Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Experimental Design
2.3. Transcranial Alternating Current Stimulation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclosures
References
- Antal, A.; Kriener, N.; Lang, N.; Boros, K.; Paulus, W. Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia 2011, 31, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Pearlman, S.H. Transcranial magnetic simulation in the treatment of migraine. Neurotherapeutics 2010, 7, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipton, R.B.; Dodick, D.W.; Silberstein, S.D.; Saper, J.R.; Aurora, S.K.; Pearlman, S.H.; Fischell, R.E.; Ruppel, P.L.; Goadsby, P.J. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: A randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 2010, 9, 373–380. [Google Scholar] [CrossRef]
- Teepker, M.; Hötzel, J.; Timmesfeld, N.; Reis, J.; Mylius, V.; Haag, A.; Oertel, W.H.; Rosenow, F.; Schepelmann, K. Low-frequency rTMS of the vertex in the prophylactic treatment of migraine. Cephalalgia 2010, 30, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.M.; Upton, A.R.M.; Kamath, M.V.; Al-Harbi, T.M.; Castellanos, C.M. Transcranial magnetic stimulation for migraine: Clinical effects. J. Headache Pain 2006, 7, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Viganò, A.; D’Elia, T.S.; Sava, S.; Auvé, M.; De Pasqua, V.; Colosimo, A.; Di Piero, V.; Schoenen, J.; Magis, D. Transcranial Direct Current Stimulation (tDCS) of the visual cortex: A proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J. Headache Pain 2013, 14, 23. [Google Scholar] [CrossRef]
- Pinchuk, D.; Pinchuk, O.; Sirbiladze, K.; Shuhgar, O. Clinical effectiveness of primary and secondary headache treatment by transcranial direct current stimulation. Front. Neurol. 2013, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- DaSilva, A.F.; Pt, M.E.M.; Zaghi, S.; Lopes, M.; DosSantos, M.F.; Spierings, E.L.; Bajwa, Z.; Datta, A.; Bikson, M.; Fregni, F. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache 2012, 52, 1283–1295. [Google Scholar] [CrossRef]
- Martin, T.V.; Lipton, R.B. Epidemiology and biology of menstrual migraine. Headache 2008, 48 (Suppl. 3), S124–S130. [Google Scholar] [CrossRef]
- Wickmann, F.; Stephani, C.; Czesnik, D.; Klinker, F.; Timäus, C.; Chaieb, L.; Paulus, W.; Antal, A. Prophylactic treatment in menstrual migraine: A proof-of-concept study. J. Neurol. Sci. 2015, 354, 103–109. [Google Scholar] [CrossRef]
- Andrade, S.M.; Aranha, R.E.L.D.B.; De Oliveira, E.A.; De Mendonça, C.T.P.L.; Martins, W.K.N.; Alves, N.T.; Fernández-Calvo, B. Transcranial direct current stimulation over the primary motor vs prefrontal cortex in refractory chronic migraine: A pilot randomized controlled trial. J. Neurol. Sci. 2017, 378, 225–232. [Google Scholar] [CrossRef]
- Rahimi, M.D.; Fadardi, J.S.; Saeidi, M.; Bigdeli, I.; Kashiri, R. Effectiveness of cathodal tDCS of the primary motor or sensory cortex in migraine: A randomized controlled trial. Brain Stimul. 2020, 13, 675–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Zhang, B.; Zhang, J.; Yin, Y. Effects of Non-invasive Brain Stimulation on Headache Intensity and Frequency of Headache Attacks in Patients With Migraine: A Systematic Review and Meta-Analysis. Headache 2019, 59, 1436–1447. [Google Scholar] [CrossRef]
- Leao, A.A. Spreading depression. Funct. Neurol. 1986, 1, 363–366. [Google Scholar] [PubMed]
- Moliadze, V.; Atalay, D.; Antal, A.; Paulus, W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012, 5, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Haigh, S.M.; Karanovic, O.; Wilkinson, F.; Wilkins, A. Cortical hyperexcitability in migraine and aversion to patterns. Cephalalgia 2012, 32, 236–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickleborough, M.J.; Hayward, J.; Chapman, C.; Chung, J.; Handy, T.C. Reflexive attentional orienting in migraineurs: The behavioral implications of hyperexcitable visual cortex. Cephalalgia 2011, 31, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Lin, Y.-Y.; Fuh, J.-L.; Hämäläinen, M.S.; Ko, Y.-C.; Wang, S.-J. Sustained visual cortex hyperexcitability in migraine with persistent visual aura. Brain 2011, 134 Pt 8, 2387–2395. [Google Scholar] [CrossRef] [Green Version]
