A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms
Abstract
:Featured Application
Abstract
1. Introduction
2. Measurement Setup and Method
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gál, P.; Mokrý, M.; Vidinský, B.; Kilík, R.; Depta, F.; Harakalová, M.; Longauer, F.; Mozes, S.; Sabo, J. Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats. Lasers Med. Sci. 2009, 24, 539–547. [Google Scholar] [CrossRef]
- Vasilenko, T.; Slezák, M.; Kovác, I.; Bottková, Z.; Jakubco, J.; Kostelníková, M.; Tomori, Z.; Gál, P. The effect of equal daily dose achieved by different power densities of low-level laser therapy at 635 and 670 nm on wound tensile strength in rats: A short report. Photomed. Laser Surg. 2010, 28, 281–283. [Google Scholar] [CrossRef]
- Clark, C.; Cameron, H.; Moseley, H.; Ferguson, J.; Ibbotson, S.H. Treatment of superficial cutaneous vascular lesions: Experience with the KTP 532 nm laser. Lasers Med. Sci. 2004, 19, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Malek, R.S.; Kang, H.W.; Peng, Y.S.; Stinson, D.; Beck, M.T.; Koullick, E. Photoselective vaporization prostatectomy: Experience with a novel 180 W 532 nm lithium triborate laser and fiber delivery system in living dogs. J. Urol. 2011, 185, 712–718. [Google Scholar] [CrossRef]
- Qadri, T.; Miranda, L.; Tunér, J.; Gustafsson, A. The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J. Clin. Periodontol. 2005, 32, 714–719. [Google Scholar] [CrossRef]
- Angelis, N.D.; Hanna, R.; Signore, A.; Amaroli, A.; Benedicenti, S. Effectiveness of dual-wavelength (Diodes 980 Nm and 635 Nm) laser approach as a non-surgical modality in the management of periodontally diseased root surface: A pilot study. Biotechnol. Biotechnol. Equip. 2018, 32, 1575–1582. [Google Scholar] [CrossRef]
- WLBK. Available online: http://fototerapialaserowa.pl/pl/wlbk.html (accessed on 22 March 2019).
- Mundinger, J.; Houser, K. Adjustable correlated colour temperature for surgical lighting. Light. Res. Technol. 2019, 51, 280–290. [Google Scholar] [CrossRef]
- Wróbel, M.S.; Popov, A.P.; Bykov, A.V.; Kinnunen, M.; Jędrzejewska-Szczerska, M.; Tuchin, V.V. Measurements of fundamental properties of homogeneous tissue phantoms. JBO 2015, 20, 045004. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, M.S.; Popov, A.P.; Bykov, A.V.; Kinnunen, M.; Jędrzejewska-Szczerska, M.; Tuchin, V.V. Multi-layered tissue head phantoms for noninvasive optical diagnostics. J. Innov. Opt. Health Sci. 2014, 8, 1541005. [Google Scholar] [CrossRef]
- Karpienko, K.; Gnyba, M.; Milewska, D.; Wróbel, M.S.; Jędrzejewska-Szczerska, M. Blood equivalent phantom vs whole human blood, a comparative study. J. Innov. Opt. Health Sci. 2015, 9, 1650012. [Google Scholar] [CrossRef]
- Wróbel, M.S.; Jędrzejewska-Szczerska, M.; Galla, S.; Piechowski, L.; Sawczak, M.; Popov, A.P.; Bykov, A.V.; Tuchin, V.V.; Cenian, A. Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy. J. Biomed Opt. 2015, 20, 85003. [Google Scholar] [CrossRef] [Green Version]
- Feder, I.; Wróbel, M.; Duadi, H.; Jędrzejewska-Szczerska, M.; Fixler, D. Experimental results of full scattering profile from finger tissue-like phantom. Biomed. Opt. Express 2016, 7, 4695–4701. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Miquet, E.E.; Romero, L.M.M.; Darias, J.G.; Martínez-Celorio, R.A. Ex-vivo assessment of tissue viability using dynamic laser speckle. In Proceedings of the SPECKLE 2015: VI International Conference on Speckle Metrology, Guanajuato, Mexico, 24–26 August 2015; Volume 9660, p. 96601U. [Google Scholar]
- Zakian, C.; Dickinson, M. Laser Doppler imaging through tissues phantoms by using self-mixing interferometry with a laser diode. Opt. Lett. 2007, 32, 2798–2800. [Google Scholar] [CrossRef]
- Ali Ansari, M.; Alikhani, S.; Mohajerani, E. A hybrid imaging method based on diffuse optical tomography and optomechanical method to detect a tumor in the biological phantom. Opt. Commun. 2015, 342, 12–19. [Google Scholar] [CrossRef]
- Kanick, S.C.; Gamm, U.A.; Schouten, M.; Sterenborg, H.J.C.M.; Robinson, D.J.; Amelink, A. Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: Fiber diameter and phase function dependence. Biomed. Opt. Express 2011, 2, 1687–1702. [Google Scholar] [CrossRef]
- Sthalekar, C.C.; Miao, Y.; Koomson, V.J. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 279–286. [Google Scholar] [CrossRef]
- Monte, A.F.G.; Reis, A.F.; Junior, L.B.C.; Antunes, A. Preparation and quantitative characterization of polydimethylsiloxane optical phantoms with zinc-phthalocyanine dye absorbers. Appl. Opt. 2018, 57, 5865–5871. [Google Scholar] [CrossRef]
- Shahin, A.; Bachir, W. Broadband spectroscopy for characterization of tissue-like phantom optical properties. Pol. J. Med. Phys. Eng. 2017, 23, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Hall, G.; Jacques, S.L.; Eliceiri, K.W.; Campagnola, P.J. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient. Biomed. Opt. Express 2012, 3, 2707–2719. [Google Scholar] [CrossRef] [Green Version]
- Moes, C.J.M.; van Gemert, M.J.C.; Star, W.M.; Marijnissen, J.P.A.; Prahl, S.A. Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm. Appl. Opt. 1989, 28, 2292–2296. [Google Scholar] [CrossRef]
- Royston, D.D.; Poston, R.S.; Prahl, S.A. Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm. J. Biomed. Opt. 1996, 1, 110–116. [Google Scholar] [CrossRef]
- Labsphere. Internationally Recognized Photonics Company. Available online: https://www.labsphere.com/ (accessed on 28 January 2019).
