Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach
Abstract
:1. Introduction
2. Numerical Methodology
2.1. Large Eddy Simulation Transport Equations
2.2. Chemistry Reduction with Flamelet/Progress Variable Approach (FPV)
2.3. Turbulence Chemistry Interaction, Transported Filtered Joint Probability Density Function and Eulerian Stochastic Field Approach
2.3.1. Transported Filtered Joint Probability Density Function
2.3.2. Numerical Implementation
3. Experimental and Simulation Set-Up Details
3.1. Air Piloted-Jet Flame (Sandia Flame D)
3.2. Oxy-Fuel Jet Flame (Flame B3)
4. Results
4.1. Validation on an Air-Piloted Jet Flame (Sandia Flame D)
4.2. Application to Oxy-Fuel Jet Flame B3
5. Conclusions
- Overall, the LES hybrid filtered ESF/FPV approach demonstrated its high capability in capturing the main flame characteristics and flow field variables not only in the Sandia flame D but also in an oxy-flame configuration with CO2 and H2 dilution in oxidizer and fuel streams, respectively, using FPV tables based on Le = 1. This indicates that the H2 induced differential diffusion effect is not important in the investigated area of this oxy-flame B3.
- Compared to our RANS results in our previous work [4], the LES hybrid ESF/FPV model provides more accurate predictions.
- A good convergence of the optimal number of stochastic fields (SFi) strongly depends on the complexity of the combustion case. Even though more SFi could help to achieve fully complete convergence in this regard, in search of saving computational costs it turned out that a simulation with at least 8 stochastic fields leads to an accurate prediction in Sandia flame D as in [31] and at least 16 stochastic fields allow achieving better results in accordance with measurements once complex configuration like the oxy-fuel flame-B3 is investigated.
- Regarding the general prediction of the oxy-flame structure, stability and emissions, it turns out that 68% molar percentage of additional CO2 enrichment in the oxidizer side leads to 0.39% of CO formation near the burner fuel nozzle and 0.62% at 10 dfuel above the nozzle. These amounts of CO-formed gases are clearly high compared to ordinary flame cases with air/fuel conditions with 0.35% near the burner nozzle and 0.62% at 10 dfuel above the jet tip.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Model constant | |
Micro-mixing model coefficient | |
Wiener term | |
f | Mixture fraction |
Joint probability density function | |
Filter function | |
Number of stochastic field | |
Number of the chemical table controlling variables | |
Pressure | |
Probability density function | |
Reynolds number | |
Strain rate tensor | |
Time | |
Temperature | |
Velocity component in ith direction | |
Molar mass | |
Positions coordinate in ith direction | |
Mass fraction | |
Time increment | |
Kronecker-symbol | |
Density | |
Dynamic molecular viscosity | |
Dynamic turbulent viscosity | |
Schmidt number | |
Sub-grid turbulent Schmidt number | |
Chemical source term | |
General species variable | |
Dirac delta function | |
Composition space of species | |
Referring to table controlling variable | |
nth stochastic field of the variable | |
Favre weighted quantity | |
Mean quantity | |
Lflame | Length of the flame |
dfuel | Diameter of the fuel Nozzle of Sandia Flame-D |
dpilot | Diameter of the pilot Nozzle of Sandia Flame-D |
dcoflow | Diameter of the coflow of Sandia Flame-D |
dB3-fuel | Diameter of the fuel Nozzle of Oxy-flame B3 |
dB3-oxy | Diameter of the pilot Nozzle of Oxy-flame B3 |
T-PDF | Transported probability density function |
ESF | Eulerian Stochastic Field |
PV | Progress Variable |
FPV | Flamelet Progress Variable |
P-PDF | Presumed probability density function |
SDE | Stochastic differential equations |
LES | Large Eddy Simulation |
CCS | Carbon Capture and Storage |
FGM | Flamelet Generated Manifold |
CMC | Conditional Moment Closure |
References
- Emission Database for Global Atmospheric research EDGAR, European Commission. Available online: http://edgar.jrc.ec.europa.eu/overview.php?v=CO2andGHG1970-2016 (accessed on 26 March 2019).
