Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Protocol
2.3. Transcranial Direct Current Stimulation
2.4. Visuo-Motor Task
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Subjective Scalp Sensation
3.2. Changes in Motor Performance and Motor Learning Parameters
3.2.1. Baseline Training Blocks without tDCS
3.2.2. Training Blocks with tDCS
4. Discussion
4.1. Influence of Cathodal Priming and Anodal tDCS on Motor Performance Retention
4.2. Impact of tDCS on a Low Learning Reserve Motor Task
4.3. Methodological Considerations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dissanayaka, T.; Zoghi, M.; Farrell, M.; Egan, G.F.; Jaberzadeh, S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur. J. Neurosci. 2017. [Google Scholar] [CrossRef]
- Saucedo Marquez, C.M.; Zhang, X.; Swinnen, S.P.; Meesen, R.; Wenderoth, N. Task-specific effect of transcranial direct current stimulation on motor learning. Front. Hum. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Schambra, H.M.; Abe, M.; Luckenbaugh, D.A.; Reis, J.; Krakauer, J.W.; Cohen, L.G. Probing for hemispheric specialization for motor skill learning: A transcranial direct current stimulation study. J. Neurophysiol. 2011, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuypers, K.; Leenus, D.J.F.; van den Berg, F.E.; Nitsche, M.A.; Thijs, H.; Wenderoth, N.; Meesen, R.L.J.; Kang, E.; Paik, N.; Reis, J.; et al. Is Motor Learning Mediated by tDCS Intensity? PLoS ONE 2013, 8, e67344. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Fischer, J.T.; Prichard, G.; Weiller, C.; Cohen, L.G.; Fritsch, B. Time- but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb. Cortex 2015, 25, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Besson, P.; Muthalib, M.; Dray, G.; Rothwell, J.; Perrey, S. Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. Brain Res. 2019, 1710, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiethoff, S.; Hamada, M.; Rothwell, J.C. Variability in Response to Transcranial Direct Current Stimulation of the Motor Cortex. Brain Stimul. 2014, 7, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Li, L.M.; Uehara, K.; Hanakawa, T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Cancelli, A.; Cottone, C.; Parazzini, M.; Fiocchi, S.; Truong, D.; Bikson, M.; Tecchio, F. Transcranial Direct Current Stimulation: Personalizing the neuromodulation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 234–237. [Google Scholar]
- Edwards, D.; Cortes, M.; Datta, A.; Minhas, P.; Wassermann, E.M.; Bikson, M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. Neuroimage 2013, 74, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Muthalib, M.; Besson, P.; Rothwell, J.; Perrey, S. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation. Neuromodulation Technol. Neural Interface 2017. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Bansal, V.; Diaz, J.; Patel, J.; Reato, D.; Bikson, M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009, 2, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, H.-I.; Bikson, M.; Datta, A.; Minhas, P.; Paulus, W.; Kuo, M.-F.; Nitsche, M.A. Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A Neurophysiological Study. Brain Stimul. 2013, 6, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Jayaram, G.; Pastor, D.; Kincses, Z.T.; Matthews, P.M.; Johansen-Berg, H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 2011, 49, 800–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen Kadosh, R.; Soskic, S.; Iuculano, T.; Kanai, R.; Walsh, V. Modulating Neuronal Activity Produces Specific and Long-Lasting Changes in Numerical Competence. Curr. Biol. 2010, 20. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.A.; Lee, T.D. Motor Control and Learning: A Behavioral Emphasis, 5th ed.; Human Kinetics: Champaign, IL, USA, 2011. [Google Scholar]
- Ziemann, U.; Siebner, H.R. Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul. 2008, 1, 60–66. [Google Scholar] [CrossRef]
- Antal, A.; Nitsche, M.A.; Kincses, T.Z.; Kruse, W.; Hoffmann, K.-P.; Paulus, W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur. J. Neurosci. 2004, 19, 2888–2892. [Google Scholar] [CrossRef]
- Hashemirad, F.; Zoghi, M.; Fitzgerald, P.B.; Jaberzadeh, S. The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain Cognit. 2016, 102, 1–12. [Google Scholar] [CrossRef]
- Karabanov, A.; Ziemann, U.; Hamada, M.; George, M.S.; Quartarone, A.; Classen, J.; Massimini, M.; Rothwell, J.; Siebner, H.R. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimul. 2015, 8, 442–454. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Christova, M.; Rafolt, D.; Gallasch, E. Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behav. Brain Res. 2015, 287, 27–33. [Google Scholar] [CrossRef]
