Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.2.1. Touch Detection Task
2.2.2. Grating Orientation Task
2.3. Transcranial Brain Stimulation
2.4. Data Analysis
3. Results
3.1. Analysis 1—Effects of Musical Expertise
3.2. Analysis 2—Effects of Tactile Experience
4. Discussion
4.1. Effects of Different tDCS Conditions
4.2. Expertise Effects on tDCS-Induced Plasticity and Potential Limits for Further Improvement
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lesemann, F.H.P.; Reuter, E.M.; Godde, B. Tactile stimulation interventions: Influence of stimulation parameters on sensorimotor behavior and neurophysiological correlates in healthy and clinical samples. Neurosci. Biobehav. Rev. 2015, 51, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Godde, B.; Spengler, F.; Dinse, H.R. Associative pairing of tactile stimulation induces somatosensory cortical reorganization in rats and humans. Neuroreport 1996, 8, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Godde, B.; Stauffenberg, B.; Spengler, F.; Dinse, H.R. Tactile coactivation-induced changes in spatial discrimination performance. J. Neurosci. 2000, 20, 1597–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleger, B.; Schwenkreis, H.R.D.R.; Malin, J.P.; Tegenthoff, M. Shifts in cortical representations predict human discrimination improvement. Proc. Natl. Acad. Sci. USA 2001, 98, 12255–12260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodzic, A.; Viet, R.; Karim, A.a.; Erb, M.; Godde, B. Improvement and Decline in Tactile Discrimination Behavior after Cortical Plasticity Induced by Passive Tactile Coactivation. J. Neurosci. 2004, 24, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Ragert, P.; Dinse, H.R.; Pleger, B.; Wilimzig, C.; Frombach, E.; Schwenkreis, P.; Tegenthoff, M. Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans. Neurosci. Lett. 2003, 348, 105–108. [Google Scholar] [CrossRef]
- Karim, A.A.; Schneider, M.; Lotze, M.; Veit, R.; Sauseng, P.; Braun, C.; Birbaumer, N. The truth about lying: Inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb. Cortex 2010, 20, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Khedr, E.M.; Omran, E.A.H.; Ismail, N.M.; El-Hammady, D.H.; Goma, S.H.; Kotb, H.; Galal, H.; Osman, A.M.; Farghaly, H.S.M.; Karim, A.A.; et al. Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: A double blinded, randomized clinical trial. Brain Stimul. 2017, 10, 893–901. [Google Scholar] [CrossRef]
- Terzuolo, C.; Bullock, T. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc. Natl. Acad. Sci. USA 1956, 42, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Gartside, I.B. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: Role of protein synthesis (24). Nature 1968, 220, 383–384. [Google Scholar] [CrossRef]
- Karim, A.A.; Kammer, T.; Cohen, L.; Birbaumer, N. Effects of TMS and tDCS on the physiological regulation of cortical excitability in a brain-computer interface. Biomed. Technol. 2004, 49, 55–57. [Google Scholar]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Ragert, P.; Vandermeeren, Y.; Camus, M.; Cohen, L.G. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin. Neurophysiol. 2008, 119, 805–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loo, C.K.; Alonzo, A.; Mitchell, D.M.B.; Galvez, V.; Sachdev, P. Transcranial direct current stimulation for depression: 3-Week, randomised, sham-controlled trial. Br. J. Psychiatry 2012, 200, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Vaseghi, B.; Zoghi, M.; Jaberzadeh, S. A meta-analysis of site-specific effects of cathodal transcranial direct current stimulation on sensory perception and pain. PLoS ONE 2015, 10, 2015. [Google Scholar] [CrossRef]
- Fujimoto, S.; Kon, N.; Otaka, Y.; Yamaguchi, T.; Nakayama, T.; Kondo, K.; Ragert, P.; Tanaka, S. Transcranial direct current stimulation over the primary and secondary somatosensory cortices transiently improves tactile spatial discrimination in stroke patients. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Grundmann, L.; Rolke, R.; Nitsche, M.A.; Pavlakovic, G.; Happe, S.; Treede, R.-D.; Paulus, W.; Bachmann, C.G. Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 2011, 4, 253–260. [Google Scholar] [CrossRef]
- Antal, A.; Brepohl, N.; Poreisz, C.; Boros, K.; Csifcsak, G.; Paulus, W. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin. J. Pain. 2008, 24, 56–63. [Google Scholar] [CrossRef]
