Skin Aging Estimation Scheme Based on Lifestyle and Dermoscopy Image Analysis
Abstract
:1. Introduction
2. Methods
2.1. Our Previous Work
2.2. Skin Texture Location Mapping
Algorithm 1. Warping region |
Input: source image S, target image T Output: warped region of interest WROI |
= () = () = (T) = false for each grid sg in for each grid tg in NCCindex = (sg, tg) matchedSIFT = ((sg, tg)) if (NCCindex 0.8 & matchedSIFT > 0) = true endif endfor endfor MatchPoints = () MatchPoints = () WarpPara W = ) WROI = (, W) return WROI |
2.3. Pre-Processing and Skin Feature Extraction
2.4. Skin Aging Estimation Model
Algorithm 2. Finding best polynomial regression model |
Input: observed data S, time sequence T, n-th polynomial regression Output: optimized polynomial regression model OM |
foreach degree n : = (S, T, n) : = ((), ()) if ( nbest: = endif endfor OM: = return OM |
2.5. Finding Relation between Skin Texture and Lifestyle
2.6. Skin Aging Simulation
Algorithm 3. Wrinkle width expansion |
Input: wrinkle regions cluster , wrinkle skeleton Output: wrinkle width expanded image S |
foreach wrinkle skeleton S(x,y) adjacent point(x,y) = (S(x,y)) for each wrinkle region clusters for each adjacent point (x,y), [] = ((x,y)) [] = (()) = indexmin = () (x,y) = S(x,y) = (x,y) endfor endfor endfor end return S |
Algorithm 4. Cell vectors expansion |
Input: cell regions , expansion weight EW, expansion angle , target cell vector length TCVL, target angle TA Output: Expanded cell regions |
foreach cell regions startpoint (x,y) = () +[1 −1] * () * cos() endpoint () = () + [1 −1] * () * sin() cellvector = expandedcellvector = * cos() * EW endfor if (Avg(Length())) for each pixel (x,y) in cell regions = (x,y) * cos() * EW = () endfor else break return |
3. Result and Discussion
3.1. Study Population and Experiment Envoirnment
3.2. Skin Texture Location Mapping
3.3. Trend Analysis of Skin Texture Aging
3.4. Correlation Analysis between Skin Texture and Life Pattern Changes
3.5. Simulation of Skin Texture Aging
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cula, G.O.; Bargo, P.R.; Nkengne, A.; Kollias, N. Assessing facial wrinkles: Automatic detection and quantification. Skin Res. Technol. 2013, 19, 243–251. [Google Scholar] [CrossRef]
- Masuda, Y.M.; Oguri, T.; Morinaga, T.; Hirao, T. Three-dimensional morphological characterization of the skin surface micro-topography using a skin replica and changes with age. Skin Res. Technol. 2014, 20, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Yow, A.P.; Cheng, J.; Li, A.; Srivastava, R.; Liu, J.; Wong, D.W.K.; Tey, H.L. Automated in vivo 3D high-definition optical coherence tomography skin analysis system. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3895–3898. [Google Scholar]
- Pirisinu, M.; Mazzarello, V. 3D profilometric characterization of the aged skin surface using a skin replica and alicona Mex software. Scanning 2016, 38, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Rhyu, Y.S.; Ahn, H.H.; Hwang, E.; Uhm, C.S. Skin microrelief profiles as a cutaneous aging index. J. Electron. Microsc. 2016, 65, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Nakagami, G.; Sanada, H.; Sari, Y.; Kobayashi, H.; Kishi, K.; Konya, C.; Tadaka, E. Quantitative evaluation of elderly skin based on digital image analysis. Skin Res. Technol. 2008, 14, 192–200. [Google Scholar] [CrossRef]
- Hamer, M.A.; Jacobs, L.C.; Lall, J.S.; Wollstein, A.; Hollestein, L.M.; Rae, A.R.; Gossage, K.W.; Hofman, A.; Liu, F.; Kayser, M.; et al. Validation of image analysis techniques to measure skin aging features from facial photographs. Skin Res. Technol. 2015, 21, 392–402. [Google Scholar] [CrossRef]