- Fujiyama, H.; Hinder, M.R.; Barzideh, A.; Van de Vijver, C.; Badache, A.C.; Manrique-C, M.N.; Reissig, P.; Zhang, X.; Levin, O.; Summers, J.J.; et al. Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiol. Aging 2017, 51, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, N.; Taylor, D.; Rashid, U.; Vandal, A.C.; Smith, P.F.; Signal, N. Cerebellar transcranial direct current stimulation for learning a novel split-belt treadmill task: A randomised controlled trial. Sci Rep. 2020, 10, 11853. [Google Scholar] [CrossRef] [PubMed]
- Waters, S.; Wiestler, T.; Diedrichsen, J. Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning. J. Neurosci. 2017, 37, 7500–7512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef]
- Turski, C.A.; Kessler-Jones, A.; Hermann, B.; Hsu, D.; Jones, J.; Seeger, S.; Chappell, R.; Ikonomidou, C. Feasibility and Dose Tolerability of High Definition Transcranial Direct Current Stimulation in healthy adults. Brain Stimul. 2017, 10. [Google Scholar] [CrossRef]
- Poreisz, C.; Boros, K.; Antal, A.; Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 2007, 72, 208–214. [Google Scholar] [CrossRef]
- Accot, J.; Zhai, S. Scale effects in steering law tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seattle, DC, USA, 31 March–5 April 2001; ACM Press: New York, NY, USA, 2001; pp. 1–8. [Google Scholar]
- Kulikov, S.; MacKenzie, I.S.; Stuerzlinger, W. Measuring the effective parameters of steering motions. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems; ACM Press: New York, NY, USA, 2005; p. 1569. [Google Scholar]
- Bonnetblanc, F. Conflit vitesse-précision et loi de Fitts. Sci. Mot. 2008, 63–82. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Acknowledgments. In Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 1985; pp. 21–22. ISBN 9780080570655. [Google Scholar]
- Filmer, H.L.; Ehrhardt, S.E.; Bollmann, S.; Mattingley, J.B.; Dux, P.E. Accounting for individual differences in the response to tDCS with baseline levels of neurochemical excitability. Cortex 2019, 115, 324–334. [Google Scholar] [CrossRef]
- Berryhill, M.E.; Peterson, D.J.; Jones, K.T.; Stephens, J.A. Hits and misses: Leveraging tDCS to advance cognitive research. Front. Psychol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monte-Silva, K.; Kuo, M.-F.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS). J. Neurophysiol. 2010, 103, 1735–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soekadar, S.R.; Herring, J.D. Transcranial electric stimulation (tES) and NeuroImaging: The state-of-the-art, new insights and prospects in basic and clinical neuroscience. Neuroimage 2016, 140, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, F.; Gronwald, T.; Scholkmann, F.; Zohdi, H.; Wyser, D.; Müller, N.G.; Hamacher, D. New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci. 2020, 10, 342. [Google Scholar] [CrossRef]
- Accot, J.; Zhai, S. Performance evaluation of input devices in trajectory-based tasks. In Proceedings of the SIGCHI Conference on Human factors in Computing Systems, Pittsburgh, PA, USA, 15–20 May 1999; ACM Press: New York, NY, USA, 1999; pp. 466–472. [Google Scholar]
- Gibbs, C.B. controller design: Interactions of controlling limbs, time-lags and gains in positional and velocity systems. Ergonomics 1962, 5, 385–402. [Google Scholar] [CrossRef]
- Shibata, K.; Sasaki, Y.; Bang, J.W.; Walsh, E.G.; Machizawa, M.G.; Tamaki, M.; Chang, L.-H.; Watanabe, T. Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant. Nat. Neurosci. 2017, 20, 470–475. [Google Scholar] [CrossRef]
- Pavlova, E.L.; Lindberg, P.; Khan, A.; Ruschkowski, S.; Nitsche, M.A.; Borg, J. Transcranial direct current stimulation combined with visuo-motor training as treatment for chronic stroke patients. Restor. Neurol. Neurosci. 2017, 35, 307–317. [Google Scholar] [CrossRef]
- Hamoudi, M.; Schambra, H.M.; Fritsch, B.; Schoechlin-Marx, A.; Weiller, C.; Cohen, L.G.; Reis, J. Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke. Neurorehabilit. Neural Repair 2018, 32, 295–308. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besson, P.; Muthalib, M.; De Vassoigne, C.; Rothwell, J.; Perrey, S. Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sci. 2020, 10, 875. https://doi.org/10.3390/brainsci10110875
Besson P, Muthalib M, De Vassoigne C, Rothwell J, Perrey S. Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sciences. 2020; 10(11):875. https://doi.org/10.3390/brainsci10110875
Chicago/Turabian StyleBesson, Pierre, Makii Muthalib, Christophe De Vassoigne, Jonh Rothwell, and Stephane Perrey. 2020. "Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention" Brain Sciences 10, no. 11: 875. https://doi.org/10.3390/brainsci10110875
APA StyleBesson, P., Muthalib, M., De Vassoigne, C., Rothwell, J., & Perrey, S. (2020). Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sciences, 10(11), 875. https://doi.org/10.3390/brainsci10110875