A Novel Independently Biased 3-Stack GaN HEMT Configuration for Efficient Design of Microwave Amplifiers
Abstract
:1. Introduction
2. Results
2.1. Small-Signal Investigation for LNA Design
2.1.1. Reverse Isolation and Stability
2.1.2. Power Gain and Noise Figure
2.1.3. Comparison with Other Configurations
2.2. Large-Signal Investigation for PA Design
2.2.1. Investigations
2.2.2. Comparison with Other Configurations
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Shockley, W. Circuit Element Utilizing Semiconductive Material. U.S. Patent 2,569,347, 26 June 1948. [Google Scholar]
- Nawa, K.; Iwasaki, M. Darlington Circuit Semiconductor Device. U.S. Patent 4,138,690, 6 February 1979. [Google Scholar]
- Andrei, C.; Bentsson, O.; Doerner, R.; Chevtchenko, A.S.; Rudolph, M. Robust stacked GaN-based low-noise amplifier MMIC for receiver applications. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015. [Google Scholar]
- Fan, X.; Zhang, H.; Sinencio, E.S. A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA. IEEE J. Solid-State Circuits 2008, 43, 588–599. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, H.H.; Wang, J.H.; Lu, L.H. Gain-Enhancement Techniques for CMOS Folded Cascode LNAs at Low-Voltage Operations. IEEE Trans. Microw. Theory Tech. 2008, 56, 1807–1816. [Google Scholar] [CrossRef]
- Madam, A.; McPartlin, M.C.; Vaillancourt, W.; Cressler, D.J. A 5 GHz 0.95 dB NF Highly Linear Cascode Floating-Body LNA in 180 nm SOI CMOS Technology. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 200–202. [Google Scholar] [CrossRef]
- Gilardo, G.; Palmisano, G. Noise figure and impedance matching in RF cascode amplifiers. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1999, 46, 1388–1396. [Google Scholar]
- Weber, R.; Cwiklinski, M.; Wagner, S.; Lozar, R.; Massler, H.; Bruckner, P.; Quay, R. A Beyond 110 GHz GaN Cascode Low-Noise Amplifier with 20.3 dBm Output Power. In Proceedings of the 2018 IEEE MTT-S International Microwave Symposium, Philadelphia, PA, USA, 10–15 June 2018. [Google Scholar]
- Ulusoy, A.C.; Song, P.; Khan, W.T.; Kaynak, M.; Tillack, B.; Papapolymerou, J.; Cressler, J.D. A SiGe D-Band Low-Noise Amplifier Utilizing Gain-Boosting Technique. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 61–63. [Google Scholar] [CrossRef]
- Ding, B.; Yuan, S.; Zhao, C.; Tao, L.; Li, X.; Tian, T. A Ka band CMOS differential LNA with 25 dB gain using neutralized bootstrapped cascode amplifier. IEICE Electron. Express 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, J.; Chen, Z.; Jiang, Z.; Liu, P.; Wu, Y.; Zhao, C.; Kang, K. A 62–90 GHz High Linearity and Low Noise CMOS Mixer Using Transformer-Coupling Cascode Topology. IEEE Access 2018, 6, 19338–19344. [Google Scholar] [CrossRef]
- Ahmadi, M.M. A new modeling and optimization of gain-boosted cascode amplifier for high-speed and low-voltage applications. IEEE Trans. Circuits Syst. I Reg. Pap. 2005, 52, 2327–2334. [Google Scholar] [CrossRef]
- Sowlati, T.; Leenaerts, D. A 2.4-GHz 0.18-/spl mu/m CMOS self-biased cascode power amplifier. IEEE J. Solid-State Circuits 2003, 38, 1318–1324. [Google Scholar] [CrossRef]
- Fraysse, J.P.; Viaud, J.P.; Campovecchio, M.; Auxemery, P.; Quere, R. A 2 W, high efficiency, 2–8 GHz, cascode HBT MMIC power distributed amplifier. In Proceedings of the 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), Boston, MA, USA, 11–16 June 2000. [Google Scholar]
- Jin, S.; Park, B.; Moon, K.; Kwon, M.; Kim, B. Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control. IEEE Trans. Microw. Theory Tech. 2013, 61, 4534–4543. [Google Scholar] [CrossRef]
- Ko, S.; Lin, J. A Linearized Cascode CMOS Power Amplifier. In Proceedings of the 2006 IEEE Annual Wireless and Microwave Technology Conference, Clearwater Beach, FL, USA, 4–5 December 2006. [Google Scholar]
