2.48 | 4.56 | 1.43 | 0.50 |
BC500 | 66.41 | 15.52 | 0.97 | - | 1.21 | 0.89 | 5.43 | 6.80 | 2.77 | 0.23 |
BC600 | 69.19 | 11.88 | 0.94 | - | 1.21 | 0.75 | 5.84 | 7.04 | 3.16 | 0.17 |
BC700 | 69.32 | 12.47 | 1.05 | - | 1.18 | 0.79 | 5.34 | 6.34 | 3.52 | 0.18 |
Sample | TGA | DTG | ||
---|---|---|---|---|
T5wt%. a (°C) | T15wt%. b (°C) | Residual wt % | Tmax c (°C) | |
Neat PP | 395 | 433 | 0 | 477 |
BC300/PP | 416 | 456 | 14.80 | 485 |
BC400/PP | 457 | 473 | 15.47 | 489 |
BC500/PP | 465 | 478 | 18.69 | 490 |
BC600/PP | 467 | 478 | 17.02 | 491 |
BC700/PP | 466 | 478 | 20.03 | 490 |
Sample | DSC Parameters | ||||
---|---|---|---|---|---|
Tc (°C) | ΔHc (J/g) | Tm (°C) | ΔHm (J/g) | Xr (%) | |
Neat PP | 109.24 | −91.25 | 163.05 | 76.2 | 36.46 |
BC300/PP | 119.83 | −76.64 | 163.60 | 62.75 | 37.53 |
BC400/PP | 122.19 | −76.26 | 164.58 | 64.13 | 38.36 |
BC500/PP | 124.06 | −83.76 | 165.35 | 71.47 | 42.75 |
BC600/PP | 124.86 | −82.03 | 165.52 | 69.9 | 41.81 |
BC700/PP | 124.65 | −80.97 | 165.60 | 68.23 | 40.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Appl. Sci. 2019, 9, 1149. https://doi.org/10.3390/app9061149
Elnour AY, Alghyamah AA, Shaikh HM, Poulose AM, Al-Zahrani SM, Anis A, Al-Wabel MI. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Applied Sciences. 2019; 9(6):1149. https://doi.org/10.3390/app9061149
Chicago/Turabian StyleElnour, Ahmed Y., Abdulaziz A. Alghyamah, Hamid M. Shaikh, Anesh M. Poulose, Saeed M. Al-Zahrani, Arfat Anis, and Mohammad I. Al-Wabel. 2019. "Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites" Applied Sciences 9, no. 6: 1149. https://doi.org/10.3390/app9061149
APA StyleElnour, A. Y., Alghyamah, A. A., Shaikh, H. M., Poulose, A. M., Al-Zahrani, S. M., Anis, A., & Al-Wabel, M. I. (2019). Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Applied Sciences, 9(6), 1149. https://doi.org/10.3390/app9061149