Effect of Different Acoustic Parameters on NOx Emissions of Partially Premixed Flame
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Instrumentation and Acquisition
2.3. Experimental Conditions
2.4. Acoustic Characteristics of Experimental System
3. Results and Discussion
3.1. The Relationship between EINOx with Acoustic Amplitude
3.2. The Relationship between EINOx and Acoustic Frequency
3.3. Flame Length and Flame Surface Wrinkling
3.4. Mechanism for Interaction between EINOx and Vortex
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Medwell, P.R.; Nathan, G.J.; Chan, Q.N.; Alwahabi, Z.T.; Dally, B.B. The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combust. Flame 2011, 158, 1814–1824. [Google Scholar] [CrossRef]
- Wang, C.; Chan, Q.N.; Kook, S.; Hawkes, E.R.; Lee, J.; Medwell, P.R. External irradiation effect on the growth and evolution of in-flame soot species. Carbon 2016, 102, 161–171. [Google Scholar] [CrossRef]
- Chen, C.; Chan, Q.N.; Medwell, P.R.; Yeoh, G.H. Co-combustion characteristics and kinetics of microalgae Chlorella vulgaris and coal through TGA. Combust. Sci. Technol. 2018, 1–20. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Cheng, Z.; Chan, Q.N.; Kook, S.; Yeoh, G.H. Emissions characteristics of NOx and SO2 in the combustion of microalgae biomass using a tube furnace. J. Energy Inst. 2016, 90, 806–812. [Google Scholar] [CrossRef]
- Glassman, I.; Yetter, R.A.; Glumac, N.G. Combustion, 4th ed.; Academic press: Manhattan, NY, USA, 2014; pp. 154–196. [Google Scholar]
- Wang, C.; Wang, P.; Zhao, L.; Du, Y.; Che, D. Experimental Study on NOx Reduction in Oxy-fuel Combustion Using Synthetic Coals with Pyridinic or Pyrrolic Nitrogen. Appl. Sci. 2018, 8, 2499. [Google Scholar] [CrossRef]
- Cho, I.; Lee, Y.; Lee, J. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance. Appl. Sci. 2018, 8, 597. [Google Scholar] [CrossRef]
- Raun, R.L.; Beckstead, M.W.; Finlinson, J.C.; Brooks, K.P. A review of Rijke tubes, Rijke burners and related devices. Prog. Energy Combust. Sci. 1993, 19, 313–364. [Google Scholar] [CrossRef]
- Rayleigh, J.W.S. The explanation of certain acoustic phenomena. Nature 1878, 18, 319–321. [Google Scholar] [CrossRef]
- Putnam, A.A.; Belles, F.E.; Kentfield, J.A.C. Pulse combustion. Prog. Energy Combust. Sci. 1986, 12, 43–79. [Google Scholar] [CrossRef]
- Zinn, B.T. Pulsating Combustion, 4th ed.; Academic press: New York, NY, USA, 1986; pp. 113–181. [Google Scholar]
- Drogue, S.; Breininger, S.; Ruiz, R. Minimization of NOx emissions with improved oxy-fuel combustion: Controlled pulsated combustion. Ceram. Eng. Sci. Proc. 1994, 15, 147–158. [Google Scholar]
- McQuay, M.Q.; Dubey, R.K.; Nazeer, W.A. An experimental study on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame. Fuel 1998, 77, 425–435. [Google Scholar] [CrossRef]
- Keller, J.O.; Hongo, I. Pulse Combustion—The Mechanisms of NOx Production. Combust. Flame 1990, 80, 219–237. [Google Scholar] [CrossRef]
- Michel, Y.; Belles, F.E. Effects of Flue-Gas Recirculation on NOx Production and Performance of Pulse Combustion Hot-Water Boilers. Combust. Sci. Technol. 1993, 94, 447–468. [Google Scholar] [CrossRef]
- Au-Yeung, H.W.; Garner, C.P.; Hanby, V.I. An experimental study of the effects of combustion frequency and pressure amplitude on the NO emissions from pulse combustors. J. Inst. Energy 1998, 71, 204–208. [Google Scholar]
- Poppe, C.; Sivasegaram, S.; Whitelaw, J.H. Control of NOx emissions in confined flames by oscillations. Combust. Flame 1998, 113, 13–26. [Google Scholar] [CrossRef]
- Hardalupas, Y.; Selbach, A. Imposed oscillations and non-premixed flames. Prog. Energy Combust. Sci. 2002, 28, 75–104. [Google Scholar] [CrossRef]
- Chao, Y.C.; Huang, Y.W.; Wu, D.C. Feasibility of controlling NOx emissions from a jet flame by acoustic excitation. Combust. Sci. Technol. 2000, 158, 461–484. [Google Scholar] [CrossRef]
- Delabroy, O.; Lacas, F.; Poinsot, T.; Candel, S.; Hoffmann, T.; Hermann, J.; Vortmeyer, D. A study of NOx reduction by acoustic excitation in a liquid fueled burner. Combust. Sci. Technol. 1996, 119, 397–408. [Google Scholar] [CrossRef]
- Hassan, M.I.; Wu, T.W.; Saito, K. A combination effect of reburn, post-flame air and acoustic excitation on NOx reduction. Fuel 2013, 108, 231–237. [Google Scholar] [CrossRef]
- Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations. Combust. Flame 2010, 157, 1731–1744. [Google Scholar] [CrossRef]
