Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Behavioral Testing
2.3. Open Field Test
2.4. Morris Water Maze
2.5. Passive Avoidance Paradigm
2.6. Enzyme-Linked Immunosorbent Assay
2.7. Statistical Analysis
3. Results
3.1. Open Field Test
3.1.1. Automated Open Field Test
3.1.2. Classic Open Field Test
3.2. Morris Water Maze
3.3. Passive Avoidance Paradigm
3.4. Body Weight, Serum Corticosterone Concentrations and Thymus, Spleen, and Adrenal Weights
4. Discussion
4.1. Open Field
4.2. Morris Water Maze
4.3. Passive Avoidance
- PA reflex extinction within 7 successive days, starting from day 4, was slower in males than in females;
- In males, the reflex fear reaction was more profound than in females 24 h after the acquisition (assessed in qualitative behavioral scores).
4.4. Serum Corticosterone Concentrations and Thymus, Spleen, and Adrenal Weights
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gunnar, M.; Quevedo, K. The Neurobiology of Stress and Development. Annu. Rev. Psychol. 2007, 58, 145–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapolsky, R.M. Stress and the brain: Individual variability and the inverted-U. Nat. Neurosci. 2015, 18, 1344–1346. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; McCormick, C.M. Effects of stressors in adolescence on learning and memory in rodent models. Horm. Behav. 2013, 64, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Chetty, S.; Friedman, A.R.; Taravosh-Lahn, K.; Kirby, E.D.; Mirescu, C.; Guo, F.; Krupik, D.; Nicholas, A.; Geraghty, A.C.; Krishnamurthy, A.; et al. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol. Psychiatry 2014, 19, 1275–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, C.M.; Mathews, I.Z.; Zovkic, I.B. Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 756–765. [Google Scholar] [CrossRef]
- Xia, N.; Li, H. Loneliness, Social Isolation, and Cardiovascular Health. Antioxidants Redox Signal. 2018, 28, 837–851. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Romaguera, J.; Stuber, G.D. Social Isolation Co-opts Fear and Aggression Circuits. Cell 2018, 173, 1071–1072. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, P.; Sellwood, W.; Eldridge, A.; Bentall, R.P. The role of social isolation and social cognition in thought disorder. Psychiatry Res. 2018, 269, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Friedler, B.; Crapser, J.; McCullough, L. One is the deadliest number: The detrimental effects of social isolation on cerebrovascular diseases and cognition. Acta Neuropathol. 2014, 129, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Lara, E.; Caballero, F.F.; Rico-Uribe, L.A.; Olaya, B.; Haro, J.M.; Ayuso-Mateos, J.L.; Miret, M. Are loneliness and social isolation associated with cognitive decline? Int. J. Geriatr. Psychiatry 2019, 34, 1613–1622. [Google Scholar] [CrossRef]
- Wilbarger, J.L.; Gunnar, M.; Schneider, M.; Pollak, S. Sensory processing in internationally adopted, post-institutionalized children. J. Child Psychol. Psychiatry 2010, 51, 1105–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, P.M.; Hanson, J.L.; Pierson, R.K.; Davidson, R.J.; Pollak, S.D. Cerebellar Volume and Cognitive Functioning in Children Who Experienced Early Deprivation. Biol. Psychiatry 2009, 66, 1100–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Bick, J.; A Nelson, C. Early Adverse Experiences and the Developing Brain. Neuropsychopharmacology 2015, 41, 177–196. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.A.; Sheridan, M.A.; Nelson, C.A. Neglect as a Violation of Species-Expectant Experience: Neurodevelopmental Consequences. Biol. Psychiatry 2017, 82, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, F.; Imran-Khan, M.; Zubair, M.; Dehpour, A.R. Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomed. Pharmacother. 2018, 105, 1205–1222. [Google Scholar] [CrossRef]