- Rogalewski, A.; Breitenstein, C.; Nitsche, M.A.; Paulus, W.; Knecht, S. Transcranial direct current stimulation disrupts tactile perception. Eur. J. Neurosci. 2004, 20, 313–316. [Google Scholar] [CrossRef]
- Dinse, H.R.; Tegenthoff, M.; Heinisch, C.; Kalisch, T. Aging and Touch. In Encyclopedia of Perception; Goldstein, E.B., Ed.; SAGE Publications: Thousand Oaks, CA, USA, 2010; pp. 21–24. [Google Scholar]
- Bowden, J.L.; McNulty, P.A. Age-related changes in cutaneous sensation in the healthy human hand. Age 2013, 35, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Elbert, T.; Pantev, C.; Wienbruch, C.; Rockstroh, B.; Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 1995, 270, 305–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragert, P.; Schmidt, A.; Altenmüller, E.; Dinse, H.R. Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians. Eur. J. Neurosci. 2004, 19, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Legge, G.E.; Madison, C.; Vaughn, B.N.; Cheong, A.M.Y.; Miller, J.C. Retention of high tactile acuity throughout the life span in blindness. Percept. Psychophys. 2008, 70, 1471–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, E.M.; Voelcker-Rehage, C.; Vieluf, S.; Godde, B. Effects of age and expertise on tactile learning in humans. Eur. J. Neurosci. 2014, 40, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Reuter, E.M.; Voelcker-Rehage, C.; Vieluf, S.; Godde, B. Touch perception throughout working life: Effects of age and expertise. Exp. Brain Res. 2012, 216, 287–297. [Google Scholar] [CrossRef]
- Münte, T.F.; Altenmüller, E.; Jäncke, L. The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 2002, 3, 473–478. [Google Scholar] [CrossRef]
- Gaser, C.; Schlaug, G. Gray Matter Differences between Musicians and Nonmusicians. Ann. N. Y. Acad. Sci. 2003, 999, 514–517. [Google Scholar] [CrossRef]
- Furuya, S.; Nitsche, M.A.; Paulus, W.; Altenmüller, E. Early optimization in finger dexterity of skilled pianists: Implication of transcranial stimulation. BMC Neurosci. 2013, 14, 35. [Google Scholar] [CrossRef] [Green Version]
- Furuya, S.; Klaus, M.; Nitsche, M.A.; Paulus, W.; Altenmüller, E. Ceiling Effects Prevent Further Improvement of Transcranial Stimulation in Skilled Musicians. J. Neurosci. 2014, 34, 13834–13839. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Leek, M.R. Adaptive procedures in psychophysical research. Percept. Psychophys. 2001, 63, 1279–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, C.; LeBlond, D.; Joshi, S.; Zhu, C.; Hsieh, G.; Jacobson, P.; Meyer, M.; Decker, M. Estimating efficacy and drug ED 50′s using von frey thresholds: Impact of Weber’s Law and log transformation. J. Pain 2012, 13, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Schüler, A.; Hegner, Y.L.; Friedel, E.; Godde, B. Facilitating effect of 15-Hz repetitive transcranial magnetic stimulation on tactile perceptual learning. J. Cogn. Neurosci. 2006, 8, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Van Boven, R.W.; Johnson, K.O. A psychophysical study of the mechanisms of sensory recovery following nerve injury in humans. Brain 1994, 117, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Terney, D.; Bergmann, I.; Poreisz, C.; Chaieb, L.; Boros, K.; Nitsche, M.A.; Paulus, W.; Antal, A. Pergolide Increases the Efficacy of Cathodal Direct Current Stimulation to Reduce the Amplitude of Laser-Evoked Potentials in Humans. J. Pain Symptom Manag. 2008, 36, 79–91. [Google Scholar] [CrossRef]
- Klein, E.; Mann, A.; Huber, S.; Bloechle, J.; Willmes, K.; Karim, A.A.; Nuerk, H.-C.; Moeller, K. Bilateral Bi-Cephalic Tdcs with Two Active Electrodes of the Same Polarity Modulates Bilateral Cognitive Processes Differentially. PLoS ONE 2013, 8, e71607. [Google Scholar] [CrossRef]
- Borckardt, J.J.; Bikson, M.; Frohman, H.; Reeves, S.T.; Datta, A.; Bansal, V.; Madan, A.; Barth, K.; George, M.S. A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J. Pain 2012, 13, 112–120. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Doemkes, S.; Karaköse, T.; Antal, A.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 2007. [Google Scholar] [CrossRef] [Green Version]
- Miranda, P.D.; Lomarev, M.; Hallett, M. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 2006, 117, 1623–1629. [Google Scholar] [CrossRef]
- R Core Team 2019. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 11 November 2020).