- Leunga, D.Y.C.; Caramannab, G.; Mercedes, M.V.M. An overview of current status of carbon dioxidecapture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- White, V.; Torrente-Murciano, L.; Sturgeon, D.; Chadwick, D. Purification of Oxyfuel-derived CO2. In Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies, Washington DC, USA, 16–20 November 2008; Volume 2, pp. 399–406. [Google Scholar]
- Mahmoud, R.; Jangi, M.; Fiorina, B.; Pfitzner, M.; Sadiki, A. Numerical Investigation of an Oxyfuel non-premixed combustion using a Hybrid Eulerian Stochastic Field/Flamelet Progress Variable approach: Effects of H2/CO2 enrichment and Reynolds number. Energies 2018, 11, 3158. [Google Scholar] [CrossRef]
- Sadiki, A.; Janicka, J. Large Eddy Simulation of Turbulent Combustion Systems. Proc. Combust. Inst. 2005, 30, 537–547. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations. Basic Exp. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Pierce, C.D.; Moin, P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 2004, 504, 73–97. [Google Scholar] [CrossRef]
- Fiorina, B.; Veynante, D.; Candel, S. Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow Turbul. Combust. 2015, 94, 3–42. [Google Scholar] [CrossRef]
- Maas, U.; Pope, S.B. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 1992, 88, 239–264. [Google Scholar] [CrossRef]
- Bykov, V.; Maas, U. The extension of the ILDM concept to reaction–Diffusion manifolds. Combust. Theory Model. 2007, 11, 839–862. [Google Scholar] [CrossRef]
- Van Oijen, J.A.; Donini, A.; Bastiaans, R.J.M.; Ten-Thije-Boonkkamp, J.H.M.; De-Goey, L.P.H. State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Science 2016, 57, 30–74. [Google Scholar] [CrossRef]
- Vicquel, R. Tabulated Chemistry for Turbulent Combustion Modelingand Simulation. Ph.D. Thesis, Laboratoire d’Énergétique Moléculaire et Macroscopique, Combustion (EM2C) du CNRS et de l’ECP, Ecole centrale Paris, Paris, France, June 2010. [Google Scholar]
- Ribert, G.; Domingo, P.; Vervisch, L. Hybrid transported-tabulated strategy to downsize detailed chemistry for Large Eddy Simulation. In Proceedings of the Center for Turbulence Research Proceedings of the Summer Program 2012, Stanford, CA, USA, 24 June–20 July 2012. [Google Scholar]
- Di Renzo, M.; Coclite, A.; De Tullio, M.D.; De Palma, P.; Pascazio, G. LES of the Sandia Flame D Using an FPV Combustion Model. In Proceedings of the 70th Conference of the ATI Engineering Association, Energy Procedia, Spienza University of Rome, Rome, Italy, 9–11 September 2015; pp. 402–449. [Google Scholar]
- Ihme, M.; Pitsch, H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust. Flame 2008, 15, 90–107. [Google Scholar] [CrossRef]
- Gierth, S.; Hunger, F.; Popp, S.; Wu, H.; Ihme, M.; Hasse, C. Assessment of differential diffusion effects in flamelet modeling of oxy-fuel flames. Combust. Flame 2018, 197, 134–144. [Google Scholar] [CrossRef]
- Ihme, M.; Pitsch, H. Prediction of extinction and reignition in non-premixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure. Combust. Flame 2008, 155, 70–89. [Google Scholar] [CrossRef]
- Mayer, B.; Prieler, R.; Demuth, M.; Moderer, L.; Hochneauer, C. CFD modelling and performance increase of a pusher type reheating furnace using oxy-fuel burners Bernhard. Energy Proc. 2017, 120, 462–468. [Google Scholar] [CrossRef]
- Prieler, R.; Mayr, B.; Demuth, M.; Spoljaric, D.; Hochenauer, C. Application of the steady flamelet model on a lab-scale and an industrial furnace for different oxygen concentrations. Energy 2015, 91, 451–464. [Google Scholar] [CrossRef]
