Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future
Abstract
:1. Introduction
2. Spinal Cord MRI and the McDonald Criteria in MS Diagnosis
3. Spinal Cord Atrophy
4. Spinal Cord MRI in Multiple Sclerosis
4.1. Qualitative MRI
4.1.1. Standardized SC MRI Protocol in MS
4.1.2. Emerging Sequences in Addition to the Standardized SC MRI Protocol
4.2. Quantitative MRI
4.2.1. Relaxometry and Proton Density
4.2.2. Magnetization Transfer
4.2.3. Diffusion Imaging
4.2.4. Myelin and Myelin Water Imaging
4.3. MR Spectroscopy
4.4. Functional MRI
5. Spinal Cord Imaging and Response to Disease Modifying Therapies
6. Ultra-High Field Spinal Cord MRI in Multiple Sclerosis
7. Summary and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciccarelli, O.; Cohen, J.A.; Reingold, S.C.; Weinshenker, B.G.; Amato, M.P.; Banwell, B.; Barkhof, F.; Bebo, B.; Becher, B.; Bethoux, F. Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurol. 2019, 18, 185–197. [Google Scholar] [CrossRef]
- Kearney, H.; Miller, D.H.; Ciccarelli, O. Spinal cord MRI in multiple sclerosis—Diagnostic, prognostic and clinical value. Nat. Rev. Neurol. 2015, 11, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Diaz, E.; Morales, H. Spinal cord anatomy and clinical syndromes. In Seminars in Ultrasound, CT and MRI; WB Saunders: Philadelphia, PA, USA, 2016; pp. 360–371. [Google Scholar]
- Losseff, N.; Webb, S.; O’riordan, J.; Page, R.; Wang, L.; Barker, G.; Tofts, P.S.; McDonald, W.I.; Miller, D.H.; Thompson, A.J. Spinal cord atrophy and disability in multiple sclerosis: A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996, 119, 701–708. [Google Scholar] [CrossRef]
- Bernitsas, E.; Bao, F.; Seraji-Bozorgzad, N.; Chorostecki, J.; Santiago, C.; Tselis, A.; Caon, C.; Zak, I.; Millis, S.; Khan, O. Spinal cord atrophy in multiple sclerosis and relationship with disability across clinical phenotypes. Mult. Scler. Relat. Disord. 2015, 4, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Casserly, C.; Seyman, E.E.; Alcaide-Leon, P.; Guenette, M.; Lyons, C.; Sankar, S.; Svendrovski, A.; Baral, S.; Oh, J. Spinal cord atrophy in multiple sclerosis: A systematic review and meta-analysis. J. Neuroimaging 2018, 28, 556–586. [Google Scholar] [CrossRef]
- Marrodan, M.; Gaitán, M.I.; Correale, J. Spinal Cord Involvement in MS and Other Demyelinating Diseases. Biomedicines 2020, 8, 130. [Google Scholar] [CrossRef]
- Muccilli, A.; Seyman, E.; Oh, J. Spinal cord MRI in multiple sclerosis. Neurol. Clin. 2018, 36, 35–57. [Google Scholar] [CrossRef]
- Song, X.; Li, D.; Qiu, Z.; Su, S.; Wu, Y.; Wang, J.; Liu, Z.; Dong, H. Correlation between EDSS scores and cervical spinal cord atrophy at 3T MRI in multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2020, 37, 101426. [Google Scholar] [CrossRef]
- Inglese, M.; Petracca, M. MRI in multiple sclerosis: Clinical and research update. Curr. Opin. Neurol. 2018, 31, 249–255. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Brownlee, W.J.; Swanton, J.K.; Miszkiel, K.A.; Miller, D.H.; Ciccarelli, O. Should the symptomatic region be included in dissemination in space in MRI criteria for MS? Neurology 2016, 87, 680–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traboulsee, A.; Simon, J.; Stone, L.; Fisher, E.; Jones, D.; Malhotra, A.; Newsome, S.; Oh, J.; Reich, D.; Richert, N. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. Am. J. Neuroradiol. 2016, 37, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.J.; Pettigrew, R.; Naismith, R.T.; Chahin, S.; Krieger, S.; Weinshenker, B. Challenges in multiple sclerosis diagnosis: Misunderstanding and misapplication of the McDonald criteria. Mult. Scler. J. 2020. [Google Scholar] [CrossRef]
- McGavern, D.B.; Murray, P.D.; Rivera-Quiñones, C.; Schmelzer, J.D.; Low, P.A.; Rodriguez, M. Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following demyelination in a chronic inflammatory model of multiple sclerosis. Brain 2000, 123, 519–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeydan, B.; Gu, X.; Atkinson, E.J.; Keegan, B.M.; Weinshenker, B.G.; Tillema, J.-M.; Pelletier, D.; Azevedo, C.J.; Lebrun-Frenay, C.; Siva, A. Cervical spinal cord atrophy: An early marker of progressive MS onset. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e435. [Google Scholar] [CrossRef] [Green Version]
- Biberacher, V.; Boucard, C.C.; Schmidt, P.; Engl, C.; Buck, D.; Berthele, A.; Hoshi, M.-M.; Zimmer, C.; Hemmer, B.; Mühlau, M. Atrophy and structural variability of the upper cervical cord in early multiple sclerosis. Mult. Scler. J. 2015, 21, 875–884. [Google Scholar] [CrossRef]