- Naumova, O.Y.; Rychkov, S.Y.; Kornilov, S.A.; Odintsova, V.V.; Anikina, V.О.; Solodunova, M.Y.; Arintcina, I.A.; Zhukova, M.A.; Ovchinnikova, I.V.; Burenkova, O.V.; et al. Effects of early social deprivation on epigenetic statuses and adaptive behavior of young children: A study based on a cohort of institutionalized infants and toddlers. PLoS ONE 2019, 14, e0214285. [Google Scholar] [CrossRef] [Green Version]
- Mackes, N.K.; Golm, D.; Sarkar, S.; Kumsta, R.; Rutter, M.; Fairchild, G.; Mehta, M.A.; Sonuga-Barke, E.J.S.; Era Young Adult Follow-Up on behalf of the ERA Young Adult Follow-up team. Early childhood deprivation is associated with alterations in adult brain structure despite subsequent environmental enrichment. Proc. Natl. Acad. Sci. USA 2020, 117, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Pechtel, P.; Pizzagalli, D.A. Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology 2011, 214, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Bick, J.; Zeanah, C.H.; Fox, N.A.; Nelson, C.A. Memory and Executive Functioning in 12-Year-Old Children With a History of Institutional Rearing. Child Dev. 2017, 89, 495–508. [Google Scholar] [CrossRef]
- Kudwa, A.E.; McGivern, R.F.; Handa, R.J. Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats. Physiol. Behav. 2014, 129, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bale, T.L.; Epperson, C.N. Sex differences and stress across the lifespan. Nat. Neurosci. 2015, 18, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.J.; Weber, M.A.; Davies, S.R.; Forster, G.L. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 136–154. [Google Scholar] [CrossRef] [PubMed]
- De Veld, D.M.; Riksen-Walraven, J.M.; De Weerth, C. The relation between emotion regulation strategies and physiological stress responses in middle childhood. Psychoneuroendocrinology 2012, 37, 1309–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyola, M.G.; Handa, R.J. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: Sex differences in regulation of stress responsivity. Stress 2017, 20, 476–494. [Google Scholar] [CrossRef]
- Rincón-Cortés, M.; Herman, J.P.; Lupien, S.; Maguire, J.; Shansky, R.M. Stress: Influence of sex, reproductive status and gender. Neurobiol. Stress 2019, 10, 100155. [Google Scholar] [CrossRef]
- Hong, S.; Flashner, B.; Chiu, M.; Hoeve, E.V.; Luz, S.; Bhatnagar, S. Social isolation in adolescence alters behaviors in the forced swim and sucrose preference tests in female but not in male rats. Physiol. Behav. 2012, 105, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Senst, L.; Baimoukhametova, D.; Sterley, T.-L.; Bains, J. Sexually dimorphic neuronal responses to social isolation. eLife 2016, 5, 5904. [Google Scholar] [CrossRef] [Green Version]
- Pisu, M.G.; Garau, A.; Boero, G.; Biggio, F.; Pibiri, V.; Dore, R.; Locci, V.; Paci, E.; Porcu, P.; Serra, M. Sex differences in the outcome of juvenile social isolation on HPA axis function in rats. Neuroscience 2016, 320, 172–182. [Google Scholar] [CrossRef]
- Matsuda, S.; Tohyama, S.; Mizutani, A. Sex differences in the effects of adult short-term isolation rearing on contextual fear memory and extinction. Neurosci. Lett. 2018, 687, 119–123. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; An, A.Y.; Banker, C.; Qian, Y.; O’Donnell, J.M. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur. J. Neurosci. 2019, 52, 2694–2704. [Google Scholar] [CrossRef]