- Mayer, B.; Prieler, R.; Demuth, M.; Hochneauer, C. The usability and limits of the steady flamelet approach in oxy-fuel combustions. Energy 2015, 90, 1478–1489. [Google Scholar] [CrossRef]
- Hidouri, A.; Chrigui, M.; Boushaki, T.; Sadiki, A.; Janicka, J. Large eddy simulation of two isothermal and reacting turbulent separated oxy-fuel jets. Fuel 2017, 192, 108–120. [Google Scholar] [CrossRef]
- Kuhne, J.; Ketelheun, A.; Janicka, J. Analysis of sub-grid PDF of progress variable approach using a hybrid LES/TPDF method. Proc. Combust. Inst. 2011, 33, 1411–1418. [Google Scholar] [CrossRef]
- Kim, G.; Kim, Y.; Joo, Y.J. Conditional Moment Closure for Modeling Combustion Processes and Structure of Oxy-Natural Gas Flame. Energy Fuels 2009, 23, 4370–4377. [Google Scholar] [CrossRef]
- Garmory, A.; Mastorakos, E. Numerical simulation of oxy-fuel jet flames using unstructured LES-CMC. Proc. Combust. Inst. 2014, 35, 1207–1214. [Google Scholar] [CrossRef]
- El-Asrag, H.; Graham, G. A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames. In Proceedings of the Laminar Turbulent Flames 8th U.S. National Combustion Meeting, Park City, UT, USA, 19–22 May 2013. [Google Scholar]
- Pope, S.B. PDF methods for turbulent reactive flows. Prog. Energy Combust. 1985, 11, 119–192. [Google Scholar] [CrossRef]
- Mejia, J.M.; Sadiki, A.; Molina, A.; Chejne, F.; Pantangi, P. Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet. J. Fluids Eng. 2015, 137, 31301–31311. [Google Scholar] [CrossRef]
- Mejia, J.M.; Chejne, F.; Molina, A.; Sadiki, A. Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach. J. Fluids Eng. 2016, 138, 021205. [Google Scholar] [CrossRef]
- Raman, V.; Pitsch, H.; Fox, R. Eulerian transported probability density function sub-filter model for LES simulations of turbulent combustion. Combust. Theory Model. 2007, 10, 439–458. [Google Scholar] [CrossRef]
- Jones, W.P.; Prasad, V.N. Large Eddy Simulation of the Sandia Flame Series (D, E and F) using the Eulerian stochastic field method. Combust. Flame 2010, 157, 1621–1636. [Google Scholar] [CrossRef]
- Jones, W.P.; Marquis, A.; Prasad, V. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combst. Flame 2012, 159, 3079–3095. [Google Scholar] [CrossRef]
- Avdic, A.; Kuenne, G.; DiMare, F.; Janicka, J. LES combustion modeling using the Eulerian stochastic field method coupled with tabulated chemistry. Combust. Flame 2017, 175, 201–219. [Google Scholar] [CrossRef]
- Jangi, M.; Li, C. Modelling of Methanol Combustion in a Direct Injection Compression Ignition Engine using an Accelerated Stochastic Fields Method. Energy Procedia 2017, 105, 1326–1331. [Google Scholar] [CrossRef]
- Valińo, L. A field Monte Carlo formulation for calculating the probability density functions of a single scalar in turbulent flow. Flow Turbul. Combust. 1998, 60, 157–172. [Google Scholar] [CrossRef]
- Sabelnikov, V.; Soulard, O. Rapidally decorrelating velocity-field model as tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. 2005, 72. [Google Scholar] [CrossRef]
- Mustata, R.; Valińo, L.; Jimenez, C.; Jones, W.; Bondi, S. A probability density function Eulerian Monte Carlo method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia-D). Combust. Flame 2006, 145, 88–104. [Google Scholar] [CrossRef]
- Jangi, M.; Zhao, M.; Haworth, D.C.; Bai, X.S. Stabilization and liftoff length of a non-premixed methane/air jet flame discharging into a high-temperature environment: An accelerated transported PDF method. Combust. Flame 2015, 162, 408–419. [Google Scholar] [CrossRef]
- Gong, C.; Jangi, M.; Bai, X.S.; Liang, J.H.; Sun, M.B. Large eddy simulation of hydrogen combustion in supersonic flows using an Eulerian stochastic fields method. Int. J. Hydrogen Energy 2017, 42, 1264–1275. [Google Scholar] [CrossRef]