- Furby, J.; Hayton, T.; Anderson, V.; Altmann, D.; Brenner, R.; Chataway, J.; Hughes, R.; Smith, K.; Miller, D.; Kapoor, R. Magnetic resonance imaging measures of brain and spinal cord atrophy correlate with clinical impairment in secondary progressive multiple sclerosis. Mult. Scler. J. 2008, 14, 1068–1075. [Google Scholar] [CrossRef]
- Lin, X.; Tench, C.; Turner, B.; Blumhardt, L.; Constantinescu, C. Spinal cord atrophy and disability in multiple sclerosis over four years: Application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon β-1a (Rebif) treatment trial. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1090–1094. [Google Scholar] [CrossRef]
- Yiannakas, M.C.; Mustafa, A.M.; De Leener, B.; Kearney, H.; Tur, C.; Altmann, D.R.; De Angelis, F.; Plantone, D.; Ciccarelli, O.; Miller, D.H. Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis. NeuroImage Clin. 2016, 10, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, V.; Miller, D.; Leary, S.; Rovaris, M.; Barkhof, F.; Brochet, B.; Dousset, V.; Filippi, M.; Hintzen, R.; Montalban, X. One year follow up study of primary and transitional progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2000, 68, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonacchi, R.; Pagani, E.; Meani, A.; Cacciaguerra, L.; Preziosa, P.; De Meo, E.; Filippi, M.; Rocca, M.A. Clinical relevance of multiparametric MRI assessment of cervical cord damage in multiple sclerosis. Radiology 2020, 200430. [Google Scholar] [CrossRef] [PubMed]
- Moccia, M.; Prados, F.; Filippi, M.; Rocca, M.A.; Valsasina, P.; Brownlee, W.J.; Zecca, C.; Gallo, A.; Rovira, A.; Gass, A. Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Ann. Neurol. 2019, 86, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Prados, F.; Moccia, M.; Johnson, A.; Yiannakas, M.; Grussu, F.; Cardoso, M.J.; Ciccarelli, O.; Ourselin, S.; Barkhof, F.; Wheeler-Kingshott, C. Generalised boundary shift integral for longitudinal assessment of spinal cord atrophy. NeuroImage 2020, 209, 116489. [Google Scholar] [CrossRef]
- Moccia, M.; Valsecchi, N.; Ciccarelli, O.; Van Schijndel, R.; Barkhof, F.; Prados, F. Spinal cord atrophy in a primary progressive multiple sclerosis trial: Improved sample size using GBSI. NeuroImage Clin. 2020, 102418. [Google Scholar] [CrossRef]
- Thompson, A.J.; Kermode, A.G.; MacManus, D.; Kendall, B.; Kingsley, D.; Moseley, I.; McDonald, W. Patterns of disease activity in multiple sclerosis: Clinical and magnetic resonance imaging study. Br. Med. J. 1990, 300, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Rocca, M.A.; De Stefano, N.; Enzinger, C.; Fisher, E.; Horsfield, M.A.; Inglese, M.; Pelletier, D.; Comi, G. Magnetic resonance techniques in multiple sclerosis: The present and the future. Arch. Neurol. 2011, 68, 1514–1520. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.R.; Aleksanderek, I.; Cohen-Adad, J.; Tarmohamed, Z.; Tetreault, L.; Smith, N.; Cadotte, D.W.; Crawley, A.; Ginsberg, H.; Mikulis, D.J. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin. 2016, 10, 192–238. [Google Scholar] [CrossRef] [Green Version]
- Hittmair, K.; Mallek, R.; Prayer, D.; Schindler, E.G.; Kollegger, H. Spinal cord lesions in patients with multiple sclerosis: Comparison of MR pulse sequences. Am. J. Neuroradiol. 1996, 17, 1555–1565. [Google Scholar]
- Filippi, M.; Yousry, T.A.; Alkadhi, H.; Stehling, M.; Horsfield, M.A.; Voltz, R. Spinal cord MRI in multiple sclerosis with multicoil arrays: A comparison between fast spin echo and fast FLAIR. J. Neurol. Neurosurg. Psychiatry 1996, 61, 632–635. [Google Scholar] [CrossRef] [Green Version]
- Keiper, M.D.; Grossman, R.I.; Brunson, J.C.; Schnall, M.D. The low sensitivity of fluid-attenuated inversion-recovery MR in the detection of multiple sclerosis of the spinal cord. Am. J. Neuroradiol. 1997, 18, 1035–1039. [Google Scholar] [PubMed]
- Stevenson, V.L.; Gawne-Cain, M.L.; Barker, G.J.; Thompson, A.J.; Miller, D. Imaging of the spinal cord and brain in multiple sclerosis: A comparative study between fast FLAIR and fast spin echo. J. Neurol. 1997, 244, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Poonawalla, A.H.; Hou, P.; Nelson, F.A.; Wolinsky, J.S.; Narayana, P.A. Cervical spinal cord lesions in multiple sclerosis: T1-weighted inversion-recovery MR imaging with phase-sensitive reconstruction. Radiology 2008, 246, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Mirafzal, S.; Goujon, A.; Deschamps, R.; Zuber, K.; Sadik, J.; Gout, O.; Lecler, A.; Savatovsky, J. 3D PSIR MRI at 3 Tesla improves detection of spinal cord lesions in multiple sclerosis. J. Neurol. 2020, 267, 406–414. [Google Scholar] [CrossRef]
