Preparation and Characterization of Ultra-Lightweight Foamed Concrete Incorporating Lightweight Aggregates
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Foamed Concrete Preparation
3. Results and Discussion
3.1. Foamed Concrete Density
3.2. Compressive Strength
3.3. Thermal Conductivity
3.4. Drying Shrinkage
3.5. Foamed Concrete Microstructure
4. Conclusions
- The incorporation of fly ash slightly increases the dry density of foamed concrete, while fine lightweight aggregates have a varied influence because of their different characteristics.
- Dry density, as well as mixture composition, influences the compressive strength of foamed concrete. As the dry density increases, so too does the compressive strength.
- Fine perlite is more effective in improving the compressive strength of foamed concrete than fine Liaver.
- The thermal conductivity of foamed concrete depends mainly on concrete density, with the mix composition having a minimal influence.
- Fly ash reduces the drying shrinkage of foamed concrete.
- Fine Liaver significantly reduces the shrinkage of foamed concrete to about 30%, with fine perlite increasing the drying shrinkage only marginally.
- Because of the slow hydration rate of fly ash, it has a negative influence on the compressive strength of foamed concrete.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lim, S.K.; Tan, C.S.; Lim, O.Y.; Lee, Y.L. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Constr. Build. Mater. 2013, 46, 39–47. [Google Scholar] [CrossRef]
- Lim, S.K.; Tan, C.S.; Li, B.; Ling, T.; Hossain, M.U.; Poon, C.S. Utilizing high volumes of quarry wastes in the production of lightweight foamed concrete. Constr. Build. Mater. 2017, 151, 441–448. [Google Scholar] [CrossRef]
- Yang, K.H.; Lee, K.; Song, J.; Gong, M. Properties and sustainability of alkali-activated slag foamed concrete. J. Clean. Prod. 2014, 68, 226–233. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. The effect of porosity on the strength of foamed concrete. Cem. Concr. Res. 2002, 32, 233–239. [Google Scholar] [CrossRef]
- Wei, S.; Yiqiang, C.; Yunsheng, Z.; Jones, M.R. Characterization and simulation of microstructure and thermal properties of foamed concrete. Constr. Build. Mater. 2013, 47, 1278–1291. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Farzadnia, N.; Abang Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Zhao, X.; Lim, S.K.; Tan, C.S.; Li, B.; Ling, T.; Huang, R.; Wang, Q. Properties of foamed mortar prepared with granulated blast furnace slag. Materials 2015, 8, 462–473. [Google Scholar] [CrossRef]
- Othuman, M.A.; Wang, Y.C. Elevated-temperature thermal properties of lightweight foamed concrete. Constr. Build. Mater. 2011, 25, 705–716. [Google Scholar] [CrossRef]
- Yang, K.-H.; Lo, C.-W.; Huang, J.-S. Production and properties of foamed reservoir sludge inorganic polymer. Constr. Build. Mater. 2014, 50, 421–431. [Google Scholar] [CrossRef]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On void structure and strength of foamed concrete made without/with additives. Constr. Build. Mater. 2015, 85, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.-Y.; Lehmann, C.; Abd Elrahman, M.; Stephan, D. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches. Appl. Sci. 2017, 7, 550. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Lehmann, C.; Abd Elrahman, M.; Stephan, D. Microstructural characterization of foamed concrete with different densities using microscopic techniques. Cem. Wapno Beton 2018, 3, 216–225. [Google Scholar]
- Jones, M.; McCarthy, A. Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cem. Concr. Res. 2006, 36, 1032–1041. [Google Scholar] [CrossRef]
- Sayadi, A.; Tapia, J.; Neirzert, T.; Clifton, G. Effect of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Hilal, A.; Thom, N.; Dawson, A. On entrained pore size distribution of foamed concrete. Constr. Build. Mater. 2015, 75, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Nambiar, E.; Ramamurthy, K. Shrinkage behavior of foamed concrete. J. Mater. Civ. Eng. 2009, 21, 631–636. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Hatungimana, D.; Ramyar, K. Effect of fly ash and silica fume on hardened properties of foam concrete. Constr. Build. Mater. 2019, 194, 1–11. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Compos. Struct. 2019, 209, 45–59. [Google Scholar] [CrossRef]
- Jones, M.; McCarthy, A. Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel 2005, 84, 1398–1409. [Google Scholar] [CrossRef]
- Falliano, D.; Domenico, D.; Ricciardi, G.; Gugliandolo, E. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Constr. Build. Mater. 2018, 165, 735–749. [Google Scholar] [CrossRef]
- Panesar, D.K. Cellular concrete properties and the effect of synthetic and protein foaming agents. Constr. Build. Mater. 2013, 44, 575–584. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Key factors affecting the compressive strength of foamed concrete. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 6. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, Y.; Guo, J.; Zhang, Y.; Sun, G. Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Constr. Build. Mater. 2018, 186, 833–839. [Google Scholar] [CrossRef]