- Weiss, I.C.; Pryce, C.R.; Jongen-Rêlo, A.L.; I Nanz-Bahr, N.; Feldon, J. Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav. Brain Res. 2004, 152, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.B.; Swerdlow, N.R.; Pitcher, L.K.; Geyer, M.A. Isolation rearing-induced deficits in prepulse inhibition and locomotor habituation are not potentiated by water deprivation. Physiol. Behav. 2002, 77, 55–64. [Google Scholar] [CrossRef]
- Tanaka, K.; Osako, Y.; Takahashi, K.; Hidaka, C.; Tomita, K.; Yuri, K. Effects of post-weaning social isolation on social behaviors and oxytocinergic activity in male and female rats. Heliyon 2019, 5, e01646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatch, A.; Wiberg, G.; Zawidzka, Z.; Cann, M.; Airth, J.; Grice, H. Isolation syndrome in the rat. Toxicol. Appl. Pharmacol. 1965, 7, 737–745. [Google Scholar] [CrossRef]
- Maslova, L.N.; Bulygina, V.V.; Amstislavskaia, T.G. Social isolation and social instability in adolescence in rats: Immediate and long-term physiological and behavioral effects. Zhurnal Vysshei Nervnoi Deiatelnosti Imeni IP Pavlova 2009, 59, 598–609. [Google Scholar] [CrossRef]
- Syme, L.A. Social isolation at weaning: Some effects on two measures of activity. Learn. Behav. 1973, 1, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Gamallo, A.; Villanua, A.; Trancho, G.; Fraile, A. Stress adaptation and adrenal activity in isolated and crowded rats. Physiol. Behav. 1986, 36, 217–221. [Google Scholar] [CrossRef]
- Ness, J.W.; Marshall, T.R.; Aravich, P.F. Effects of rearing condition on activity-induced weight loss. Dev. Psychobiol. 1995, 28, 165–173. [Google Scholar] [CrossRef]
- Sánchez, M.M.; Aguado, F.; Sanchez-Toscano, F.; Saphier, D. Neuroendocrine and Immunocytochemical Demonstrations of Decreased Hypothalamo-Pituitary-Adrenal Axis Responsiveness to Restraint Stress after Long-Term Social Isolation 1. Endocrinology 1998, 139, 579–587. [Google Scholar] [CrossRef]
- Krupina, N.; Khlebnikova, N.N.; Orlova, I.N. Early social isolation increases aggression and impairs a short-term habituation in acoustic startle reflex in rats. Patol. Fiziol. Eksperimental’naia Ter. 2016, 59, 4–15. [Google Scholar]
- Khlebnikova, N.N.; Medvedeva, Y.S.; Krupina, N.A. Early social isolation causing emotional motivational alterations in rats, is accompanied by a deficit of short-term habituation, but does not affect spatial memory. Zh. Vyssh. Nervn. Deyat. 2018, 68, 646–662. (In Russian) [Google Scholar] [CrossRef]
- Hall, F.S.; Humby, T.; Wilkinson, L.; Robbins, T. The Effects of Isolation-Rearing of Rats on Behavioural Responses to Food and Environmental Novelty. Physiol. Behav. 1997, 62, 281–290. [Google Scholar] [CrossRef]
- Chakravarthi, K.K.; Avadhani, R. Beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study. J. Nat. Sci. Biol. Med. 2013, 4, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, I.V.; Broshevitskaya, N.D.; Onufriev, M.V.; Moiseeva, Y.V. Sex differences in the anxiety-depressive and defensive behavior of Wistar rats. Zh. Vyssh. Nervn. Deyat. 2020, 70, 243–258. (In Russian) [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hall, F.S.; Huang, S.; Fong, G.W.; Pert, A.; Linnoila, M. Effects of isolation-rearing on locomotion, anxiety and responses to ethanol in Fawn Hooded and Wistar rats. Psychopharmacology 1998, 139, 203–209. [Google Scholar] [CrossRef]
- Brenes, J.C.; Padilla, M.; Fornaguera, J. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behav. Brain Res. 2009, 197, 125–137. [Google Scholar] [CrossRef]