- Shayganfar, A.; Sarrami, A.; Fathi, S.; Shaygannejad, V.; Shamsian, S. Phase sensitive reconstruction of T1-weighted inversion recovery in the evaluation of the cervical cord lesions in Multiple Sclerosis; is it similarly eligible in 1.5 T magnet fields? Mult. Scler. Relat. Disord. 2018, 23, 17–22. [Google Scholar] [CrossRef]
- Kearney, H.; Yiannakas, M.C.; Abdel-Aziz, K.; Wheeler-Kingshott, C.A.; Altmann, D.R.; Ciccarelli, O.; Miller, D.H. Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J. Magn. Reson. Imaging 2014, 39, 617–623. [Google Scholar] [CrossRef]
- Kearney, H.; Miszkiel, K.; Yiannakas, M.; Ciccarelli, O.; Miller, D. A pilot MRI study of white and grey matter involvement by multiple sclerosis spinal cord lesions. Mult. Scler. Relat. Disord. 2013, 2, 103–108. [Google Scholar] [CrossRef]
- Philpott, C.; Brotchie, P. Comparison of MRI sequences for evaluation of multiple sclerosis of the cervical spinal cord at 3 T. Eur. J. Radiol. 2011, 80, 780–785. [Google Scholar] [CrossRef]
- Bot, J.C.; Barkhof, F.; Polman, C.; à Nijeholt, G.L.; De Groot, V.; Bergers, E.; Ader, H.; Castelijns, J. Spinal cord abnormalities in recently diagnosed MS patients: Added value of spinal MRI examination. Neurology 2004, 62, 226–233. [Google Scholar] [CrossRef]
- Weier, K.; Mazraeh, J.; Naegelin, Y.; Thoeni, A.; Hirsch, J.G.; Fabbro, T.; Bruni, N.; Duyar, H.; Bendfeldt, K.; Radue, E.-W. Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult. Scler. J. 2012, 18, 1560–1569. [Google Scholar] [CrossRef]
- Nair, G.; Absinta, M.; Reich, D.S. Optimized T1-MPRAGE sequence for better visualization of spinal cord multiple sclerosis lesions at 3T. Am. J. Neuroradiol. 2013, 34, 2215–2222. [Google Scholar] [CrossRef] [PubMed]
- Riederer, I.; Karampinos, D.; Settles, M.; Preibisch, C.; Bauer, J.; Kleine, J.; Mühlau, M.; Zimmer, C. Double inversion recovery sequence of the cervical spinal cord in multiple sclerosis and related inflammatory diseases. Am. J. Neuroradiol. 2015, 36, 219–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, J.P.; Kober, T.; Krueger, G.; van der Zwaag, W.; Van de Moortele, P.-F.; Gruetter, R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 2010, 49, 1271–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demortière, S.; Lehmann, P.; Pelletier, J.; Audoin, B.; Callot, V. Improved Cervical Cord Lesion Detection with 3D-MP2RAGE Sequence in Patients with Multiple Sclerosis. Am. J. Neuroradiol. 2020, 41, 1131–1134. [Google Scholar] [CrossRef]
- Filippi, M.; Bozzali, M.; Horsfield, M.; Rocca, M.; Sormani, M.; Iannucci, G.; Colombo, B.; Comi, G. A conventional and magnetization transfer MRI study of the cervical cord in patients with MS. Neurology 2000, 54, 207. [Google Scholar] [CrossRef]
- Valsasina, P.; Rocca, M.A.; Agosta, F.; Benedetti, B.; Horsfield, M.A.; Gallo, A.; Rovaris, M.; Comi, G.; Filippi, M. Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage 2005, 26, 822–828. [Google Scholar] [CrossRef]
- Zackowski, K.M.; Smith, S.A.; Reich, D.S.; Gordon-Lipkin, E.; Chodkowski, B.A.; Sambandan, D.R.; Shteyman, M.; Bastian, A.J.; Van Zijl, P.C.; Calabresi, P.A. Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord. Brain 2009, 132, 1200–1209. [Google Scholar] [CrossRef] [Green Version]
- Laule, C.; Vavasour, I.; Zhao, Y.; Traboulsee, A.; Oger, J.; Vavasour, J.; Mackay, A.; Li, D. Two-year study of cervical cord volume and myelin water in primary progressive multiple sclerosis. Mult. Scler. J. 2010, 16, 670–677. [Google Scholar] [CrossRef]
- Oh, J.; Saidha, S.; Chen, M.; Smith, S.A.; Prince, J.; Jones, C.; Diener-West, M.; van Zijl, P.C.; Reich, D.S.; Calabresi, P.A. Spinal cord quantitative MRI discriminates between disability levels in multiple sclerosis. Neurology 2013, 80, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Raz, E.; Bester, M.; Sigmund, E.; Tabesh, A.; Babb, J.; Jaggi, H.; Helpern, J.; Mitnick, R.; Inglese, M. A better characterization of spinal cord damage in multiple sclerosis: A diffusional kurtosis imaging study. Am. J. Neuroradiol. 2013, 34, 1846–1852. [Google Scholar] [CrossRef] [Green Version]
