Application of 3D Digital Image Correlation for Development and Validation of FEM Model of Self-Supporting Arch Structures
Abstract
:1. Introduction
2. Characteristic of the Investigated Object and General Procedure Supporting Development and Validation of a Finite Element Model
2.1. Specification of Arch-Shaped Steel Sheets Used as a Self-Supporting Arch Structures
2.2. Three-Step Development and Validation of a Numerical Model
3. Digital Image Correlation Method
4. Investigation of Section of Arch-Shaped Steel Sheets
4.1. 3D Digital Image Correlation Setup
4.2. FEM Model of the Section of Arch-Shaped Steel Sheets
4.3. Utilization of 3D DIC Measurements in the Process of Validation of FEM Model of the Section
5. Investigation of Segments of Arch-Shaped Steel Sheets
5.1. Multi-Camera DIC System with Overlapping Field of View
5.2. FEM Model of Segments of Arch-Shaped Steel Sheets
5.3. Utilization of 3D DIC Measurements in Process of Validation of FEM Model of Segments of Section of Arch-Shaped Steel Sheets
6. In Situ Investigation of Full-Scale Construction of Arch-Shaped Steel Sheets
6.1. Multi-Camera DIC System with Distributed Field of View
6.2. FEM Model of Full-Scale Construction
- εln—relative logarithmic strain,
- σtrue—true stress,
- σeng—engineering stress (test result),
- εeng—engineering strain (test result).
6.3. Utilization of 3D DIC Measurements for Validation of FEM Model of Full-Scale Construction of Arch-Shaped Steel Sheets
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piekarczuk, A.; Malesa, M.; Kujawinska, M.; Malowany, K. Application of hybrid FEM-DIC method for assessment of low cost building structures. Exp. Mech. 2012, 52, 1297–1311. [Google Scholar] [CrossRef]
- Piekarczuk, A.; Malowany, K.; Więch, P.; Kujawińska, M.; Sulik, P. Stability and bearing capacity of arch-shaped corrugated shell elements: Experimental and numerical study. Bull. Pol. Acad. Sci. 2015, 64, 113–123. [Google Scholar] [CrossRef]
- Piekarczuk, A.; Więch, P.; Malowany, K. Numerical investigation into plastic hinge formation in arched corrugated thin-walled profiles. Thin Walled Struct. 2017, 119, 13–21. [Google Scholar] [CrossRef]
- Malowany, K.; Malesa, M.; Piekarczuk, A.; Kujawińska, M.; Skrzypczak, P.; Więch, P. Application of 3D digital image correlation for development and validation of FEM model of self-supporting metal plates structures. Proc. Spie Int. Soc. Opt. Eng. 2016, 9803, 98033W. [Google Scholar]
- Cybulski, R.; Walentyński, R.; Cybulska, M. Local buckling of cold-formed elements used in arched building with geometrical imperfections. J. Constr. Steel Res. 2014, 96, 1–13. [Google Scholar] [CrossRef]
- Laermann, K.H. Hybrid techniques in experimental solid mechanics. In Optical Methods in Experimental Solid Mechanics; Springer: Vienna, Austria, 2000; pp. 1–72. [Google Scholar]
- Sebastian, C.; Patterson, E.; Ostberg, D. Comparison of numerical and experimental strain measurements of a composite panel using image decomposition. Appl. Mech. Mater. 2011, 70, 63–68. [Google Scholar] [CrossRef]
- Lampeas, G.N.; Pasialis, V.P. A hybrid framework for nonlinear dynamic simulations including full-field optical measurements and image decomposition algorithms. J. Strain Anal. Eng. Des. 2013, 48, 5–15. [Google Scholar] [CrossRef]
- Malesa, M.; Malowany, K.; Tomczak, U.; Siwek, B.; Kujawińska, M.; Siemińska-Lewandowska, A. Application of 3D digital image correlation in maintenance and process control in industry. Comput. Ind. 2013, 64, 1301–1315. [Google Scholar] [CrossRef]
- Mechelke, K.; Kersten, T.P.; Lindstaedt, M. Comparative investigations into the accuracy behaviour of the new generation of terrestrial laser scanning systems. Opt. 3D Meas. Tech. VIII 2007, 1, 319–327. [Google Scholar]
- Yang, H.; Xu, X.; Neumann, I. The benefit of 3D laser scanning technology in the generation and calibration of FEM models for health assessment of concrete structures. Sensors 2014, 14, 21889–21904. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bureick, J.; Yang, H.; Neumann, I. TLS-based composite structure deformation analysis validated with laser tracker. Compos. Struct. 2018, 202, 60–65. [Google Scholar] [CrossRef]
