Open-Source Tools for Volume Estimation of 3D Multicellular Aggregates
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. ReViSP Version 2.1
2.2. ReViMS Version 2.0
2.2.1. Active Contour Segmentation
2.2.2. Averaging Different 2D/3D Segmentations
- Calculation, for each 3D object k1 segmented by a first expert annotator, the list of the overlapping objects kj (j = 2, …, n; n = number of annotators) in the segmentations created by the other experts;
- Selection, among the listed, of the objects kj with volume spatially overlapping more than 50% with k1;
- Selection, among the objects kj with volume spatially overlapping more than 50%, of the 2D z-sections which overlap more than 50% with the corresponding z-section of k1;
- “Averaging” of the segmentations exploiting the standard STAPLE algorithm, by considering one-by-one each selected z-section.
2.3. MITK Version 2018.04
2.4. OpenSegSPIM Version 1.1
2.5. Cancer Multicellular Aggregates and LSFM
3. Results and Discussion
3.1. Ground Truth Robustness When Considering Fluorescence Datasets
3.2. Tools for Estimating the Volume of Spheroids Used for Multicellular Aggregates
3.3. Tools for Estimating the Volume of Multicellular Aggregates
3.4. Defining the Volume-Estimation Tool
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.; Bevilacqua, A.; Tesei, A. 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 2016, 6, 19103. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, F.; De Santis, I.; Bevilacqua, A. Advances in cancer modeling: fluidic systems for increasing representativeness of large 3D multicellular spheroids. Biotechniques 2018, 65, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, F.; Tesei, A.; Bevilacqua, A. Single-image based methods used for non-invasive volume estimation of cancer spheroids: A practical assessing approach based on entry-level equipment. Comput. Methods Programs Biomed. 2016, 135, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Konen, J.; Brat, D.J.; Marcus, A.I.; Cooper, L.A. TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics. Sci. Rep. 2018, 8, 7248. [Google Scholar] [CrossRef]
- Piccinini, F.; Tesei, A.; Arienti, C.; Bevilacqua, A. Cancer multicellular spheroids: Volume assessment from a single 2D projection. Comput. Methods Programs Biomed. 2015, 118, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, S.; Guo, Q.; Kessel, S.; Rubinoff, I.; Chan, L.L.Y.; Li, P.; Liu, Y.; Qiu, J.; Zhou, C. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Cancer Res. 2017, 77, 6011–6020. [Google Scholar] [CrossRef]
- Duchi, S.; Piccinini, F.; Pierini, M.; Bevilacqua, A.; Torre, M.L.; Lucarelli, E.; Santi, S. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy. PLoS ONE 2017, 12, e0183336. [Google Scholar] [CrossRef]
- Carragher, N.; Piccinini, F.; Tesei, A.; Trask, O.J.; Bickle, M.; Horvath, P. Concerns, challenges and promises of high-content analysis of 3D cellular models. Nat. Rev. Drug Discov. 2018, 17, 606. [Google Scholar] [CrossRef]
- Piccinini, F. AnaSP: A software suite for automatic image analysis of multicellular spheroids. Comput. Methods Programs Biomed. 2015, 119, 43–52. [Google Scholar] [CrossRef]
- Maleike, D.; Nolden, M.; Meinzer, H.P.; Wolf, I. Interactive segmentation framework of the medical imaging interaction toolkit. Comput. Methods Programs Biomed. 2009, 96, 72–83. [Google Scholar] [CrossRef]
- Gole, L.; Ong, K.H.; Boudier, T.; Yu, W.; Ahmed, S. OpenSegSPIM: a user-friendly segmentation tool for SPIM data. Bioinformatics 2016, 32, 2075–2077. [Google Scholar] [CrossRef] [Green Version]
- Piccinini, F.; Tesei, A.; Zanoni, M.; Bevilacqua, A. ReViMS: Software tool for estimating the volumes of 3-D multicellular spheroids imaged using a light sheet fluorescence microscope. Biotechniques 2017, 63, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zack, G.W.; Rogers, W.E.; Latt, S.A. Automatic measurement of sister chromatid 132 exchange frequency. J. Histochem. Cytochem. 1977, 25, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis. 1997, 22, 61–79. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Mumford, D.; Shah, J. Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 1989, 42, 577–685. [Google Scholar] [CrossRef]
- Piccinini, F.; Tesei, A.; Arienti, C.; Bevilacqua, A. Cell counting and viability assessment of 2D and 3D cell cultures: expected reliability of the Trypan Blue assay. Biol. Proced. Online 2017, 19, 1–12. [Google Scholar] [CrossRef]
- Warfield, S.K.; Zou, K.H.; Wells, W.M. Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 2004, 23, 903–921. [Google Scholar] [CrossRef] [PubMed]