- By, S.; Xu, J.; Box, B.A.; Bagnato, F.R.; Smith, S.A. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. NeuroImage Clin. 2017, 15, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Collorone, S.; Cawley, N.; Grussu, F.; Prados, F.; Tona, F.; Calvi, A.; Kanber, B.; Schneider, T.; Kipp, L.; Zhang, H. Reduced neurite density in the brain and cervical spinal cord in relapsing–remitting multiple sclerosis: A NODDI study. Mult. Scler. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Rasoanandrianina, H.; Demortière, S.; Trabelsi, A.; Ranjeva, J.; Girard, O.; Duhamel, G.; Guye, M.; Pelletier, J.; Audoin, B.; Callot, V. Sensitivity of the Inhomogeneous Magnetization Transfer Imaging Technique to Spinal Cord Damage in Multiple Sclerosis. Am. J. Neuroradiol. 2020, 41, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Chen, M.; Cybulsky, K.; Suthiphosuwan, S.; Seyman, E.; Dewey, B.; Diener-West, M.; van Zijl, P.; Prince, J.; Reich, D. Five-year longitudinal changes in quantitative spinal cord MRI in multiple sclerosis. Mult. Scler. 2020. [Google Scholar] [CrossRef]
- Cortese, R.; Tur, C.; Prados, F.; Schneider, T.; Kanber, B.; Moccia, M.; Wheeler-Kingshott, C.A.G.; Thompson, A.J.; Barkhof, F.; Ciccarelli, O. Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis. Mult. Scler. J. 2020. [Google Scholar] [CrossRef]
- Cercignani, M.; Dowell, N.G.; Tofts, P.S. Quantitative MRI of the Brain: Principles of Physical Measurement; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Rasoanandrianina, H.; Massire, A.; Taso, M.; Guye, M.; Ranjeva, J.P.; Kober, T.; Callot, V. Regional T1 mapping of the whole cervical spinal cord using an optimized MP2RAGE sequence. NMR Biomed. 2019, 32, e4142. [Google Scholar] [CrossRef]
- Marques, J.P.; Gruetter, R. New Developments and Applications of the MP2RAGE Sequence-Focusing the Contrast and High Spatial Resolution R 1 Mapping. PLoS ONE 2013, 8, e69294. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Edden, R.A.; Farrell, J.A.; Barker, P.B.; Van Zijl, P.C. Measurement of T1 and T2 in the cervical spinal cord at 3 tesla. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2008, 60, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Battiston, M.; Schneider, T.; Prados, F.; Grussu, F.; Yiannakas, M.C.; Ourselin, S.; Gandini Wheeler-Kingshott, C.A.; Samson, R.S. Fast and reproducible in vivo T1 mapping of the human cervical spinal cord. Magn. Reson. Med. 2018, 79, 2142–2148. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Xavier, G.; Ali, F.; Craig, K.J.; Gerald, V.R.; Hugo, W.M.; van Zijl Peter, C.M. Magnetization transfer weighted imaging in the upper cervical spinal cord using cerebrospinal fluid as intersubject normalization reference (MTCSF imaging). Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2005, 54, 201–206. [Google Scholar] [CrossRef]
- de Figueiredo, E.H.; Borgonovi, A.F.; Doring, T.M. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging. Magn. Reson. Imaging Clin. 2011, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, P.T.; Eccles, C.; Xia, Y. NMR microscopy of dynamic displacements: K-space and q-space imaging. J. Phys. E Sci. Instrum. 1988, 21, 820. [Google Scholar] [CrossRef]
- Schilling, K.G.; By, S.; Feiler, H.R.; Box, B.A.; O’Grady, K.P.; Witt, A.; Landman, B.A.; Smith, S.A. Diffusion MRI microstructural models in the cervical spinal cord—Application, normative values, and correlations with histological analysis. NeuroImage 2019, 201, 116026. [Google Scholar] [CrossRef] [PubMed]
- Grussu, F.; Schneider, T.; Zhang, H.; Alexander, D.C.; Wheeler-Kingshott, C.A. Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. Neuroimage 2015, 111, 590–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- By, S.; Xu, J.; Box, B.A.; Bagnato, F.R.; Smith, S.A. Multi-compartmental diffusion characterization of the human cervical spinal cord in vivo using the spherical mean technique. NMR Biomed. 2018, 31, e3894. [Google Scholar] [CrossRef] [PubMed]
- Gass, A.; Rocca, M.A.; Agosta, F.; Ciccarelli, O.; Chard, D.; Valsasina, P.; Brooks, J.C.; Bischof, A.; Eisele, P.; Kappos, L. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol. 2015, 14, 443–454. [Google Scholar] [CrossRef]
- Oh, J.; Sotirchos, E.S.; Saidha, S.; Whetstone, A.; Chen, M.; Newsome, S.D.; Zackowski, K.; Balcer, L.J.; Frohman, E.; Prince, J. Relationships between quantitative spinal cord MRI and retinal layers in multiple sclerosis. Neurology 2015, 84, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Kearney, H.; Schneider, T.; Yiannakas, M.; Altmann, D.; Wheeler-Kingshott, C.; Ciccarelli, O.; Miller, D. Spinal cord grey matter abnormalities are associated with secondary progression and physical disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 608–614. [Google Scholar] [CrossRef]