- Jamovi. (Version 1.0). Available online: https://www.jamovi.org (accessed on 11 November 2020).
- Gallucci, M. GMLj: General Analysis for Linear Models. Available online: https://gamlj.github.io (accessed on 11 November 2020).
- Twisk, J.; Bosman, L.; Hoekstra, T.; Rijnhart, J.; Welten, M.; Heymans, M. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 2018, 10, 80–85. [Google Scholar]
- Bruns, B.G.; Wendel, V.; Trautmann, M. Effects of age and individual experiences on tactile perception over the life span in women. Acta Psychol. (Amst) 2018, 190, 135–141. [Google Scholar]
- Ericsson, K.A.; Smith, J. Toward a General Theory of Expertise: Prospects and Limits; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Duke, R.A.; Simmons, A.L.; Davis, C. It’s Not How Much; It’s How. J. Res. Music Educ. 2009, 56, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Jabusch, H.-C.; Alpers, H.; Kopiez, R.; Vauth, H.; Altenmüller, E. The influence of practice on the development of motor skills in pianists: A longitudinal study in a selected motor task. Hum. Mov. Sci. 2009, 28, 74–84. [Google Scholar] [CrossRef]
- Sloboda, D.G.; Davidson, J.A.; Howe, J.W.; Moore, M.J.A. The role of practice in the development of performing musicians. Br. J. Psychol. 1996, 87, 287–309. [Google Scholar] [CrossRef]
- Fujimoto, S.; Yamaguchi, T.; Otaka, Y.; Kondo, K.; Tanaka, S. Dual-hemisphere transcranial direct current stimulation improves performance in a tactile spatial discrimination task. Clin. Neurophysiol. 2014, 125, 1669–1674. [Google Scholar] [CrossRef]
- Schlaug, G.; Jäncke, L.; Huang, Y.; Staiger, J.F.; Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 1995, 33, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Patston, L.L.M.; Kirk, I.J.; Rolfe, M.H.S.; Corballis, M.C.; Tippett, L.J. The unusual symmetry of musicians: Musicians have equilateral interhemispheric transfer for visual information. Neuropsychologia 2007, 45, 2059–2065. [Google Scholar] [CrossRef]
- Reuter, E.; Voelcker-Rehage, C.; Vieluf, S.; Winneke, A.H.; Godde, B. Extensive occupational finger use of fingers delays age-effects in tactile perception—an ERP study. Atten. Percept. Psychophys. 2014, 76, 1160–1175. [Google Scholar] [CrossRef]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef]
- Tremblay, S.; Larochelle-Brunet, F.; Lafleur, L.-P.; el Mouderrib, S.; Lepage, J.-F.; Théoret, H. Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability. Eur. J. Neurosci. 2016, 44, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
Musical Expertise Group [N] | Age [Years] | Instrument Playing [HpW] | Computer-Typing [HpW] |
---|---|---|---|
Musicians: 17 | 19.8 (2.1) | 6.6 (5) | 9.6 (9.9) |
Non-musicians: 16 | 21.1 (1.5) | - | 13 (8.4) |
SS | df | F | p | η2p | |