- Prahl, S.A. The Adding-Doubling Method. In Optical-Thermal Response of Laser-Irradiated Tissue; Welch, A.J., Van Gemert, M.J.C., Eds.; Springer US: Boston, MA, USA, 1995; pp. 101–129. [Google Scholar]
- Krainov, A.D.; Mokeeva, A.M.; Sergeeva, E.A.; Agrba, P.D.; Kirillin, M.Y. Optical properties of mouse biotissues and their optical phantoms. Opt. Spectrosc. 2013, 115, 193–200. [Google Scholar] [CrossRef]
- Bhandari, A.; Hamre, B.; Frette, Ø.; Zhao, L.; Stamnes, J.J.; Kildemo, M. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light. Appl. Opt. 2011, 50, 2431–2442. [Google Scholar] [CrossRef]
- Wagnières, G.; Cheng, S.; Zellweger, M.; Utke, N.; Braichotte, D.; Ballini, J.P.; van den Bergh, H. An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy. Phys. Med. Biol. 1997, 42, 1415–1426. [Google Scholar] [CrossRef]
- Sensing, K.M. CS-200 Color and Luminance Meter Konica Minolta Sensing. Available online: https://sensing.konicaminolta.us/products/cs-200-color-and-luminance-meter/ (accessed on 28 January 2019).
- Wróbel, M.S.; Popov, A.P.; Bykov, A.V.; Tuchin, V.V.; Jędrzejewska-Szczerska, M. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering. Biomed. Opt. Express 2016, 7, 2088–2094. [Google Scholar] [CrossRef] [Green Version]
Phantom | Rd | Td | µa | µs′ |
---|---|---|---|---|
light source—635 nm | ||||
A | 0.37 | 0.57 | 0.07 ± 0.02 | 1.67 ± 0.05 |
B | 0.39 | 0.48 | 0.18 ± 0.03 | 2.67 ± 0.1 |
C | 0.23 | 0.25 | 0.92 ± 0.03 | 1.83 ± 0.1 |
light source—532 nm | ||||
A | 0.38 | 0.57 | 0.05 ± 0.02 | 1.75 ± 0.05 |
B | 0.40 | 0.47 | 0.19 ± 0.03 | 2.75 ± 0.1 |
C | 0.24 | 0.22 | 0.98 ± 0.03 | 2.04 ± 0.1 |
light source—447 nm | ||||
A | 0.39 | 0.56 | 0.06 ± 0.02 | 1.83 ± 0.05 |
B | 0.42 | 0.48 | 0.14 ± 0.03 | 2.86 ± 0.1 |
C | 0.25 | 0.22 | 0.97 ± 0.03 | 2.11 ± 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listewnik, P.; Wąsowicz, M.; Kosowska, M.; Mazikowski, A. A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms. Appl. Sci. 2019, 9, 1632. https://doi.org/10.3390/app9081632
Listewnik P, Wąsowicz M, Kosowska M, Mazikowski A. A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms. Applied Sciences. 2019; 9(8):1632. https://doi.org/10.3390/app9081632
Chicago/Turabian StyleListewnik, Paulina, Michał Wąsowicz, Monika Kosowska, and Adam Mazikowski. 2019. "A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms" Applied Sciences 9, no. 8: 1632. https://doi.org/10.3390/app9081632
APA StyleListewnik, P., Wąsowicz, M., Kosowska, M., & Mazikowski, A. (2019). A Measurement System for Quasi-Spectral Determination of Absorption and Scattering Parameters of Veterinary Tissue Phantoms. Applied Sciences, 9(8), 1632. https://doi.org/10.3390/app9081632