- Zou, Y.; Song, E.; Jin, R. Age-dependent changes in skin surface assessed by a novel two-dimensional image analysis. Skin Res. Technol. 2009, 15, 399–406. [Google Scholar] [CrossRef]
- Trojahn, C.; Dobos, G.; Schario, M.; Ludriksone, L.; Blume-Peytavi, U.; Kottner, J. Relation between skin micro-topography, roughness, and skin age. Skin Res. Technol. 2015, 21, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hames, S.C.; Ardigò, M.; Soyer, H.P.; Bradley, A.P.; Prow, T.W. Anatomical skin segmentation in reflectance confocal microscopy with weak labels. In Proceedings of the 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, Australia, 23–25 November 2015; pp. 1–8. [Google Scholar]
- Xie, J.; Zhang, L.; You, J.; Zhang, D.; Qu, X. A study of hand back skin texture patterns for personal identification and gender classification. Sensors 2012, 12, 8691–8709. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef]
- Gao, Q.; Yu, J.; Wang, F.; Ge, T.; Hu, L.; Liu, Y. Automatic measurement of skin textures of the dorsal hand in evaluating skin aging. Skin Res. Technol. 2013, 19, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Nagasawa, H.; Inoue, Y.; Nakaoka, K.; Hirano, A.; Kawada, A. Development of new in vivo imaging methodology and system for the rapid and quantitative evaluation of the visual appearance of facial skin firmness. Skin Res. Technol. 2013, 19, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Haluza, D.; Simic, S.; Moshammer, H. Sun exposure prevalence and associated skin health habits: Results from the Austrian population-based UVSkinRisk survey. Int. J. Environ. Res. Public Health 2016, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Tobin, D.J. Introduction to skin aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, D.A.; Dick, J.L.; Van Heemst, D.; Griffiths, C.E.M.; Tomlin, C.C.; Murray, P.G.; Slagboom, P.E. Lifestyle and youthful looks. Br. J. Dermatol. 2015, 172, 1338–1345. [Google Scholar] [CrossRef]
- Park, S.Y.; Byun, E.; Lee, J.; Kim, S.; Kim, H. Air Pollution, Autophagy, and Skin Aging: Impact of Particulate Matter (PM10) on Human Dermal Fibroblasts. Int. J. Mol. Sci. 2018, 19, 2727. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, D.; Wang, Y.; Wang, H.; Tang, Y. Face aging effect simulation using hidden factor analysis joint sparse representation. IEEE Trans. Image Process. 2016, 25, 2493–2507. [Google Scholar] [CrossRef]
- Suo, J.; Zhu, S.C.; Shan, S.; Chen, X. A compositional and dynamic model for face aging. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 385–401. [Google Scholar] [PubMed]
- van Waateringe, R.P.; Slagter, S.N.; van der Klauw, M.M.; van Vliet-Ostaptchouk, J.V.; Graaff, R.; Paterson, A.D.; Wolffenbuttel, B.H. Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study. Eur. J. Clin. Investig. 2016, 46, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Rho, S.; Lee, S. Extracting and visualising human activity patterns of daily living in a smart home environment. IET Commun. 2011, 5, 2434–2442. [Google Scholar] [CrossRef]
- Kim, K.; Choi, Y.H.; Hwang, E. Wrinkle feature-based skin age estimation scheme. In Proceedings of the IEEE International Conference on Multimedia and Expo, ICME 2009, New York, NY, USA, 28 June–3 July 2009; pp. 1222–1225. [Google Scholar]