- Varty, G.B.; Paulus, M.P.; Braff, D.L.; Geyer, M.A. Environmental enrichment and isolation rearing in the rat: Effects on locomotor behavior and startle response plasticity. Biol. Psychiatry 2000, 47, 864–873. [Google Scholar] [CrossRef]
- Weiss, I.C.; Di Iorio, L.; Feldon, J.; Domeney, A.M. Strain differences in the isolation-induced effects on prepulse inhibition of the acoustic startle response and on locomotor activity. Behav. Neurosci. 2000, 114, 364–373. [Google Scholar] [CrossRef]
- Lapiz, M.D.S.; Mateo, Y.; Parker, T.; Marsden, C. Effects of noradrenaline depletion in the brain on response to novelty in isolation-reared rats. Psychopharmacology 2000, 152, 312–320. [Google Scholar] [CrossRef]
- Schrijver, N.C.; I Bahr, N.; Weiss, I.C.; Würbel, H.; Würbel, H. Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol. Biochem. Behav. 2002, 73, 209–224. [Google Scholar] [CrossRef]
- Paulus, M.P.; Bakshi, V.P.; Geyer, M.A. Isolation rearing affects sequential organization of motor behavior in post-pubertal but not pre-pubertal Lister and Sprague-Dawley rats. Behav. Brain Res. 1998, 94, 271–280. [Google Scholar] [CrossRef]
- Karim, A.; Arslan, M.I. Isolation modifies the behavioural response in rats. Bangladesh Med Res. Counc. Bull. 2000, 26, 27–32. [Google Scholar]
- Domeney, A.; Feldon, J. The Disruption of Prepulse Inhibition by Social Isolation in the Wistar Rat: How Robust Is the Effect? Pharmacol. Biochem. Behav. 1998, 59, 883–890. [Google Scholar] [CrossRef]
- Heidbreder, C.A.; Weiss, I.C.; Domeney, A.M.; Pryce, C.; Homberg, J.; Hedou, G.; Feldon, J.; Moran, M.C.; Nelson, P. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 2000, 100, 749–768. [Google Scholar] [CrossRef]
- Lukkes, J.L.; Watt, M.J.; Lowry, C.A.; Forster, G.L. Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Front. Behav. Neurosci. 2009, 3. [Google Scholar] [CrossRef] [Green Version]
- Suri, D.; Teixeira, C.M.; Cagliostro, M.K.C.; Mahadevia, D.; Ansorge, M.S. Monoamine-Sensitive Developmental Periods Impacting Adult Emotional and Cognitive Behaviors. Neuropsychopharmacology 2014, 40, 88–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, J. Rodent sex differences in emotional and related behavior. Behav. Biol. 1975, 14, 451–479. [Google Scholar] [CrossRef]
- Hyde, J.F.; Jerussi, T.P. Sexual dimorphism in rats with respect to locomotor activity and circling behavior. Pharmacol. Biochem. Behav. 1983, 18, 725–729. [Google Scholar] [CrossRef]
- Páleníček, T.; Hlinák, Z.; Bubeníková-Valešová, V.; Votava, M.; Horacek, J. An analysis of spontaneous behavior following acute MDMA treatment in male and female rats. Neuro Endocrinol. Lett. 2007, 28, 781–788. [Google Scholar] [PubMed]
- Van Haaren, F.; Van Hest, A.; Heinsbroek, R.P. Behavioral differences between male and female rats: Effects of gonadal hormones on learning and memory. Neurosci. Biobehav. Rev. 1990, 14, 23–33. [Google Scholar] [CrossRef]
- Lefevre, J.; McClintock, M.K. Isolation accelerates reproductive senescence and alters its predictors in female rats. Horm. Behav. 1991, 25, 258–272. [Google Scholar] [CrossRef]
- Smith, S.S. Female sex steroid hormones: From receptors to networks to performance—actions on the sensorimotor system. Prog. Neurobiol. 1994, 44, 55–86. [Google Scholar] [CrossRef]
- Scimonelli, T.; Marucco, M.; Celis, M. Age-Related Changes in Grooming Behavior and Motor Activity in Female Rats. Physiol. Behav. 1999, 66, 481–484. [Google Scholar] [CrossRef]