- Prasad, V.N.; Luo, K.H.; Jones, W.P. LES-PDF Simulation of a highly sheared turbulent piloted premixed flame. In Proceedings of the 7th Mediterranean Combustion Symposium, Sardinia, Italy, 11–15 September 2011; pp. 1–12. [Google Scholar]
- Girimaji, S.S. Assumed β-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing. Combust. Sci. Technol. 2007, 78, 177–196. [Google Scholar] [CrossRef]
- Garmory, A.; Richardson, E.; Mastorakos, E. Micro-mixing effects in a reacting plume by the stochastic field method. Aton. Environ. 2006, 40, 1078–1091. [Google Scholar] [CrossRef]
- Sevault, A.; Dunn, M.; Barlow, R.S.; Ditaranto, M. On the Structure of the Near Field of Oxy-Fuel Jet Flames Using Raman/Rayleigh Laser Diagnostics. Conbust. Flame 2012, 159, 3342–3352. [Google Scholar] [CrossRef]
- Ditaranto, M.; Sautet, J.C.; Samaniego, J.M. Structural aspects of coaxial oxy-fuel flames. Exp. Fluids 2001, 30, 253–261. [Google Scholar] [CrossRef]
- Favre, A. Equations des gaz turbulents compressibles, 2, Méthodes des vitesses moyennes; méthode des vitesses macroscopiques pondérées par la masse volumique. J. Mech. 1965, 4, 392–421. [Google Scholar]
- Ries, F.; Nishad, K.; Dressler, L.; Janicka, J.; Sadiki, A. Evaluating large eddy simulation results based on error analysis. Theor. Comput. Fluid Dyn. 2018, 32, 733–752. [Google Scholar] [CrossRef]
- Driest, V. On Turbulent Flow near a Wall. J. Aeronaut. Sci. 1956, 23, 1007–1011. [Google Scholar] [CrossRef]
- Deardorff, J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1970, 41, 453–480. [Google Scholar] [CrossRef]
- Kempf, A.; Sadiki, A.; Janicka, J. Prediction of finite chemistry effects using large eddy simulation. Proc. Combust. Inst. 2003, 29, 1979–1985. [Google Scholar] [CrossRef]
- FlameMaster v3.3.10. Available online: https://web.stanford.edu/group/pitsch/FlameMaster.htm (accessed on 26 March 2019).
- Gri-Mesh3.0. Available online: http://www.me.berkeley.edu/gri_mech/ (accessed on 26 March 2019).
- Ihme, M.; Shunn, L.; Zhang, J. Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 2012, 231, 7715–7721. [Google Scholar] [CrossRef]
- Pope, S.B. A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow. J. Combust. Sci. Technol. 2008, 25, 159–174. [Google Scholar] [CrossRef]
- Jones, W.P.; Martinez, S.N. Numerical Study of n-heptane auto-ignition using LES-PDF methods. Flow Turbul. Combust. 2009, 83, 407–423. [Google Scholar] [CrossRef]
- Gao, F.; O’Brien, E.E. A large-eddy simulation scheme for turbulent reacting flows. AIP Phys. Fluids 1993, 5, 1282–1284. [Google Scholar] [CrossRef]
- Dopazo, C. Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution. Phys. Fluids 1975, 18, 397–404. [Google Scholar] [CrossRef]
- Jaishree, J.; Haworth, D.C. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions. Combust. Theory Model. 2012, 16, 435–463. [Google Scholar] [CrossRef]
- Hinz, A. Numerische Simulation Turbulenter Methan-Diffusionsflammen Mittels Monte Carlo PDF Methoden. Ph.D. Thesis, Energy and Power Plant Technology, Mechanical Department, Technical University of Darmstadt, Darmstadt, Germany, April 2000. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Greenshields, C.J. OpenFOAM Programmer’s Guide; OpenFOAM Foundation Ltd.: London, UK, 2009. [Google Scholar]
- Schneider, C.; Dreizler, A.; Janicka, J.; Hassel, E. Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 2003, 135, 185–190. [Google Scholar] [CrossRef]
- TNF Workshop. Available online: http://www.ca.sandia.gov/TNF (accessed on 26 March 2019).
