Development of a Machine-Learning Model of Short-Term Prognostic Prediction for Spinal Stenosis Surgery in Korean Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Summary
2.2. Data Collection
2.2.1. Patient-Reported Outcome Measure (Numeric Rating Scale)
2.2.2. Incidence of Reoperation
2.2.3. Surgery Time
2.3. Empirical Analysis
3. Results
3.1. Patient-Reported Outcome Measure
3.2. Reoperation
3.3. Surgery Time
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Adamson, A.S.; Smith, A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018, 154, 1247–1248. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Min, K.B. Introduction to Deep Learning in 4th Industrial Revolution. J. Korean Assoc. Spat. Struct. 2017, 17, 4–9. [Google Scholar]
- Morrison, A.; Rao, A. Machine Learning Evolution (Infographic). 2018-11-14. 2016. Available online: http://usblogs.pwc.com/emerging-technology/machine-learning-evolutioninfographic (accessed on 21 August 2020).
- Delen, D.; Oztekin, A.; Kong, Z.J. A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif. Intell. Med. 2010, 49, 33–42. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Service. Annual Health Insurance Statistics. In National Health Insurance; Health Insurance Review and Assessment Service: Seoul, Korea, 2018. [Google Scholar]
- Chan, A.; Bisson, E.; Bydon, M.; Glassman, S.; Foley, K.; Potts, E. Laminectomy alone versus fusion for grade 1 lumbar spondylolisthesis in 426 patients from the prospective Quality Outcomes Database. J Neurosurg. Spine 2018, 30, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, W.C.; van Tulder, M.; Arts, M.; Rubinstein, S.M.; van Middelkoop, M.; Ostelo, R.; Verhagen, A.; Koes, B.; Peul, W.C. Surgery versus conservative management of sciatica due to a lumbar herniated disc: A systematic review. Eur Spine J. 2011, 20, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debono, B.; Sabatier, P.; Koudsie, A.; Buffenoir, K.; Hamel, O. Managing spine surgery referrals: The consultation of neurosurgery and its nuances. Neurochirurgie 2017, 63, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Cassinelli, E.H.; Eubanks, J.; Vogt, M.; Furey, C.; Yoo, J.; Bohlman, H.H. Risk factors for the development of perioperative complications in elderly patients undergoing lumbar decompression and arthrodesis for spinal stenosis: An analysis of 166 patients. Spine (Phila Pa 1986) 2007, 32, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Edelstein, A.I.; Patel, A.A.; Kim, B.D.; Kim, J. Risk factors for postoperative infections after single-level lumbar fusion surgery. Spine (Phila Pa 1986) 2018, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ostelo, R.W.; Deyo, R.A.; Stratford, P.; Waddell, G.; Croft, P.; Von Korff, M.; Bouter, L.M.; Henrica, C. Interpreting change scores for pain and functional status in low back pain: Towards international consensus regarding minimal important change. Spine (Phila Pa 1986) 2008, 33, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Kang, S.H. A study on the development of predictive model for severity-adjusted length of stay in nervous system patients using machine learning. Korea Inst. Health Soc. Aff. 2019, 39, 390–427. [Google Scholar]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Orallo, J.; Flach, P.A.; Ramirez, C.F. Brier curves: A new cost-based visualisation of classifier performance. In Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 28 August 2011; pp. 585–592. [Google Scholar]
- Wu, J.; Roy, J.; Stewart, W.F. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med Care 2010, 48, S106–S113. [Google Scholar] [CrossRef] [PubMed]
- The White House, Preparing for the Future of Artificial Intelligence. Available online: https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf (accessed on 21 August 2020).