- Kang, S.; Jeong, G.; Hong, S. Study on Dynamic Body Bias Controls of RF CMOS Cascode Power Amplifier. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 705–707. [Google Scholar] [CrossRef]
- Ju, I.; Cressler, J.D. A Highly Efficient X-Band Inverse Class-F SiGe HBT Cascode Power Amplifier With Harmonic-Tuned Wilkinson Power Combiner. IEEE Trans. Circuits Syst. II Express Briefs 2017, 65, 1609–1613. [Google Scholar] [CrossRef]
- Jeong, G.; Joo, T.; Hong, S. A Highly Linear and Efficient CMOS Power Amplifier With Cascode–Cascade Configuration. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 596–598. [Google Scholar] [CrossRef]
- Moon, J.S.; Grabar, R.; Brown, D.; Rodriguez, I.A.; Wong, D.; Schmitz, A.; Fung, H.; Chen, P.; Kang, J.-C.; Kim, S.; et al. >70% Power-Added-Efficiency Dual-Gate, Cascode GaN HEMTs Without Harmonic Tuning. IEEE Microw. Wirel. Compon. Lett. 2016, 37, 272–275. [Google Scholar] [CrossRef]
- Armijo, C.T.; Meyer, R.G. A new wide-band Darlington amplifier. IEEE J. Solid-State Circuits 1989, 24, 1105–1109. [Google Scholar] [CrossRef]
- Kuo, C.W.; Chiou, H.K.; Chung, H.Y. An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier with Guanella-Type Transmission-Line Transformers in 0.16 μm CMOS Technology. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 668–670. [Google Scholar] [CrossRef]
- Kobayashi, K.W.; Umemoto, D.K.; Velebir, J.R.; Oki, A.K.; Streit, D.C. Ntegrated complementary HBT microwave push-pull and Darlington amplifiers with p-n-p active loads. IEEE J. Solid-State Circuits 1993, 28, 1011–1017. [Google Scholar] [CrossRef]
- Hu, S.; Yu, S.; Hu, Y.; Wang, Z.; Zhou, B.; Cai, Z.; Guo, Y. A 0.2–6 GHz Linearized Darlington-cascode broadband power amplifier. IEICE Electron. Express 2018, 15, 1–8. [Google Scholar] [CrossRef]
- Lin, Y.-A.; Yeh, Y.-C.; Chang, H.-Y. A 27-GHz 45-dB SFDR track-and-hold amplifier using modified darlington amplifier and cascoded SEF in 0.18-μm SiGe process. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Nguyen, D.P.; Stameroff, N.A.; Pham, A.V. A 1.5–88 GHz 19.5 dBm Output Power Triple Stacked HBT InP Distributed Amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Tarar, M.M.; Beucher, T.; Qayyum, S.; Negra, R. Efficient 2–16 GHz Flat-Gain Stacked Distributed Power Amplifier in 0.13 μm CMOS using Uniform Distributed Topology. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Wu, H.; Liao, X.; Wang, C.; Chen, Y.; Hua, Y.; Hu, Y.; Lv, J.; Tong, W. A 4-10 GHz Fully-integrated Stacked GaAs pHEMT Power Amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium, Honololu, HI, USA, 4–9 June 2017. [Google Scholar]
- Takagi, Y.; Takayama, Y.; Ishikawa, R.; Honjo, K. A High-Efficiency Low-Distortion Cascode Power Amplifier Consisting of Independently Biased InGaP/GaAs HBTs. IEICE Trans. Electron. 2014, 97, 58–64. [Google Scholar] [CrossRef]
- Luong, D.M.; Takayama, Y.; Ishikawa, R.; Honjo, K. Power gain performance enhancement of independently biased heterojunction bipolar transistor cascode chip. Jpn. J. Appl. Phys. 2015, 54, 1–8. [Google Scholar] [CrossRef]
- Luong, D.M.; Takayama, Y.; Ishikawa, R.; Honjo, K. Microwave Characteristics of an Independently Biased 3-Stack InGaP/GaAs HBT Configuration. IEEE Trans. Circuits Syst. I Reg. Pap. 2016, 64, 3487–3495. [Google Scholar] [CrossRef]
- Luong, D.M.; Nguyen, H.H.; Bach, G.D.; Ta, C.H. Design of An Independently Biased Cascode GaN HEMT Microwave Power Amplifier. In Proceedings of the International Conference on Advanced Technologies for Communications 2018 (ATC2018), Ho Chi Minh City, Vietnam, 18–20 October 2018. [Google Scholar]
- Advanced Design System (ADS). Available online: https://www.keysight.com/en/pc-1297113/advanced-design-system-ads?&cc=VN&lc=eng (accessed on 4 February 2019).