- Buechel, H.M.; Epopovic, J.; Staggs, K.H.; Anderson, K.L.; Thibault, O.; Blalock, E.M. Aged rats are hypo-responsive to acute restraint: Implications for psychosocial stress in aging. Front. Aging Neurosci. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Mar, A.; Spreekmeester, E.; Rochford, J. Fluoxetine-induced increases in open-field habituation in the olfactory bulbectomized rat depend on test aversiveness but not on anxiety. Pharmacol. Biochem. Behav. 2002, 73, 703–712. [Google Scholar] [CrossRef]
- Teixeira, L.V.; Almeida, R.F.; Rohden, F.; Martins, L.A.M.; Spritzer, P.M.; De Souza, D.O.G. Neuroprotective Effects of Guanosine Administration on In Vivo Cortical Focal Ischemia in Female and Male Wistar Rats. Neurochem. Res. 2018, 43, 1476–1489. [Google Scholar] [CrossRef]
- Elliott, B.; Grunberg, N. Effects of social and physical enrichment on open field activity differ in male and female Sprague–Dawley rats. Behav. Brain Res. 2005, 165, 187–196. [Google Scholar] [CrossRef]
- Redolat, R.; Pérez-Martínez, A.; Carrasco, M.C.; Mesa, P. Individual differences in novelty-seeking and behavioral responses to nicotine: A review of animal studies. Curr. Drug Abus. Rev. 2009, 2, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Gentsch, C.; Lichtsteiner, M.; Feer, H. Locomotor activity, defecation score and corticosterone levels during an openfield exposure: A comparison among individually and group-housed rats, and genetically selected rat lines. Physiol. Behav. 1981, 27, 183–186. [Google Scholar] [CrossRef]
- Gentsch, C.; Lichtsteiner, M.; Frischknecht, H.-R.; Feer, H.; Siegfried, B. Isolation-induced locomotor hyperactivity and hypoalgesia in rats are prevented by handling and reversed by resocialization. Physiol. Behav. 1988, 43, 13–16. [Google Scholar] [CrossRef]
- Rosa, M.L.N.M.; Nobre, M.J.; Oliveira, A.R.; Brandão, M.L. Isolation-Induced Changes in Ultrasonic Vocalization, Fear-Potentiated Startle and Prepulse Inhibition in Rats. Neuropsychobiology 2005, 51, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Lapiz, M.S.; Mateo, Y.; Durkin, S.; Parker, T.; Marsden, C.A. Effects of central noradrenaline depletion by the selective neurotoxin DSP-4 on the behaviour of the isolated rat in the elevated plus maze and water maze. Psychopharmacology 2001, 155, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Leslie, R.A.; Perrot, T.S. Analyzing the experiences of adolescent control rats: Effects of the absence of physical or social stimulation on anxiety-like behaviour are dependent on the test. Physiol. Behav. 2017, 179, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Garthe, A.; Behr, J.; Kempermann, G. Adult-Generated Hippocampal Neurons Allow the Flexible Use of Spatially Precise Learning Strategies. PLoS ONE 2009, 4, e5464. [Google Scholar] [CrossRef] [Green Version]
- Vorhees, C.V.; Williams, M.T. Assessing Spatial Learning and Memory in Rodents. ILAR J. 2014, 55, 310–332. [Google Scholar] [CrossRef] [Green Version]
- Leal, S.L.; Yassa, M.A. Neurocognitive Aging and the Hippocampus across Species. Trends Neurosci. 2015, 38, 800–812. [Google Scholar] [CrossRef]
