Editorial: Special Issue “Swarm Robotics”
- Autonomy—individuals that create the swarm-robotic system are autonomous robots. They are independent and can interact with each other and the environment.
- Large number—they are in large number so they can cooperate with each other.
- Scalability and robustness—a new unit can be easily added to the system so the system is easily scalable. More number of units improve the performance of the system. The system is quite robust to the losing of some units, as there still exists some units left to perform. However, in this instance, the system will not perform up to its maximum capabilities.
- Decentralized coordination—the robots communicate with each other and with environment to take the final decision.
- Flexibility—it requires the swarm robotic system to have the ability to generate modularized solutions to different tasks.
Acknowledgments
Conflicts of Interest
References
- Beni, G. From swarm intelligence to swarm robotics. In Swarm Robotics Workshop: State-of-the-Art Survey; Şahin, E., Spears, W., Eds.; Springer: Berlin, Germany, 2005; pp. 1–9. [Google Scholar]
- Camazine, S.; Deneubourg, J.-L.; Franks, N.; Sneyd, J.; Theraulaz, G.; Bonabeau, E. Self-Organization in Biological Systems; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Ceraso, D.; Spezzano, G. Controlling swarms of medical nanorobots using CPPSO on a GPU. In Proceedings of the 2016 International Conference on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, 18–22 July 2016; pp. 58–65. [Google Scholar]
- Albani, D.; IJsselmuiden, J.; Haken, R.; Trianni, V. Monitoring and mapping with robot swarms for agricultural applications. In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6. [Google Scholar]
- Zedadra, O.; Guerrieri, A.; Jouandeau, N.; Spezzano, G.; Seridi, H.; Fortino, G. Swarm intelligence-based algorithms within IoT-based systems: A review. J. Parallel Distrib. Comput. 2018, 122, 173–187. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Bauer, P. V-Shaped Formation Control for Robotic Swarms Constrained by Field of View. Appl. Sci. 2018, 8, 2120. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Shi, X.; Jiang, C. Decentralization of Virtual Linkage in Formation Control of Multi-Agents via Consensus Strategies. Appl. Sci. 2018, 8, 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Liu, C.; Zhao, F.; Zhao, J. Reconfigurable Formation Control of Multi-Agents Using Virtual Linkage Approach. Appl. Sci. 2018, 8, 1109. [Google Scholar] [CrossRef]
- Tan, W.; Wei, H.; Yang, B. SambotII: A New Self-Assembly Modular Robot Platform Based on Sambot. Appl. Sci. 2018, 8, 1719. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Qian, D.; Xi, Y. Leader–Follower Formation Maneuvers for Multi-Robot Systems via Derivative and Integral Terminal Sliding Mode. Appl. Sci. 2018, 8, 1045. [Google Scholar]
- Nishikawa, N.; Suzuki, R.; Arita, T. Exploration of Swarm Dynamics Emerging from Asymmetry. Appl. Sci. 2018, 8, 729. [Google Scholar] [CrossRef]
- Garcia-Aunon, P.; Barrientos Cruz, A. Comparison of Heuristic Algorithms in Discrete Search and Surveillance Tasks Using Aerial Swarms. Appl. Sci. 2018, 8, 711. [Google Scholar] [CrossRef]
- Wang, W.; Bai, P.; Li, H.; Liang, X. Optimal Configuration and Path Planning for UAV Swarms Using a Novel Localization Approach. Appl. Sci. 2018, 8, 1001. [Google Scholar] [CrossRef]
- Pan, L.; Lu, Q.; Yin, K.; Zhang, B. Signal Source Localization of Multiple Robots Using an Event-Triggered Communication Scheme. Appl. Sci. 2018, 8, 977. [Google Scholar] [CrossRef]
- Lee, K.-B.; Kim, Y.-J.; Hong, Y.-D. Real-Time Swarm Search Method for Real-World Quadcopter Drones. Appl. Sci. 2018, 8, 1169. [Google Scholar] [CrossRef]
- Ge, H.; Chen, G.; Xu, G. Multi-AUV Cooperative Target Hunting Based on Improved Potential Field in a Surface-Water Environment. Appl. Sci. 2018, 8, 973. [Google Scholar] [CrossRef]
- Jin, X.; Kim, J. 3D Model Identification Using Weighted Implicit Shape Representation and Panoramic View. Appl. Sci. 2017, 7, 764. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, X.-H.; Wang, Y. Artificial Flora (AF) Optimization Algorithm. Appl. Sci. 2018, 8, 329. [Google Scholar] [CrossRef]
- Połap, D.; Kęsik, K.; Woźniak, M.; Damaševičius, R. Parallel Technique for the Metaheuristic Algorithms Using Devoted Local Search and Manipulating the Solutions Space. Appl. Sci. 2018, 8, 293. [Google Scholar] [CrossRef]
- Chang, T.; Chang, S.; Fan, Y. Event-Driven Sensor Deployment in an Underwater Environment Using a Distributed Hybrid Fish Swarm Optimization Algorithm. Appl. Sci. 2018, 8, 1638. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spezzano, G. Editorial: Special Issue “Swarm Robotics”. Appl. Sci. 2019, 9, 1474. https://doi.org/10.3390/app9071474
Spezzano G. Editorial: Special Issue “Swarm Robotics”. Applied Sciences. 2019; 9(7):1474. https://doi.org/10.3390/app9071474
Chicago/Turabian StyleSpezzano, Giandomenico. 2019. "Editorial: Special Issue “Swarm Robotics”" Applied Sciences 9, no. 7: 1474. https://doi.org/10.3390/app9071474
APA StyleSpezzano, G. (2019). Editorial: Special Issue “Swarm Robotics”. Applied Sciences, 9(7), 1474. https://doi.org/10.3390/app9071474