- Höffken, O.; Stude, P.; Lenz, M.; Bach, M.; Dinse, H.R.; Tegenthoff, M. Visual paired-pulse stimulation reveals enhanced visual cortex excitability in migraineurs. Eur. J. Neurosci. 2009, 30, 714–720. [Google Scholar] [CrossRef]
- Chadaide, Z.; Arlt, S.; Antal, A.; Nitsche, M.A.; Lang, N.; Paulus, W. Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia 2007, 27, 833–839. [Google Scholar] [CrossRef]
- Angelini, L.; De Tommaso, M.; Guido, M.; Hu, K.; Ivanov, P.C.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; et al. Steady-state visual evoked potentials and phase synchronization in migraine patients. Phys. Rev. Lett. 2004, 93, 038103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, H.; Del Río, M.S.; De Silanes, C.L.; Álvarez-Linera, J.; Hernández, J.A.; Pareja, J.A. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: Pathophysiological implications. Headache 2011, 51, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Di Lorenzo, C.; Parisi, V.; Lisicki, M.; Serrao, M.; Pierelli, F. Clinical neurophysiology of migraine with aura. J. Headache Pain 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Valiengo, L.; Benseñor, I.M.; Goulart, A.C.; De Oliveira, J.F.; Zanao, T.A.; Boggio, P.S.; Lotufo, P.A.; Fregni, F.; Brunoni, A.R. The sertraline versus electrical current therapy for treating depression clinical study (select-TDCS): Results of the crossover and follow-up phases. Depress. Anxiety 2013, 30, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Hagenacker, T.; Bude, V.; Naegel, S.; Holle, D.; Katsarava, Z.; Diener, H.; Obermann, M. Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J. Headache Pain 2014, 15, 78. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, A.; Fong, J.; Ball, N.; Martin, D.; Chand, N.; Loo, C. Pilot trial of home-administered transcranial direct current stimulation for the treatment of depression. J. Affect. Disord. 2019, 252, 475–483. [Google Scholar] [CrossRef]
- Dobbs, B.; Pawlak, N.; Biagioni, M.; Agarwal, S.; Shaw, M.; Pilloni, G.; Bikson, M.; Datta, A.; Charvet, L. Generalizing remotely supervised transcranial direct current stimulation (tDCS): Feasibility and benefit in Parkinson’s disease. J. Neuroeng. Rehabil. 2018, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Im, J.J.; Jeong, H.; Bikson, M.; Woods, A.J.; Unal, G.; Oh, J.K.; Na, S.; Park, J.S.; Knotkova, H.; Song, I.U.; et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 2019, 12, 1222–1228. [Google Scholar] [CrossRef]
- Bikson, M.; Hanlon, C.A.; Woods, A.J.; Gillick, B.T.; Charvet, L.; Lamm, C.; Madeo, G.; Holczer, A.; Almeida, J.; Antal, A.; et al. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul. 2020, 13, 1124–1149. [Google Scholar] [CrossRef]
- Olesen, J.; BOusser, M.G.; Diener, H.C.D.; Dodick, D.; First, M.B.; Godsby, P.J.; Gobel, H.; Láinez, M.J.A. Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004, 24, 9–160. [Google Scholar] [CrossRef]
- Herd, C.P.; Tomlinson, C.L.; Rick, C.; Scotton, W.J.; Edwards, J.; Ives, N.J.; Clarke, C.E.; Sinclair, A.J. Cochrane systematic review and meta-analysis of botulinum toxin for the prevention of migraine. BMJ Open 2019, 9, e027953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charvet, L.; Kasschau, M.; Datta, A.; Knotkova, H.; Stevens, M.C.; Alonzo, A.; Loo, C.; Krull, K.R.; Bikson, M. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Front. Syst. Neurosci. 2015, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuling, T.; Wagner, S.; Wolters, C.; Zaehle, T.; Herrmann, C.S. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS. Front. Psychiatry 2012, 3, 83. [Google Scholar] [CrossRef] [Green Version]
- Poreisz, C.; Boros, K.; Antal, A.; Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 2007, 72, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.D.; Goadsby, P.J.; Roon, K.I.; Lipton, R.B. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: Detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 2002, 22, 633–658. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; Goadsby, P.J. An Update on Non-Pharmacological Neuromodulation for the Acute and Preventive Treatment of Migraine. Headache 2017, 57, 685–691. [Google Scholar] [CrossRef]