- Frick, K.M. Estrogens and age-related memory decline in rodents: What have we learned and where do we go from here? Horm. Behav. 2009, 55, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.T.; Moran, M.S.; Vorhees, C.V. Behavioral and growth effects induced by low dose methamphetamine administration during the neonatal period in rats. Int. J. Dev. Neurosci. 2004, 22, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonasson, Z. Meta-analysis of sex differences in rodent models of learning and memory: A review of behavioral and biological data. Neurosci. Biobehav. Rev. 2005, 28, 811–825. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Herring, N.R.; Schaefer, T.L.; Grace, C.E.; Skelton, M.R.; Johnson, H.L.; Williams, M.T. Effects of neonatal (+)-methamphetamine on path integration and spatial learning in rats: Effects of dose and rearing conditions. Int. J. Dev. Neurosci. 2008, 26, 599–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.J.; De Hoz, L.; Morris, R.G. Retrograde amnesia: Neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychology 2005, 43, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Fone, K.C.; Porkess, M.V. Behavioural and neurochemical effects of post-weaning social isolation in rodents—Relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2008, 32, 1087–1102. [Google Scholar] [CrossRef] [PubMed]
- Del Arco, A.; Zhu, S.; Terasmaa, A.; Mohammed, A.H.; Fuxe, K. Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology 2003, 171, 148–155. [Google Scholar] [CrossRef]
- Crine, A.F. Dose-related influence of arginine-vasopressin on a passive avoidance behavior: Effect of rearing conditions. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1984, 8, 379–384. [Google Scholar] [CrossRef]
- Levshina, I.P.; Pasikova, N.V.; Shuikin, N.N. Acquisition of a conditioned avoidance reflex and morphometric characteristics of the sensorimotor cortex in rats subjected to social deprivation in early ontogenesis. Neurosci. Behav. Physiol. 2006, 36, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian-Moghadam, H.; Sadat-Shirazi, M.-S.; Seifi, F.; Niknamfar, S.; Akbarabadi, A.; Toolee, H.; Zarrindast, M.-R. Transgenerational influence of parental morphine exposure on pain perception, anxiety-like behavior and passive avoidance memory among male and female offspring of Wistar rats. EXCLI J. 2019, 18, 1019–1036. [Google Scholar]
- Verharen, J.P.H.; Kentrop, J.; Vanderschuren, L.J.; Adan, R.A. Reinforcement learning across the rat estrous cycle. Psychoneuroendocrinology 2019, 100, 27–31. [Google Scholar] [CrossRef]
- Inozemtsev, A.N. Analysis of the memory trace nature in passive avoidance response. Mosc. Univ. Biol. Sci. Bull. 2013, 68, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Shirenova, S.D.; Krupina, N.A.; Khlebnikova, N.N. Dynamics of pain sensitivity in male and female rats under prolonged social isolation. Russian J. Pain 2019, 17, 27–34. (In Russian) [Google Scholar]
- Shabani, M.; Nazeri, M.; Parsania, S.; Golchin, L.; Razavinasab, M.; Abareghi, F.; Kermani, M. Simultaneous impairment of passive avoidance learning and nociception in rats following chronic swim stress. Adv. Biomed. Res. 2016, 5, 93. [Google Scholar] [CrossRef]
- Parker, V.; Morinan, A. The socially-isolated rat as a model for anxiety. Neuropharmacology 1986, 25, 663–664. [Google Scholar] [CrossRef]
- Wongwitdecha, N.; Marsden, C. Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav. Brain Res. 1996, 75, 27–32. [Google Scholar] [CrossRef]
- Oshima, Y.; Watanabe, T.; Endo, S.; Hata, S.; Watanabe, T.; Osada, K.; Takenaka, A. Effects of eicosapentaenoic acid and docosahexaenoic acid on anxiety-like behavior in socially isolated rats. Biosci. Biotechnol. Biochem. 2017, 82, 716–723. [Google Scholar] [CrossRef] [Green Version]
- Horii, Y.; Kawaguchi, M.; Ohta, R.; Hirano, A.; Watanabe, G.; Kato, N.; Himi, T.; Taya, K. Male Hatano high-avoidance rats show high avoidance and high anxiety-like behaviors as compared with male low-avoidance rats. Exp. Anim. 2012, 61, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruin, N.M.W.J.; Van Loevezijn, A.; Wicke, K.; De Haan, M.; Venhorst, J.; Lange, J.; De Groote, L.; Van Der Neut, M.; Prickaerts, J.; Andriambeloson, E.; et al. The selective 5-HT 6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment. Neurobiol. Learn. Mem. 2016, 133, 100–117. [Google Scholar] [CrossRef]