---|---|---|---|---|---|
Model | 0.5359 | 11 | 11.50 | <0.001 | 0.592 |
log10TDT_pre [mN] | 0.1999 | 1 | 47.17 | <0.001 * | 0.352 |
tDCS | 0.0338 | 2 | 3.99 | 0.022 * | 0.084 |
Group | 0.0116 | 1 | 2.73 | 0.102 | 0.030 |
tDCS × log10TDT_pre [mN] | 0.0264 | 2 | 3.11 | 0.049 * | 0.067 |
tDCS × Group | 0.0176 | 2 | 2.07 | 0.132 | 0.045 |
Group × log10TDT_pre [mN] | 0.0125 | 1 | 2.94 | 0.090 | 0.033 |
tDCS × Group × log10TDT_pre [mN] | 0.0181 | 2 | 2.14 | 0.124 | 0.047 |
Residuals | 0.3686 | 87 | |||
Total | 0.9045 | 98 |
Moderator Levels | 95% Confidence Interval | |||||||
---|---|---|---|---|---|---|---|---|
log10TDT_pre [mN] | Contrast | Estimate | SE | Lower | Upper | df | t | p |
Mean − 1·SD | Cathodal-anodal | −0.0309 | 0.0235 | −0.07758 | 0.0159 | 87.0 | −1.31 | 0.193 |
Sham-anodal | −0.0341 | 0.0236 | −0.08109 | 0.0128 | 87.0 | −1.44 | 0.152 | |
Mean | Cathodal-anodal | 0.0428 | 0.0165 | 0.00991 | 0.0756 | 87.0 | 2.59 * | 0.011 |
Sham-anodal | 0.0447 | 0.0164 | 0.01199 | 0.0773 | 87.0 | 2.72 * | 0.008 | |
Mean + 1·SD | Cathodal-anodal | 0.1164 | 0.0247 | 0.06732 | 0.1655 | 87.0 | 4.71 * | <0.001 |
Sham-anodal | 0.1235 | 0.0263 | 0.07125 | 0.1757 | 87.0 | 4.70 * | <0.001 |
SS | df | F | p | η2p | |
---|---|---|---|---|---|
Model | 17.5703 | 11 | 5.8345 | <0.001 | 0.425 |
tDCS | 0.9336 | 2 | 1.7050 | 0.188 | 0.038 |
Group | 0.8412 | 1 | 3.0728 | 0.083 | 0.034 |
GOT_pre [mm] | 12.9271 | 1 | 47.2188 | <0.001 * | 0.352 |
tDCS × Group | 0.0238 | 2 | 0.0434 | 0.958 | 0.001 |
Group × GOT_pre [mm] | 0.0359 | 1 | 0.1311 | 0.718 | 0.002 |
tDCS × GOT_pre [mm] | 0.2867 | 2 | 0.5237 | 0.594 | 0.012 |
Group × tDCS × GOT_pre [mm] | 0.6322 | 2 | 1.1546 | 0.320 | 0.026 |
Residuals | 23.8179 | 87 | |||
Total | 41.3882 | 98 |
SS | df | F | p | η2p | |
---|---|---|---|---|---|
Model | 0.59394 | 11 | 15.126 | <0.001 | 0.657 |
log10TDT_pre [mN] | 0.28749 | 1 | 80.535 | <0.001 * | 0.481 |
TactileExperience | 0.00135 | 1 | 0.379 | 0.540 | 0.004 |
tDCS | 0.02546 | 2 | 3.566 | 0.032 * | 0.076 |
tDCS × TactileExperience | 0.00340 | 2 | 0.476 | 0.623 | 0.011 |
tDCS × log10TDT_pre [mN] | 0.08393 | 2 | 11.756 | <0.001 * | 0.213 |
TactileExperience × log10TDT_pre [mN] | 0.03955 | 1 | 11.078 | 0.001 * | 0.113 |
tDCS × TactileExperience × log10TDT_pre [mN] | 0.07585 | 2 | 10.624 | <0.001 * | 0.196 |
Residuals | 0.31057 | 87 | |||
Total | 0.90451 | 98 |
Moderator Levels | 95% Confidence Interval | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tactile Experience | log10TDT _pre [mN] | Contrast | Estimate | SE | Lower | Upper | df | t | p |
Mean − 1 SD | Mean − 1 SD | Cathodal-anodal | 0.01735 | 0.0293 | −0.04086 | 0.07555 | 87.0 | 0.592 | 0.555 |
sham-anodal | 0.04011 | 0.0330 | −0.02555 | 0.10576 | 87.0 | 1.214 | 0.228 | ||