- Kim, M.; Choi, Y.; Oh, J.; Yoon, Y. Flame–vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing. Combust. Flame 2009, 156, 2252–2263. [Google Scholar] [CrossRef]
- Chung, D.H.; Lin, T.H.; Hou, S.S. Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology 2010, 21, 435604. [Google Scholar] [CrossRef]
- Kim, K.T.; Hochgreb, S. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations. Combust. Flame 2011, 158, 2482–2499. [Google Scholar] [CrossRef]
- Shen, Z.; Deng, K.; Lu, B.; Zhong, Y. Effects of Equivalence Ratio and Velocity on NOx Emissions in Methane Partially Premixed Flames with Acoustic Excitation. Proc. CSEE 2013, 33, 54–60. [Google Scholar]
- Deng, K.; Zhao, Y.; Fang, D.; Zhong, Y. NOx Emission from Methane Jet Diffusion Flames at Different Coaxial Air Flow Rates. J. Chin. Soc. Power Eng. 2010, 11, 874–882. [Google Scholar]
- Deng, K.; Zhong, Y.; Li, H. Experimental study on NOx emission from methane self-excited pulsating combustion. J. Chin. Soc. Power Eng. 2010, 30, 528–535. [Google Scholar]
- Zhong, Y.; Deng, K.; Li, H.; Li, W.; Wu, M. Experimental Study of NOx Emission in Partially Premixed Flame under Acoustic Forcing. J. Eng. Thermophys. 2011, 32, 1609–1612. [Google Scholar]
- Illingworth, S.J.; Waugh, I.C.; Juniper, M.P. Finding thermoacoustic limit cycles for a ducted Burke-Schumann flame. Proc. Combust. Inst. 2013, 34, 911–920. [Google Scholar] [CrossRef]
- Meunier, P.; Costa, M.; Carvalho, M.G. The formation and destruction of NO in turbulent propane diffusion flames. Fuel 1998, 77, 1705–1714. [Google Scholar] [CrossRef]
- Morcos, V.H.; Abdel-Rahim, Y.M. Parametric study of flame length characteristics in straight and swirl light-fuel oil burners. Fuel 1999, 78, 979–985. [Google Scholar] [CrossRef]
- Cheng, T.S.; Chao, Y.C.; Wu, D.C. Effects of partial premixing on pollutant emissions in swirling methane jet flames. Combust. Flame 2001, 125, 865–878. [Google Scholar] [CrossRef]
- Costa, M.; Parente, C.; Santos, A. Nitrogen oxides emissions from buoyancy and momentum controlled turbulent methane jet diffusion flames. Exp. Therm. Fluid Sci. 2004, 28, 729–734. [Google Scholar] [CrossRef]
- Bourehla, A.; Baillot, F. Appearance and Stability of a Laminar Conical Premixed Flame Subjected to an Acoustic Perturbation. Combust. Flame 1998, 114, 303–318. [Google Scholar] [CrossRef]
- Dah-You, M.A.A. Simple theory of Rijke tube oscillation. Acta Acust. 2001, 26, 289–294. [Google Scholar]
- Dah-You, M.A.A. Exact solution of the Rijke tube equation. Acta Acust. 2002, 27, 288. [Google Scholar]
- Oh, J.; Heo, P.; Yoon, Y. Acoustic excitation effect on NOx reduction and flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air. Int. J. Hydrogen Energy 2009, 34, 7851–7861. [Google Scholar] [CrossRef]
Component | Measurement Instrument | Measurement Range | Measurement Accuracy |
---|---|---|---|
O2 | MADUR PHOTON infrared gas analyzer | 0–25% | ±0.2% or 2% rel |
CO2 | 0–25% | ±0.1% or 3% rel | |
CO | 0–20,000 ppm | ±3 ppm or 3% rel | |
CH4 | 0–5% | ±0.1% or 3% rel | |
NO | ECO Physics CLD60 electrochemical NOx analyzer | 0–0.5 to 0–100 ppm | 2 ppb |
NO2 | 0–0.5 to 0–100 ppm | 2 ppb |
Experimental Conditions | CH4 (mL/min) | Air (mL/min) | Φ | Re | Coflow Air (mL/min) | f (Hz) | A (Pa) |
---|---|---|---|---|---|---|---|
Case 1 | 1000 | 5000 | 2 | 422.1 | 10,000 | 0–400 | 0–1400 |
Case 2 | 1500 | 5000 | 3 | 476.8 | |||
Case 3 | 1500 | 7500 | 2 | 663.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, K.; Wang, M.; Shen, Z.; Hu, Y.; Zhong, Y. Effect of Different Acoustic Parameters on NOx Emissions of Partially Premixed Flame. Appl. Sci. 2019, 9, 1490. https://doi.org/10.3390/app9071490
Deng K, Wang M, Shen Z, Hu Y, Zhong Y. Effect of Different Acoustic Parameters on NOx Emissions of Partially Premixed Flame. Applied Sciences. 2019; 9(7):1490. https://doi.org/10.3390/app9071490
Chicago/Turabian StyleDeng, Kai, Mingxiao Wang, Zhongliang Shen, Yanjun Hu, and Yingjie Zhong. 2019. "Effect of Different Acoustic Parameters on NOx Emissions of Partially Premixed Flame" Applied Sciences 9, no. 7: 1490. https://doi.org/10.3390/app9071490
APA StyleDeng, K., Wang, M., Shen, Z., Hu, Y., & Zhong, Y. (2019). Effect of Different Acoustic Parameters on NOx Emissions of Partially Premixed Flame. Applied Sciences, 9(7), 1490. https://doi.org/10.3390/app9071490