- Oh, J.; Zackowski, K.; Chen, M.; Newsome, S.; Saidha, S.; Smith, S.A.; Diener-West, M.; Prince, J.; Jones, C.K.; Van Zijl, P.C. Multiparametric MRI correlates of sensorimotor function in the spinal cord in multiple sclerosis. Mult. Scler. J. 2013, 19, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Théaudin, M.; Saliou, G.; Ducot, B.; Deiva, K.; Denier, C.; Adams, D.; Ducreux, D. Short-term evolution of spinal cord damage in multiple sclerosis: A diffusion tensor MRI study. Neuroradiology 2012, 54, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, W.; Nagels, G.; Emonds, G.; Leemans, A.; Sijbers, J.; Van Goethem, J.; Parizel, P.M. A diffusion tensor imaging group study of the spinal cord in multiple sclerosis patients with and without T2 spinal cord lesions. J. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2009, 30, 25–34. [Google Scholar]
- Farrell, J.A.; Smith, S.A.; Gordon-Lipkin, E.M.; Reich, D.S.; Calabresi, P.A.; van Zijl, P.C. High b-value q-space diffusion-weighted MRI of the human cervical spinal cord in vivo: Feasibility and application to multiple sclerosis. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2008, 59, 1079–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccarelli, O.; Wheeler-Kingshott, C.; McLean, M.; Cercignani, M.; Wimpey, K.; Miller, D.; Thompson, A. Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis. Brain 2007, 130, 2220–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohgiya, Y.; Oka, M.; Hiwatashi, A.; Liu, X.; Kakimoto, N.; Westesson, P.-L.A.; Ekholm, S.E. Diffusion tensor MR imaging of the cervical spinal cord in patients with multiple sclerosis. Eur. Radiol. 2007, 17, 2499–2504. [Google Scholar] [CrossRef]
- Simon, J.H.; Zhang, S.; Laidlaw, D.H.; Miller, D.E.; Brown, M.; Corboy, J.; Bennett, J. Identification of fibers at risk for degeneration by diffusion tractography in patients at high risk for MS after a clinically isolated syndrome. J. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2006, 24, 983–988. [Google Scholar] [CrossRef]
- Abdel-Aziz, K.; Schneider, T.; Solanky, B.S.; Yiannakas, M.C.; Altmann, D.R.; Wheeler-Kingshott, C.A.; Peters, A.L.; Day, B.L.; Thompson, A.J.; Ciccarelli, O. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain 2015, 138, 1568–1582. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61, 1000–1016. [Google Scholar] [CrossRef]
- Haacke, E.M.; Liu, S.; Buch, S.; Zheng, W.; Wu, D.; Ye, Y. Quantitative susceptibility mapping: Current status and future directions. Magn. Reson. Imaging 2015, 33, 1–25. [Google Scholar] [CrossRef]
- Laule, C.; Vavasour, I.; Moore, G.; Oger, J.; Li, D.K.; Paty, D.; MacKay, A. Water content and myelin water fraction in multiple sclerosis. J. Neurol. 2004, 251, 284–293. [Google Scholar] [CrossRef]
- Ma, Y.-J.; Jang, H.; Chang, E.Y.; Hiniker, A.; Head, B.P.; Lee, R.R.; Corey-Bloom, J.; Bydder, G.M.; Du, J. Ultrashort echo time (UTE) magnetic resonance imaging of myelin: Technical developments and challenges. Quant. Imaging Med. Surg. 2020, 10, 1186. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Cao, S.; Zhang, Y.; Guan, X.; Yan, F.; Yeom, K.W.; Liu, C. Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction. NeuroImage 2019, 202, 116064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccarelli, O.; Altmann, D.; McLean, M.; Wheeler-Kingshott, C.; Wimpey, K.; Miller, D.; Thompson, A. Spinal cord repair in MS: Does mitochondrial metabolism play a role? Neurology 2010, 74, 721–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccarelli, O.; Toosy, A.T.; De Stefano, N.; Wheeler-Kingshott, C.A.; Miller, D.H.; Thompson, A.J. Assessing neuronal metabolism in vivo by modeling imaging measures. J. Neurosci. 2010, 30, 15030–15033. [Google Scholar] [CrossRef] [Green Version]
- Marliani, A.F.; Clementi, V.; Riccioli, L.A.; Agati, R.; Carpenzano, M.; Salvi, F.; Leonardi, M. Quantitative cervical spinal cord 3T proton MR spectroscopy in multiple sclerosis. Am. J. Neuroradiol. 2010, 31, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Bellenberg, B.; Busch, M.; Trampe, N.; Gold, R.; Chan, A.; Lukas, C. 1H-magnetic resonance spectroscopy in diffuse and focal cervical cord lesions in multiple sclerosis. Eur. Radiol. 2013, 23, 3379–3392. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.; Bessar, M.; Ahmed, A.; Elfiki, I.; Elkhatib, T.; Mohamed, A. Does MR spectroscopy of normal-appearing cervical spinal cord in patients with multiple sclerosis have diagnostic value in assessing disease progression? A prospective comparative analysis. Clin. Radiol. 2018, 73, 835.e831–835.e839. [Google Scholar] [CrossRef]