- Bruce, P.; Bruce, A.; Gedeck, P. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 2nd ed.; O’Reilly Media, Inc.: Newton, MS, USA, 2020. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-agnostic interpretability of machine learning. arXiv 2016, arXiv:1606.05386. [Google Scholar]
- Hu, L.; Chen, J.; Nair, V.N.; Sudjianto, A. Locally interpretable models and effects based on supervised partitioning (LIME-SUP). arXiv 2018, arXiv:1806.00663. [Google Scholar]
- Siccoli, A.; Marlies, P.; Schröder, M.L.; Staartjes, V.E. Machine learning–based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg. Focus 2019, 46, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Azimi, P.; Benzel, E.C.; Shahzadi, S.; Azhari, S.; Mohammadi, H.R. Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis. J. Neurosurg. Spine 2014, 20, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Guha, D.; Heary, R.F.; Shamji, M.F. Iatrogenic spondylolisthesis following laminectomy for degenerative lumbar stenosis: Systematic review and current concepts. Neurosurg. Focus 2015, 39, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Value |
---|---|
Males, n (%) | 50 (44.6) |
Mean age ± SD (years) | 60.4 ± 12.8 |
Active smoker, n (%) | 21 (19) |
Regular alcohol intake, n (%) | 56 (0.5) |
The American Society of Anaesthesiologists (ASA) score, n (%) | |
I | 15 (13.3) |
II | 83 (73.5) |
III | 14 (13.2) |
Mean height ± SD, cm | 160.97 ± 8.94 |
Mean weight ± SD, kg | 65.01 ± 12.31 |
Mean BMI ± SD, kg/m2 | 26.91 ± 9.74 |
Index level, n (%) | |
L1–2 | 1 (0.9) |
L2–3 | 6 (5.3) |
L3–4 | 32 (28.5) |
L4–5 | 72 (64.3) |
L5–S1 | 34 (30.3) |
Multi-level decompression, n (%) | 32 (28.5) |
Mean baseline patient-reported outcome measures (PROMs) ± SD | |
Numeric Rating Scale for leg pain (NRS-LP) | 7.18 ± 1.31 |
Medical cost affordability | |
High | 28 (0.25) |
Moderate | 72 (0.65) |
Low | 12 (0.10) |
Endpoint | Number of Incident-Free Cases and Percentage | Number of Incidents and Percentage |
---|---|---|
NRS–Discharge | 90 (80.4) | 22 (19.6) |
Reoperation | ||
Incidence | 106 | 6 (5.3) |
Period Parameter | ||
Prolonged op, >200 min | 92 | 20 (17.9) |
Metric | NRS Score | Reoperation | Surgery Time |
---|---|---|---|
Training (Bootstrapping) | |||
Sensitivity | 84.675 | 94.643 | 89.691 |
Specificity | 75.000 | 0 | 66.667 |
Accuracy | 83.929 | 94.643 | 86.607 |
AUC | 0.803 | 0.887 | 0.896 |
Prevalence | 92.857 | 1 | 86.607 |
Positive predictive value | 97.778 | 1 | 94.565 |
Negative predictive value | 27.273 | 0 | 50.000 |
Relative risk | 1.344 | 1 | 1.891 |
F1 score | 0.9072 | 0.9724 | 0.9206 |
Testing | |||
Sensitivity | 88.462 | 93.548 | 96.154 |
Specificity | 60.000 | 0 | 90.000 |
Accuracy | 83.871 | 93.548 | 95.161 |
AUC | 0.860 | 0.952 | 0.975 |
Prevalence | 83.871 | 1 | 83.871 |
Positive predictive value | 92.000 | 1 | 98.039 |
Negative predictive value | 50.000 | 0 | 81.818 |
Relative risk | 1.840 | 1 | 5.392 |
F1 score | 0.893 | 0.903 | 0.971 |
Brier score | 0.13 | 0.11 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-R.; Kim, H.S.; Park, J.-E.; Kang, S.-Y.; Lim, S.-Y.; Jang, I.-T. Development of a Machine-Learning Model of Short-Term Prognostic Prediction for Spinal Stenosis Surgery in Korean Patients. Brain Sci. 2020, 10, 764. https://doi.org/10.3390/brainsci10110764
Kim K-R, Kim HS, Park J-E, Kang S-Y, Lim S-Y, Jang I-T. Development of a Machine-Learning Model of Short-Term Prognostic Prediction for Spinal Stenosis Surgery in Korean Patients. Brain Sciences. 2020; 10(11):764. https://doi.org/10.3390/brainsci10110764
Chicago/Turabian StyleKim, Kyeong-Rae, Hyeun Sung Kim, Jae-Eun Park, Seung-Yeon Kang, So-Young Lim, and Il-Tae Jang. 2020. "Development of a Machine-Learning Model of Short-Term Prognostic Prediction for Spinal Stenosis Surgery in Korean Patients" Brain Sciences 10, no. 11: 764. https://doi.org/10.3390/brainsci10110764
APA StyleKim, K. -R., Kim, H. S., Park, J. -E., Kang, S. -Y., Lim, S. -Y., & Jang, I. -T. (2020). Development of a Machine-Learning Model of Short-Term Prognostic Prediction for Spinal Stenosis Surgery in Korean Patients. Brain Sciences, 10(11), 764. https://doi.org/10.3390/brainsci10110764