Mean | Cathodal-anodal | 0.04847 | 0.0213 | 0.00603 | 0.09090 | 87.0 | 2.270 * | 0.026 | |
sham-anodal | 0.02278 | 0.0222 | −0.02136 | 0.06693 | 87.0 | 1.026 | 0.308 | ||
Mean + 1 SD | Cathodal-anodal | 0.07959 | 0.0258 | 0.02828 | 0.13089 | 87.0 | 3.083 * | 0.003 | |
sham-anodal | 0.00546 | 0.0397 | −0.07349 | 0.08441 | 87.0 | 0.138 | 0.891 | ||
Mean | Mean − 1 SD | Cathodal-anodal | −0.03489 | 0.0216 | −0.07790 | 0.00813 | 87.0 | −1.612 * | 0.111 |
sham-anodal | −0.01078 | 0.0227 | −0.05600 | 0.03444 | 87.0 | −0.474 | 0.637 | ||
Mean | Cathodal-anodal | 0.03883 | 0.0149 | 0.00922 | 0.06845 | 87.0 | 2.606 * | 0.011 | |
sham-anodal | 0.02768 | 0.0157 | −0.00347 | 0.05883 | 87.0 | 1.766 | 0.081 | ||
Mean + 1 SD | Cathodal-anodal | 0.11256 | 0.0213 | 0.07022 | 0.15489 | 87.0 | 5.285 * | <0.001 | |
sham-anodal | 0.06614 | 0.0283 | 0.00993 | 0.12235 | 87.0 | 2.339 * | 0.022 | ||
Mean + 1 SD | Mean − 1 SD | Cathodal-anodal | −0.08712 | 0.0346 | −0.15582 | −0.01843 | 87.0 | −2.521 * | 0.014 |
sham-anodal | −0.06167 | 0.0320 | −0.12521 | 0.00187 | 87.0 | −1.929 | 0.057 | ||
Mean | Cathodal-anodal | 0.02920 | 0.0220 | −0.01455 | 0.07296 | 87.0 | 1.327 | 0.188 | |
sham-anodal | 0.03258 | 0.0226 | −0.01240 | 0.07755 | 87.0 | 1.440 | 0.154 | ||
Mean + 1 SD | Cathodal-anodal | 0.14553 | 0.0314 | 0.08312 | 0.20794 | 87.0 | 4.635 * | <0.001 | |
sham-anodal | 0.12682 | 0.0267 | 0.07367 | 0.17997 | 87.0 | 4.742 * | <0.001 |
SS | df | F | p | η2p | |
---|---|---|---|---|---|
Model | 16.5792 | 11 | 5.2854 | <0.001 | 0.401 |
TactileExperience | 0.0270 | 1 | 0.0946 | 0.759 | 0.001 |
tDCS | 0.7019 | 2 | 1.2308 | 0.297 | 0.028 |
GOT_pre [mm] | 13.6236 | 1 | 47.7752 | <0.001 * | 0.354 |
tDCS × TactileExperience | 0.3849 | 2 | 0.6748 | 0.512 | 0.015 |
GOT_pre [mm] × TactileExperience | 0.0241 | 1 | 0.0845 | 0.772 | 0.001 |
GOT_pre [mm] × tDCS | 0.2279 | 2 | 0.3996 | 0.672 | 0.009 |
GOT_pre [mm] × TactileExperience × tDCS | 0.4126 | 2 | 0.7235 | 0.488 | 0.016 |
Residuals | 24.8090 | 87 | |||
Total | 41.3882 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godde, B.; Dadashev, L.; Karim, A.A. Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians. Brain Sci. 2020, 10, 843. https://doi.org/10.3390/brainsci10110843
Godde B, Dadashev L, Karim AA. Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians. Brain Sciences. 2020; 10(11):843. https://doi.org/10.3390/brainsci10110843
Chicago/Turabian StyleGodde, Ben, Lev Dadashev, and Ahmed A. Karim. 2020. "Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians" Brain Sciences 10, no. 11: 843. https://doi.org/10.3390/brainsci10110843
APA StyleGodde, B., Dadashev, L., & Karim, A. A. (2020). Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians. Brain Sciences, 10(11), 843. https://doi.org/10.3390/brainsci10110843