- Hamden, J.E.; Salehzadeh, M.; Jalabert, C.; O’Leary, T.P.; Snyder, J.S.; Gomez-Sanchez, C.E.; Soma, K.K. Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: Effects of age, sex and stress. Gen. Comp. Endocrinol. 2019, 281, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, V.; Aurousseau, C.; Le Moal, M.; Abrous, D.N. Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur. J. Neurosci. 1999, 11, 4006–4014. [Google Scholar] [CrossRef]
- Rosol, T.J.; Yarrington, J.T.; Latendresse, J.; Capen, C.C. Adrenal Gland: Structure, Function, and Mechanisms of Toxicity. Toxicol. Pathol. 2001, 29, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, H.F.; Dolgas, C.M.; Herman, J.P. Stress Activation of Cortex and Hippocampus Is Modulated by Sex and Stage of Estrus. Endocrinology 2002, 143, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.C.; Duarte, J.O.; Leão, R.M.; Hummel, L.F.; Planeta, C.S.; Crestani, C.C. Adolescent vulnerability to cardiovascular consequences of chronic social stress: Immediate and long-term effects of social isolation during adolescence. Dev. Neurobiol. 2015, 76, 34–46. [Google Scholar] [CrossRef]
- Sarjan, H.N.; Yajurvedi, H.N. Duration dependent effect of chronic stress on primary and secondary lymphoid organs and their reversibility in rats. Immunobiology 2019, 224, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Nacka-Aleksić, M.; Pilipović, I.; Kotur-Stevuljević, J.; Petrović, R.; Sopta, J.; Leposavić, G. Sexual dimorphism in rat thymic involution: A correlation with thymic oxidative status and inflammation. Biogerontology 2019, 20, 545–569. [Google Scholar] [CrossRef] [PubMed]
- Lindenfors, P.; Gittleman, J.L.; Jones, K.E. Sexual Size Dimorphism in Mammals. In Sex, Size, and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism; Fairbairn, D.J., Blanckenhorn, W.U., Székely, T., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 16–26. [Google Scholar] [CrossRef]
Group-Housed Females | Single-Housed Females | Group-Housed Males | Single-Housed Males | |
---|---|---|---|---|
Sample size (N) | 17 | 16 | 20 | 15 |
Body weight | 308.00 ± 9.59 * | 296.93 ± 9.89 * | 505.90 ± 8.84 | 475.7 ± 10.21 # |
Thymus | 0.92 ± 0.05 | 0.77 ± 0.05 | 0.75 ± 0.06 | 0.75 ± 0.05 |
Spleen | 3.51 ± 0.19 * | 2.90 ± 0.19 # | 2.84 ± 0.17 | 2.37 ± 0.20 + |
Adrenal glands | 0.20 ± 0.01 * | 0.24 ± 0.01 * # | 0.11 ± 0.01 | 0.10 ± 0.01 |
Corticosterone | 34.48 ± 3.56 * | 40.58 ± 5.13 * | 17.92 ± 2.89 | 17.71± 2.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupina, N.A.; Shirenova, S.D.; Khlebnikova, N.N. Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sci. 2020, 10, 799. https://doi.org/10.3390/brainsci10110799
Krupina NA, Shirenova SD, Khlebnikova NN. Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sciences. 2020; 10(11):799. https://doi.org/10.3390/brainsci10110799
Chicago/Turabian StyleKrupina, Nataliya A., Sophie D. Shirenova, and Nadezhda N. Khlebnikova. 2020. "Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex" Brain Sciences 10, no. 11: 799. https://doi.org/10.3390/brainsci10110799
APA StyleKrupina, N. A., Shirenova, S. D., & Khlebnikova, N. N. (2020). Prolonged Social Isolation, Started Early in Life, Impairs Cognitive Abilities in Rats Depending on Sex. Brain Sciences, 10(11), 799. https://doi.org/10.3390/brainsci10110799