- Stroman, P.; Krause, V.; Malisza, K.; Frankenstein, U.; Tomanek, B. Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2002, 48, 122–127. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.-M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [Green Version]
- Agosta, F.; Valsasina, P.; Caputo, D.; Stroman, P.W.; Filippi, M. Tactile-associated recruitment of the cervical cord is altered in patients with multiple sclerosis. Neuroimage 2008, 39, 1542–1548. [Google Scholar] [CrossRef]
- Agosta, F.; Valsasina, P.; Rocca, M.; Caputo, D.; Sala, S.; Judica, E.; Stroman, P.; Filippi, M. Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2008, 59, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Agosta, F.; Valsasina, P.; Absinta, M.; Sala, S.; Caputo, D.; Filippi, M. Primary progressive multiple sclerosis: Tactile-associated functional MR activity in the cervical spinal cord. Radiology 2009, 253, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Valsasina, P.; Agosta, F.; Absinta, M.; Sala, S.; Caputo, D.; Filippi, M. Cervical cord functional MRI changes in relapse-onset MS patients. J. Neurol. Neurosurg. Psychiatry 2010, 81, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Valsasina, P.; Rocca, M.A.; Absinta, M.; Agosta, F.; Caputo, D.; Comi, G.; Filippi, M. Cervical cord FMRI abnormalities differ between the progressive forms of multiple sclerosis. Hum. Brain Mapp. 2012, 33, 2072–2080. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.; Absinta, M.; Valsasina, P.; Copetti, M.; Caputo, D.; Comi, G.; Filippi, M. Abnormal cervical cord function contributes to fatigue in multiple sclerosis. Mult. Scler. J. 2012, 18, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Conrad, B.N.; Barry, R.L.; Rogers, B.P.; Maki, S.; Mishra, A.; Thukral, S.; Sriram, S.; Bhatia, A.; Pawate, S.; Gore, J.C. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord. Brain 2018, 141, 1650–1664. [Google Scholar] [CrossRef] [Green Version]
- Granella, F.; Tsantes, E.; Graziuso, S.; Bazzurri, V.; Crisi, G.; Curti, E. Spinal cord lesions are frequently asymptomatic in relapsing–remitting multiple sclerosis: A retrospective MRI survey. J. Neurol. 2019, 266, 3031–3037. [Google Scholar] [CrossRef]
- Brownlee, W.; Altmann, D.; Alves Da Mota, P.; Swanton, J.; Miszkiel, K.; Wheeler-Kingshott, C.G.; Ciccarelli, O.; Miller, D. Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome. Mult. Scler. J. 2017, 23, 665–674. [Google Scholar] [CrossRef]
- Kerbrat, A.; Gros, C.; Badji, A.; Bannier, E.; Galassi, F.; Combès, B.; Chouteau, R.; Labauge, P.; Ayrignac, X.; Carra-Dallière, C. Multiple sclerosis lesions in motor tracts from brain to cervical cord: Spatial distribution and correlation with disability. Brain 2020, 143, 2089–2105. [Google Scholar] [CrossRef]
- Paolillo, A.; Coles, A.; Molyneux, P.; Gawne-Cain, M.; MacManus, D.; Barker, G.; Compston, D.; Miller, D. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 1999, 53, 751. [Google Scholar] [CrossRef]
- Dupuy, S.L.; Khalid, F.; Healy, B.C.; Bakshi, S.; Neema, M.; Tauhid, S.; Bakshi, R. The effect of intramuscular interferon beta-1a on spinal cord volume in relapsing-remitting multiple sclerosis. BMC Med. Imaging 2016, 16, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, T.; Tauhid, S.; Hurwitz, S.; Neema, M.; Bakshi, R. The effect of glatiramer acetate on spinal cord volume in relapsing-remitting multiple sclerosis. J. Neuroimaging 2017, 27, 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalban, X.; Sastre-Garriga, J.; Tintore, M.; Brieva, L.; Aymerich, F.; Rio, J.; Porcel, J.; Borras, C.; Nos, C.; Rovira, A. A single-center, randomized, double-blind, placebo-controlled study of interferon beta-1b on primary progressive and transitional multiple sclerosis. Mult. Scler. J. 2009, 15, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Furby, J.; Hayton, T.; Smith, K.J.; Altmann, D.R.; Brenner, R.; Chataway, J.; Hughes, R.A.; Miller, D.H. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: A randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010, 9, 681–688. [Google Scholar] [CrossRef]
- ClinicalTrials.gov Identifier: NCT02959658. Available online: https://clinicaltrials.gov/ct2/show/NCT02959658 (accessed on 21 October 2020).