- WIN Semiconductors Corp. Available online: https://www.winfoundry.com/ (accessed on 4 February 2019).
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Son: Hoboken, NJ, USA, 2012. [Google Scholar]
Configurations | ||||||
---|---|---|---|---|---|---|
Single-stage | −2 V | X | X | 44 V | X | X |
Conventional cascode | −2 V | −2 V | X | X | 44 V | X |
Independently biased cascode | −2 V | −2 V | −2 V | 5 V | 44 V | X |
Conventional 3-stack | −2 V | −2 V | −2 V | X | X | 44 V |
Independently biased 3-stack | −2 V | −2 V | −2 V | 1 V | 3.5 V | 44 V |
Configurations | Source Impedance () | Load Impedance () |
---|---|---|
Single-stage | 22.3 + j31.2 | 233 + j273 |
Conventional cascode | 56 + j293 | 223.2 + j250 |
Independently biased cascode | 56 + j293 | 223.2 + j250 |
Conventional 3-stack | 55.9 + j101 | 179 + j273 |
Independently biased 3-stack | 55.9 + j101 | 179 + j273 |
Configurations | ||||||
---|---|---|---|---|---|---|
Single-stage | −2.6 V | X | X | 44 V | X | X |
Conventional cascode | −2.6 V | −2.6V | X | 44 V | X | X |
Independently biased cascode | −2.6 V | −2.6 V | X | 6 V | 44 V | X |
Conventional 3-stack | −2.6V | −2.6 V | −2.6 V | X | X | 44 V |
Independently biased 3-stack | −2.6 V | −2.6 V | −2.6 V | 5 V | 4 V | 44 V |
Configurations | IMD3 Level | PAE |
---|---|---|
Single-stage | −35 dBc | X |
Conventional cascode | −35 dBc | 4.5% |
Independently biased cascode | −35 dBc | 22.8% |
Conventional 3-stack | −35 dBc | 25% |
Independently biased 3-stack | −35 dBc | 35% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.H.; Luong, D.M.; Bach, G.D. A Novel Independently Biased 3-Stack GaN HEMT Configuration for Efficient Design of Microwave Amplifiers. Appl. Sci. 2019, 9, 1510. https://doi.org/10.3390/app9071510
Nguyen HH, Luong DM, Bach GD. A Novel Independently Biased 3-Stack GaN HEMT Configuration for Efficient Design of Microwave Amplifiers. Applied Sciences. 2019; 9(7):1510. https://doi.org/10.3390/app9071510
Chicago/Turabian StyleNguyen, Huy Hoang, Duy Manh Luong, and Gia Duong Bach. 2019. "A Novel Independently Biased 3-Stack GaN HEMT Configuration for Efficient Design of Microwave Amplifiers" Applied Sciences 9, no. 7: 1510. https://doi.org/10.3390/app9071510
APA StyleNguyen, H. H., Luong, D. M., & Bach, G. D. (2019). A Novel Independently Biased 3-Stack GaN HEMT Configuration for Efficient Design of Microwave Amplifiers. Applied Sciences, 9(7), 1510. https://doi.org/10.3390/app9071510