- Malesa, M.; Malowany, K.; Pawlicki, J.; Kujawinska, M.; Skrzypczak, P.; Piekarczuk, A.; Lusa, T.; Zagorski, A. Non-destructive testing of industrial structures with the use of multi-camera digital image correlation method. Eng. Fail. Anal. 2016, 69, 122–134. [Google Scholar] [CrossRef]
- Shao, X.; Dai, X.; Chen, Z.; Dai, Y.; Dong, S.; He, X. Calibration of stereo-digital image correlation for deformation measurement of large engineering components. Meas. Sci. Technol. 2016, 27, 125010. [Google Scholar]
- Dong, S.; Yu, S.; Huang, Z.; Song, S.; Shao, X.; Kang, X.; He, X. Target-based calibration method for multifields of view measurement using multiple stereo digital image correlation systems. Opt. Eng. 2017, 56, 124102. [Google Scholar]
- Malowany, K.; Malesa, M.; Kowaluk, T.; Kujawinska, M. Multi-camera digital image correlation method with distributed fields of view. Opt. Lasers Eng. 2017, 98, 198–204. [Google Scholar] [CrossRef]
- Pan, B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas. Sci. Technol. 2018, 29, 082001. [Google Scholar] [CrossRef]
- Sutton, M.; Orteu, J.-J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Roye, K.L. Metal Building Construction Using the MIC-240 ABM K-Span Machine; Naval Postgraduate School: Monterey, CA, USA, 1996. [Google Scholar]
- Wang, Y.-Q.; Sutton, M.A.; Ke, X.-D.; Schreier, H.W. Error Propagation in Stereo Vision: Part I: Theoretical Developments. Exp. Mech. 2011, 51, 405–422. [Google Scholar]
- Ke, X.-D.; Schreier, H.W.; Sutton, M.A.; Wang, Y.-Q. Error propagation in stereo vision: Part II: Experimental validation. Exp. Mech. 2011, 51, 423–441. [Google Scholar]
- EN 1991-1-3 Eurocode 1: Actions on Structures—Part 1-3: General Actions—Snow Loads; European Committee for Standardization, The European Union: Brussels, Belgium, 2003.
- EN 1991-1-4 Eurocode 1: Actions on Structures—Part 1-4: General Actions—Wind Action; European Committee for Standardization, The European Union: Brussels, Belgium, 2005.
- Orteu, J.-J.; Bugarin, F.; Harvent, J.; Robert, L.; Velay, V. Multiple camera instrumentation of a single point incremental forming process pilot for shape and 3D displacement measurements: Methodology and results. Exp. Mech. 2011, 51, 625–639. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L.; Xua, N.; Xie, X.; Sia, B.; Xu, R. Cluster approach based multi-camera digital image correlation: Methodology and its application in large area high temperature measurement. Opt. Lasers Technol. 2014, 57, 318–326. [Google Scholar] [CrossRef]
- Muralikrishnan, B.; Phillips, S.; Sawyer, D. Laser trackers for large-scale dimensional metrology: A review. Precis. Eng. 2016, 44, 13–28. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- EN 1993-1-1: Eurocode 3: Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization, The European Union: Brussels, Belgium, 2005.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malowany, K.; Piekarczuk, A.; Malesa, M.; Kujawińska, M.; Więch, P. Application of 3D Digital Image Correlation for Development and Validation of FEM Model of Self-Supporting Arch Structures. Appl. Sci. 2019, 9, 1305. https://doi.org/10.3390/app9071305
Malowany K, Piekarczuk A, Malesa M, Kujawińska M, Więch P. Application of 3D Digital Image Correlation for Development and Validation of FEM Model of Self-Supporting Arch Structures. Applied Sciences. 2019; 9(7):1305. https://doi.org/10.3390/app9071305
Chicago/Turabian StyleMalowany, Krzysztof, Artur Piekarczuk, Marcin Malesa, Małgorzata Kujawińska, and Przemysław Więch. 2019. "Application of 3D Digital Image Correlation for Development and Validation of FEM Model of Self-Supporting Arch Structures" Applied Sciences 9, no. 7: 1305. https://doi.org/10.3390/app9071305
APA StyleMalowany, K., Piekarczuk, A., Malesa, M., Kujawińska, M., & Więch, P. (2019). Application of 3D Digital Image Correlation for Development and Validation of FEM Model of Self-Supporting Arch Structures. Applied Sciences, 9(7), 1305. https://doi.org/10.3390/app9071305