- Sicotte, N.L.; Voskuhl, R.R.; Bouvier, S.; Klutch, R.; Cohen, M.S.; Mazziotta, J.C. Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Investig. Radiol. 2003, 38, 423–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladd, M.E.; Bachert, P.; Meyerspeer, M.; Moser, E.; Nagel, A.M.; Norris, D.G.; Schmitter, S.; Speck, O.; Straub, S.; Zaiss, M. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 1–50. [Google Scholar] [CrossRef]
- Sigmund, E.; Suero, G.; Hu, C.; McGorty, K.; Sodickson, D.; Wiggins, G.; Helpern, J. High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed. 2012, 25, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Dula, A.N.; Pawate, S.; Dethrage, L.M.; Conrad, B.N.; Dewey, B.E.; Barry, R.L.; Smith, S.A. Chemical exchange saturation transfer of the cervical spinal cord at 7 T. NMR Biomed. 2016, 29, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Dula, A.N.; Pawate, S.; Dortch, R.D.; Barry, R.L.; George-Durrett, K.M.; Lyttle, B.D.; Dethrage, L.M.; Gore, J.C.; Smith, S.A. Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T. Mult. Scler. J. 2016, 22, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Massire, A.; Rasoanandrianina, H.; Taso, M.; Guye, M.; Ranjeva, J.P.; Feiweier, T.; Callot, V. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Magn. Reson. Med. 2018, 80, 947–957. [Google Scholar] [CrossRef]
- Massire, A.; Taso, M.; Besson, P.; Guye, M.; Ranjeva, J.-P.; Callot, V. High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T. Neuroimage 2016, 143, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, J.; Neema, M.; Alsop, D.; Healy, B.; Arora, A.; Buckle, G.; Chitnis, T.; Guttmann, C.; Hackney, D.; Bakshi, R. Spinal cord lesions and clinical status in multiple sclerosis: A 1.5 T and 3 T MRI study. J. Neurol. Sci. 2009, 279, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagens, M.H.; Burggraaff, J.; Kilsdonk, I.D.; de Vos, M.L.; Cawley, N.; Sbardella, E.; Andelova, M.; Amann, M.; Lieb, J.M.; Pantano, P. Three-Tesla MRI does not improve the diagnosis of multiple sclerosis: A multicenter study. Neurology 2018, 91, e249–e257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouellette, R.; Treaba, C.A.; Granberg, T.; Herranz, E.; Barletta, V.; Mehndiratta, A.; De Leener, B.; Tauhid, S.; Yousuf, F.; Dupont, S.M. 7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain 2020, 143, 2973–2987. [Google Scholar] [CrossRef] [PubMed]
- Gaitán, M.I.; De Alwis, M.P.; Sati, P.; Nair, G.; Reich, D.S. Multiple sclerosis shrinks intralesional, and enlarges extralesional, brain parenchymal veins. Neurology 2013, 80, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Maggi, P.; Mazzoni, L.N.; Moretti, M.; Grammatico, M.; Chiti, S.; Massacesi, L. SWI enhances vein detection using gadolinium in multiple sclerosis. Acta Radiol. Open 2015. [Google Scholar] [CrossRef]
- Sati, P.; Oh, J.; Constable, R.T.; Evangelou, N.; Guttmann, C.R.; Henry, R.G.; Klawiter, E.C.; Mainero, C.; Massacesi, L.; McFarland, H. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: A consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat. Rev. Neurol. 2016, 12, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.L.; Van Schijndel, R.A.; Pouwels, P.J.; Van Walderveen, M.A.; Reichenbach, J.R.; Manoliu, R.A.; Barkhof, F. MR venography of multiple sclerosis. Am. J. Neuroradiol. 2000, 21, 1039–1042. [Google Scholar]
- Haacke, E.M.; Chen, Y.; Utrainen, D.; Wu, B.; Wang, Y.; Xia, S.; He, N.; Zhang, C.; Wang, X.; Lagana, M.M.; et al. STrategically Acquired Gradient Echo (STAGE) Imaging, part III: Technical Advances and Clinical Applications of A Rapid Multi-Contrast Multi-Parametric Brain Imaging Method. Magn. Reson. imaging 2020, 65, 15–26. [Google Scholar] [CrossRef]