- Choi, Y.H.; Tak, Y.; Rho, S.; Hwang, E. Skin feature extraction and processing model for statistical skin age estimation. Multimed. Tools Appl. 2013, 64, 227–247. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, D.; Hwang, E.; Kim, B.J. Skin texture aging trend analysis using dermoscopy images. Skin Res. Technol. 2014, 20, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Rew, J.; Choi, Y.H.; Rho, S.; Hwang, E. Monitoring skin condition using life activities on the SNS user documents. Multimed. Tools Appl. 2018, 77, 9827–9847. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Wu, F.L.; Fang, X.Y. An improved RANSAC homography algorithm for feature based image mosaic. In Proceedings of the 7th WSEAS International Conference on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, 24–26 August 2007; pp. 202–207. [Google Scholar]
- Rew, J.; Choi, Y.H.; Kim, D.; Rho, S.; Hwang, E. Evaluating skin Hereditary traits based on daily activities. Front. Innov. Future Comput. Commun. 2014, 261–270. [Google Scholar]
Dataset | Avg. Warping Accuracy (No. of grids = 4) | Avg. Warping Accuracy (No. of grids = 48) | Avg. Warping Accuracy (No. of grids = 108) |
---|---|---|---|
Face | 81.32% | 86.57% | 91.43 % |
Hand | 83.74% | 87.26% | 92.88% |
Neck | 72.54% | 74.21% | 78.52% |
Life Activity | Avg. Wrinkle Width (px) | Avg. Length of Wrinkle (px) | Avg. Cell Area (px) | Avg. Cell Gradient (Degrees) | Total No. of Cell (# Cells) |
---|---|---|---|---|---|
Sleeping time | −0.282 | 0.197 | −0.182 | −0.101 | 0.182 |
BMR | 0.132 | 0.135 | 0.152 | 0.087 | 0.105 |
Sun exposure time | 0.217 | −0.242 | 0.174 | 0.052 | −0.188 |
Drinking | 0.321 | −0.281 | 0.284 | 0.131 | −0.211 |
Amount of smoking | 0.138 | −0.116 | 0.102 | 0.125 | −0.123 |
Life Activity | Avg. Wrinkle Width (px) | Avg. Length of Wrinkle (px) | Avg. Cell Area (px) | Avg. Cell Gradient (Degrees) | Total No. of Cell (# Cells) |
---|---|---|---|---|---|
Sleeping time | −0.185 | 0.218 | −0.144 | −0.178 | 0.092 |
BMR | 0.101 | 0.105 | 0.116 | 0.135 | 0.113 |
Sun exposure time | 0.147 | −0.142 | 0.201* | 0.073 | −0.105 |
Drinking | 0.121 | −0.235 | 0.213 | 0.111 | −0.217 |
Amount of smoking | - | - | - | - | - |
Life Activity | Avg. Wrinkle Width (px) | Avg. Length of Wrinkle (px) | Avg. Cell Area (px) | Avg. Cell Gradient (Degrees) | Total No. of Cell (# Cells) |
---|---|---|---|---|---|
Sleeping time | −0.318 | 0.232 | −0.219* | −0.182 | 0.287 |
BMR | 0.208 | 0.210* | 0.181 | 0.158 | 0.172 |
Sun exposure time | 0.121 | −0.118 | −0.089 | 0.097 | −0.085 |
Drinking | −0.078 | −0.086 | 0.108 | 0.108 | −0.113 |
Amount of smoking | - | - | - | - | - |
Life Activity | Avg. Wrinkle Width (px) | Avg. Length of Wrinkle (px) | Avg. Cell Area (px) | Avg. Cell Gradient (Degrees) | Total No. of Cell (# Cells) |
---|---|---|---|---|---|
Sleeping time | −0.146 | 0.208* | −0.107 | −0.085 | 0.124 |
BMR | 0.152 | 0.121 | 0.157 | 0.133 | 0.146 |
Sun exposure time | 0.287* | −0.198 | 0.154 | 0.205* | −0.228* |
Drinking | 0.158 | −0.116 | 0.138 | 0.128 | −0.223* |
Amount of smoking | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rew, J.; Choi, Y.-H.; Kim, H.; Hwang, E. Skin Aging Estimation Scheme Based on Lifestyle and Dermoscopy Image Analysis. Appl. Sci. 2019, 9, 1228. https://doi.org/10.3390/app9061228
Rew J, Choi Y-H, Kim H, Hwang E. Skin Aging Estimation Scheme Based on Lifestyle and Dermoscopy Image Analysis. Applied Sciences. 2019; 9(6):1228. https://doi.org/10.3390/app9061228
Chicago/Turabian StyleRew, Jehyeok, Young-Hwan Choi, Hyungjoon Kim, and Eenjun Hwang. 2019. "Skin Aging Estimation Scheme Based on Lifestyle and Dermoscopy Image Analysis" Applied Sciences 9, no. 6: 1228. https://doi.org/10.3390/app9061228
APA StyleRew, J., Choi, Y. -H., Kim, H., & Hwang, E. (2019). Skin Aging Estimation Scheme Based on Lifestyle and Dermoscopy Image Analysis. Applied Sciences, 9(6), 1228. https://doi.org/10.3390/app9061228