- Wolf, I.; Vetter, M.; Wegner, I.; Böttger, T.; Nolden, M.; Schöbinger, M.; Hastenteufel, M.; Kunert, T.; Meinzer, H.P. The medical imaging interaction toolkit. Med. Image Anal. 2005, 9, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Nolden, M.; Zelzer, S.; Seitel, A.; Wald, D.; Müller, M.; Franz, A.M.; Maleike, D.; Fangerau, M.; Baumhauer, M.; Maier-Hein, L.; et al. The medical imaging interaction toolkit: challenges and advances. Int. J. Comput. Assist. Radiol. Surg. 2013, 8, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Han, H.W.; Asano, S.; Hsu, S.H. Cellular spheroids of mesenchymal stem cells and their perspectives in future healthcare. Appl. Sci. 2019, 9, 627. [Google Scholar] [CrossRef]
- Ingram, M.; Techy, G.B.; Saroufeem, R.; Yazan, O.; Narayan, K.S.; Goodwin, T.J.; Spaulding, G.F. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol.-Anim. 1997, 33, 459–466. [Google Scholar]
- Barbier, M.; Jaensch, S.; Cornelissen, F.; Vidic, S.; Gjerde, K.; de Hoogt, R.; Graeser, R.; Gustin, E. IMI PREDECT Consortium. Ellipsoid segmentation model for analyzing light-attenuated 3D confocal image stacks of fluorescent multi-cellular spheroids. PLoS ONE 2016, 11, e0156942. [Google Scholar] [CrossRef]
- Leary, E.; Rhee, C.; Wilks, B.; Morgan, J.R. Accurate quantitative wide-field fluorescence microscopy of 3-D spheroids. Biotechniques 2016, 61, 237–247. [Google Scholar] [CrossRef]
- Smith, K.; Piccinini, F.; Balassa, T.; Koos, K.; Danka, T.; Azizpour, H.; Horvath, P. Phenotypic image analysis software tools for exploring and understanding big image data from cell-based assays. Cell Syst. 2018, 6, 636–653. [Google Scholar] [CrossRef] [PubMed]
Ground Truth Volume (µm3) | ReViSP Volume (µm3) | ReViMS Volume (µm3) | ReViSP AD% | ReViMS AD% | |
---|---|---|---|---|---|
MA1 | 13.418.918,238 | 24.726.769,373 | 13.294.691,377 | 84,3 | 0,9 |
MA2 | 15.101.283,699 | 16.009.703,137 | 15.265.923,983 | 6,0 | 1,1 |
MA3 | 11.619.907,849 | 9.337.259,753 | 11.658.164,658 | 19,6 | 0,3 |
Ground Truth Volume (µm3) | ReViMS Volume (µm3) | MITK Volume (µm3) | OpenSegSPIM Volume (µm3) | ReViMS AD% | MITK AD% | OpenSegSPIM AD% | |
---|---|---|---|---|---|---|---|
MA1 | 13.418.918,238 | 13.294.691,377 | 13.742.255,460 | 11.484.703,264 | 0,9 | 2,4 | 14,4 |
MA2 | 15.101.283,699 | 15.265.923,983 | 15.015.987,327 | 14.034.452,449 | 1,1 | 0,6 | 7,1 |
MA3 | 11.619.907,849 | 11.658.164,658 | 11.569.970,771 | 11.000.449,993 | 0,3 | 0,4 | 5,3 |
ReViSP (Version 2.1) | ReViMS (Version 2.0) | MITK (Version 2018.04) | OpenSegSPIM (Version 1.1) | |
---|---|---|---|---|
DOCUMENTATION | ||||
User guide | ● | ● | ● | ● |
Website | ● | ● | ● | ● |
Video tutorial | ● | ● | ● | ● |
Open source code | ● | ● | ● | ● |
Implementation language | MATLAB | MATLAB | C++ | MATLAB |
Test dataset/demo | ● | ● | ● | ● |
Link to code/executable | sourceforge.net/p/revisp | sourceforge.net/p/revims | mitk.org | opensegspim.weebly.com |
Scientific reference | Piccinini et al., 2015 [5] | Piccinini et al., 2017 [12] | Wolf et al., 2005 [22] | Gole et al., 2016 [11] |
USABILITY | ||||
No programming experience required | ● | ● | ● | ● |
User-friendly GUI | ● | ● | ● | ● |
Intuitive visualization settings | ● | ● | o | o |
Does not require commercial licence | ● | ● | ● | ● |
Portability on Win/Linux/Mac | Win | Win/Linux | Win/Linux/Mac | Win/Mac |
FUNCTIoNALITY | ||||
Designed for multicellular aggregates | o | ● | o | ● |
Automatic aggregate segmentation | ● | ● | o | o |
Automatic single-cell segmentation | o | o | o | ● |
Does not require human interaction | o | ● | o | o |
oUTPUT | ||||
3D rendering | ● | ● | ● | o |
Volume statistics | ● | ● | ● | ● |
other features statistics | o | ● | ● | ● |
●, available/yes; o, not available/no |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, I.; Tasnadi, E.; Horvath, P.; Bevilacqua, A.; Piccinini, F. Open-Source Tools for Volume Estimation of 3D Multicellular Aggregates. Appl. Sci. 2019, 9, 1616. https://doi.org/10.3390/app9081616
De Santis I, Tasnadi E, Horvath P, Bevilacqua A, Piccinini F. Open-Source Tools for Volume Estimation of 3D Multicellular Aggregates. Applied Sciences. 2019; 9(8):1616. https://doi.org/10.3390/app9081616
Chicago/Turabian StyleDe Santis, Ilaria, Ervin Tasnadi, Peter Horvath, Alessandro Bevilacqua, and Filippo Piccinini. 2019. "Open-Source Tools for Volume Estimation of 3D Multicellular Aggregates" Applied Sciences 9, no. 8: 1616. https://doi.org/10.3390/app9081616
APA StyleDe Santis, I., Tasnadi, E., Horvath, P., Bevilacqua, A., & Piccinini, F. (2019). Open-Source Tools for Volume Estimation of 3D Multicellular Aggregates. Applied Sciences, 9(8), 1616. https://doi.org/10.3390/app9081616