- Solanky, B.S.; Prados, F.; Tur, C.; Yiannakas, M.C.; Kanber, B.; Cawley, N.; Brownlee, W.; Ourselin, S.; Golay, X.; Ciccarelli, O. Sodium in the Relapsing–Remitting Multiple Sclerosis Spinal Cord: Increased Concentrations and Associations With Microstructural Tissue Anisotropy. J. Magn. Reson. Imaging 2020, 52. [Google Scholar] [CrossRef]
- Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance fingerprinting. Nature 2013, 495, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, S.; Wang, Y.; Kang, Y.; Haacke, E.M. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping. Magn. Reson. Imaging 2018, 46, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.; Drake-Pérez, M.; Delattre, B.; Boto, J.; Lovblad, K.-O.; Boudabous, S. Feasibility of a synthetic MR imaging sequence for spine imaging. Am. J. Neuroradiol. 2018, 39, 1756–1763. [Google Scholar] [CrossRef]
- Grussu, F.; Battiston, M.; Veraart, J.; Schneider, T.; Cohen-Adad, J.; Shepherd, T.M.; Alexander, D.C.; Fieremans, E.; Novikov, D.S.; Wheeler-Kingshott, C.A.G. Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. Neuroimage 2020, 217, 116884. [Google Scholar] [CrossRef]
- Alcaide-Leon, P.; Pauranik, A.; Alshafai, L.; Rawal, S.; Oh, J.; Montanera, W.; Leung, G.; Bharatha, A. Comparison of sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery in the detection of spinal cord lesions in MS at 3T. Am. J. Neuroradiol. 2016, 37, 970–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Xiang, Q.-S.; Tam, R.; Dvorak, A.V.; MacKay, A.L.; Kolind, S.H.; Traboulsee, A.; Vavasour, I.M.; Li, D.K.; Kramer, J.K. Myelin water imaging data analysis in less than one minute. NeuroImage 2020, 210, 116551. [Google Scholar] [CrossRef] [PubMed]
- Ouellette, R.; Mangeat, G.; Polyak, I.; Warntjes, M.; Forslin, Y.; Bergendal, Å.; Plattén, M.; Uppman, M.; Treaba, C.A.; Cohen-Adad, J. Validation of rapid magnetic resonance myelin imaging in multiple sclerosis. Ann. Neurol. 2020, 87, 710–724. [Google Scholar] [CrossRef]
Article | qMRI Methods | B0 | Study Cohorts | Main Findings |
---|---|---|---|---|
Filippi M. Neurology (2000) [46] | MTR | 1.5T | RRMS (n = 52) SPMS (n = 33) PPMS (n = 11) HC (n = 21) |
|
Valsasina p. NeuroImage (2005) [47] | DTI | 1.5T | RRMS (n = 21) SPMS (n = 23) HC (n = 17) |
|
Zackowski KM. Brain (2009) [48] | MTC | 3T | RRMS (n = 23) SPMS (n = 11) PPMS (n = 8) HC (n = 18) |
|
Laule C. Multiple Sclerosis Journal (2010) [49] | MWF | 1.5T | PPMS (n = 24) HC (n = 24) Longitudinal (2 years) |
|
Oh J. Neurology (2013) [50] | MTR, DTI | 3T | RRMS (n = 69) SPMS (n = 36) PPMS (n = 19) |
|
Raz E. American Journal of Neuroradiology (2013) [51] | DKI, DTI | 3T | RRMS (n = 21) HC (n = 16) |
|
By S. NeuroImage Clinical (2017) [52] | DTI, NODDI, DKI | 3T | RRMS (n = 6) HC (n = 8) |
|
Collorone S. Multiple Sclerosis Journal (2019) [53] | NODDI | 3T | RRMS (n = 27) HC (n = 18) |
|
Rasoanandrianina H. American Journal of Neuroradiology (2020) [54] | MTR, DTI | 3T | RRMS (n = 13) SPMS (n = 6) HC (n = 19) |
|
Oh J. Multiple Sclerosis Journal (2020) [55] | MTR, DTI | 3T | RRMS (n = 45) PPMS (n = 30) Longitudinal (5 years) |
|
Cortese R. Multiple Sclerosis Journal (2020) [56] | QSI | 3T | PPMS (n = 23) HC (n = 23) Longitudinal (3 years) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Haacke, E.M.; Bernitsas, E. Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future. Brain Sci. 2020, 10, 857. https://doi.org/10.3390/brainsci10110857
Chen Y, Haacke EM, Bernitsas E. Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future. Brain Sciences. 2020; 10(11):857. https://doi.org/10.3390/brainsci10110857
Chicago/Turabian StyleChen, Yongsheng, Ewart Mark Haacke, and Evanthia Bernitsas. 2020. "Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future" Brain Sciences 10, no. 11: 857. https://doi.org/10.3390/brainsci10110857
APA StyleChen, Y., Haacke, E. M., & Bernitsas, E. (2020). Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future. Brain Sciences, 10(11), 857. https://doi.org/10.3390/brainsci10110857