- Wan, K.T.; Zhu, H.; Yuen, T.; Chen, B.; Hu, C.; Leung, C.; Kuang, J. Development of low drying shrinkage foamed concrete and hygro-mechanical finite element model for fabricated building fascade applications. Constr. Build. Mater. 2018, 165, 939–957. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S.; Sirivivatnanon, V. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr. Build. Mater. 2008, 22, 932–938. [Google Scholar] [CrossRef]
- Weigler, H.; Karl, S. Structural lightweight aggregate concrete with reduced density lightweight aggregate foamed concrete. Int. J. Cem. Compos. Lightweight Concr. 1980, 2, 101–104. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Constr. Build. Mater. 2019, 198, 479–493. [Google Scholar] [CrossRef]
- Bing, C.; Zhen, W.; Ning, L. Experimental research on properties of high-strength foamed concrete. J. Mater. Civ. Eng. 2011, 24, 113–118. [Google Scholar] [CrossRef]
- Mermerdas, K.; Arbili, M. Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash. Constr. Build. Mater. 2015, 94, 371–379. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Z.; Shi, C.; Wu, Z.; Tong, B.; Ou, Z.; Schutter, G. Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Constr. Build. Mater. 2017, 149, 406–415. [Google Scholar] [CrossRef]
- Shariq, M.; Prasad, J.; Abbas, H. Creep and drying shrinkage of concrete containing GGBFS. Cem. Concr. Compos. 2016, 68, 35–45. [Google Scholar] [CrossRef]
- Chen, B.; Liu, N. A novel lightweight concrete-fabrication and its thermal and mechanical properties. Constr. Build. Mater. 2013, 44, 691–698. [Google Scholar] [CrossRef]
- Zhihua, P.; Hengzhi, L.; Weiqing, L. Preparation and characterization of super low density foamed concrete from Portland cement and admixtures. Constr. Build. Mater. 2014, 72, 256–261. [Google Scholar]
- Huang, Z.; Zhang, T.; Wen, Z. Proportioning and characterization of Portland cement–based ultra-lightweight foam concretes. Constr. Build. Mater. 2015, 79, 390–396. [Google Scholar] [CrossRef]
- Roderick, J.; Kezban, O.; Li, Z. High-volume, ultra-low-density fly ash foamed concrete. Mag. Concr. Res. 2017, 69, 1146–1156. [Google Scholar] [Green Version]
- Tajra, F.; Abd Elrahman, M.; Chung, S.; Stephan, D. Performance assessment of core-shell structured lightweight aggregate produced by cold bonding pelletization process. Constr. Build. Mater. 2018, 179, 220–231. [Google Scholar] [CrossRef]
- Sang, G.; Zhu, Y.; Yang, G.; Zhang, H. Preparation and characterization of high porosity cement-based foam material. Constr. Build. Mater. 2015, 91, 133–137. [Google Scholar] [CrossRef]
- Falliano, D.; Gugliandolo, E.; de Domenico, D.; Ricciardi, G. Experimental Investigation on the Mechanical Strength and Thermal Conductivity of Extrudable Foamed Concrete and Preliminary Views on Its Potential Application in 3D Printed—RILEM International Conference on Concrete and Digital Fabrication; Springer: Berlin, Germany, 2018; Volumes 277–286. [Google Scholar]
Material | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | K2O | SO3 | Density (g/cm3) | Surface Area (cm2/g) |
---|---|---|---|---|---|---|---|---|---|---|
CEM I 52.5R | 66.2 | 20.6 | 3.3 | 4.9 | 1.3 | 0.1 | 0.43 | 2.8 | 3.15 | 3860 |
Fly ash | 4.8 | 47.9 | 21.0 | 4.6 | 1.4 | 0.7 | 1.1 | 0.8 | 2.27 | 2930 |
Mix | Designation | Cement (C) (kg/m3) | Fly Ash (FA) (kg/m3) | Fine Perlite (FP) (L) | Fine Liaver (FL) (L) | Paste:Foam | Fresh Density (kg/m3) |
---|---|---|---|---|---|---|---|
1 | C | 400 | - | - | - | 1:2 | 596 |
2 | C/FA | 300 | 100 | - | - | 1:2 | 610 |
3 | C/FA/FP50 | 300 | 100 | 50 | - | 1:2 | 595 |
4 | C/FA/FP100 | 300 | 100 | 100 | - | 1:2 | 584 |
5 | C/FA/FL50 | 300 | 100 | - | 50 | 1:2 | 565 |
6 | C/FA/FL100 | 300 | 100 | - | 100 | 1:2 | 580 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Elrahman, M.; El Madawy, M.E.; Chung, S.-Y.; Sikora, P.; Stephan, D. Preparation and Characterization of Ultra-Lightweight Foamed Concrete Incorporating Lightweight Aggregates. Appl. Sci. 2019, 9, 1447. https://doi.org/10.3390/app9071447
Abd Elrahman M, El Madawy ME, Chung S-Y, Sikora P, Stephan D. Preparation and Characterization of Ultra-Lightweight Foamed Concrete Incorporating Lightweight Aggregates. Applied Sciences. 2019; 9(7):1447. https://doi.org/10.3390/app9071447
Chicago/Turabian StyleAbd Elrahman, Mohamed, Mohamed E. El Madawy, Sang-Yeop Chung, Pawel Sikora, and Dietmar Stephan. 2019. "Preparation and Characterization of Ultra-Lightweight Foamed Concrete Incorporating Lightweight Aggregates" Applied Sciences 9, no. 7: 1447. https://doi.org/10.3390/app9071447
APA StyleAbd Elrahman, M., El Madawy, M. E., Chung, S. -Y., Sikora, P., & Stephan, D. (2019). Preparation and Characterization of Ultra-Lightweight Foamed Concrete Incorporating Lightweight Aggregates. Applied Sciences, 9(7), 1447. https://doi.org/10.3390/app9071447