- Ditaranto, M.; Hals, J. Combustion instabilities in sudden expansion oxy–fuel flames. Combust. Flame 2006, 146, 493–512. [Google Scholar] [CrossRef]
- Coppens, F.H.V.; Konnov, A.A. The effects of enrichment by H2 on propagation speeds in adiabatic flat and cellular premixed flames of CH4 + O2 + CO2. Fuel 2008, 81, 2866–2870. [Google Scholar] [CrossRef]
- Doost, A.S.; Ries, F.; Becker, L.G.; Burkle, S.; Wagner, S.; Ebert, V.; Dreizler, A.; di Mare, F.; Sadiki, A.; Janicka, J. Residence time calculations for complex swirling flow in a combustion chamber using large-eddy simulations. Chem. Eng. Sci. 2016, 156, 97–114. [Google Scholar] [CrossRef]
- Hanjalic, K.; Popovac, M.; Hadziabdic, M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 2004, 25, 1047–1051. [Google Scholar] [CrossRef]
- Hadziabdic, M.; Hanjalic, K. Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 2008, 596, 221–260. [Google Scholar] [CrossRef]
- Klein, M.; Sadiki, A.; Janicka, J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 2003, 186, 652–665. [Google Scholar] [CrossRef]
- Coclite, A.; Pascazio, G.; De Palma, P.; Cutrone, L.; Ihme, M. An SMLD Joint PDF Model for Turbulent Non-Premixed Combustion Using the Flamelet Progress-Variable Approach. Flow Turbul. Combust. 2015, 95, 97–119. [Google Scholar] [CrossRef]
- Subramaniam, S.; Pope, S. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 1998, 115, 487–517. [Google Scholar] [CrossRef]
- Masri, A.R.; Dibble, R.W.; Barlow, R.S. Chemical kinetic effects in non-premixed flames of H2/CO2 fuel. Combust. Flame 1992, 91, 285–309. [Google Scholar] [CrossRef]
Flame Jet | f | PV | T (k) | Ub (m/s) | ν (m2/s) |
---|---|---|---|---|---|
Central jet | 0.156 | 0 | 294 | 49.6 | 1.513 × 10−5 |
Pilot jet | 0.043 | 7 | 1880 | 11.4 | 1.513 × 10−5 |
Coflow | 0 | 0 | 291 | 0.9 | 1.513 × 10−5 |
Flame Jet | f | PV | T (k) | Ub (m/s) | ν (m2/s) |
---|---|---|---|---|---|
Fuel jet | 1 | 0 | 300 | 117.8 | 3.271 × 10−5 |
Oxidizer jet | 0 | 0 | 300 | 0.933 | 3.271 × 10−5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, R.; Jangi, M.; Ries, F.; Fiorina, B.; Janicka, J.; Sadiki, A. Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach. Appl. Sci. 2019, 9, 1320. https://doi.org/10.3390/app9071320
Mahmoud R, Jangi M, Ries F, Fiorina B, Janicka J, Sadiki A. Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach. Applied Sciences. 2019; 9(7):1320. https://doi.org/10.3390/app9071320
Chicago/Turabian StyleMahmoud, Rihab, Mehdi Jangi, Florian Ries, Benoit Fiorina, Johannes Janicka, and Amsini Sadiki. 2019. "Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach" Applied Sciences 9, no. 7: 1320. https://doi.org/10.3390/app9071320
APA StyleMahmoud, R., Jangi, M., Ries, F., Fiorina, B., Janicka, J., & Sadiki, A. (2019). Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach. Applied Sciences, 9(7), 1320. https://doi.org/10.3390/app9071320