- Cho, S.-J.; Song, T.-J.; Chu, M.K. Treatment Update of Chronic Migraine. Curr. Pain Headache Rep. 2017, 21, 26. [Google Scholar] [CrossRef]
- Facco, E.; Liguori, A.; Petti, F.; Fauci, A.J.; Cavallin, F.; Zanette, G. Acupuncture versus valproic acid in the prophylaxis of migraine without aura: A prospective controlled study. Minerva Anestesiol 2013, 79, 634–642. [Google Scholar]
- Varkey, E.; Cider, Å.; Carlsson, J.; Linde, M. Exercise as migraine prophylaxis: A randomized study using relaxation and topiramate as controls. Cephalalgia 2011, 31, 1428–1438. [Google Scholar] [CrossRef]
- Sutherland, A.; Sweet, B.V. Butterbur: An alternative therapy for migraine prevention. Am. J. Health Syst. Pharm. 2010, 67, 705–711. [Google Scholar] [CrossRef]
- Schoenen, J.; Roberta, B.; Magis, D.; Coppola, G. Noninvasive neurostimulation methods for migraine therapy: The available evidence. Cephalalgia 2016, 36, 1170–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhola, R.; Kinsella, E.; Giffin, N.; Lipscombe, S.; Ahmed, F.; Weatherall, M.; Goadsby, P.J. Single-pulse transcranial magnetic stimulation (sTMS) for the acute treatment of migraine: Evaluation of outcome data for the UK post market pilot program. J. Headache Pain 2015, 16, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brighina, F.; Piazza, A.; Vitello, G.; Aloisio, A.; Palermo, A.; Daniele, O.; Fierro, B. rTMS of the prefrontal cortex in the treatment of chronic migraine: A pilot study. J. Neurol. Sci. 2004, 227, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Conforto, A.B.; Amaro, E., Jr.; Goncalves, A.L.; Mercante, J.P.; Guendler, V.Z.; Ferreira, J.R.; Kirschner, C.C.; Peres, M.F. Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine. Cephalalgia 2014, 34, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Stilling, J.M.; Monchi, O.; Amoozegar, F.; Debert, C.T. Transcranial Magnetic and Direct Current Stimulation (TMS/tDCS) for the Treatment of Headache: A Systematic Review. Headache 2019, 59, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Melo, L.; Boudoux, C.; Foerster, Á.; Araújo, D.; Monte-Silva, K. Transcranial direct current stimulation in the prophylactic treatment of migraine based on interictal visual cortex excitability abnormalities: A pilot randomized controlled trial. J. Neurol. Sci. 2015, 349, 33–39. [Google Scholar] [CrossRef]
- Ahdab, R.; Mansour, A.G.; Khazen, G.; Khoury, C.E.; Sabbouh, T.M.; Salem, M.; Yamak, W.; Ayache, S.; Riachi, N. Cathodal Transcranial Direct Current Stimulation of the Occipital cortex in Episodic Migraine: A Randomized Sham-Controlled Crossover Study. J. Clin. Med. 2019, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Zaehle, T.; Rach, S.; Herrmann, C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 2010, 5, e13766. [Google Scholar] [CrossRef] [Green Version]
- Neuling, T.; Rach, S.; Herrmann, C.S. Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 2013, 7, 161. [Google Scholar] [CrossRef] [Green Version]
- Sava, S.L.; De Pasqua, V.; Magis, D.; Schoenen, J. Effects of visual cortex activation on the nociceptive blink reflex in healthy subjects. PLoS ONE 2014, 9, e100198. [Google Scholar] [CrossRef]
tACS (n = 16) | Sham (n = 9) | |
---|---|---|
With aura | 9 | 5 |
Without aura | 7 | 4 |
Mean age (SD) | 31.1 (8.9) | 28.1 (10.5) |
Mean duration in years (SD) | 13.7 (7.8) | 14.8 (10.3) |
Mean number of attacks/year (SD) | 28.7 (18.5) | 42.8 (42.2) |
Pain localization | ||
unilateral | 11 | 5 |
bilateral | 5 | 4 |
with Family history | 9 | 7 |
Medication | ||
Acetylsalicylic acid (Aspirin) | 2 | 1 |
Triptans | 4 | 3 |
Ibuprofen | 2 | 1 |
Paracetamol | 4 | 3 |
Others | ||
-Antidepressants | 2 | 0 |
-Metamizole | 1 | 0 |
-Thyroid Hormone | 1 | 0 |
Oral contraception | 9 | 5 |
Smokers | 4 | 1 |
Pain under the Electrodes | Tingling | Itching | ||||
---|---|---|---|---|---|---|
N | MI | N | MI | N | MI | |
tACS (n = 16) | 1 | 2 | 5 | 1.8 | 5 | 1.4 |
Sham (n = 9) | 1 | 3 | 4 | 1.8 | 2 | 1.3 |
Nervousness | Fatigue | Unpleasantness | ||||
N | MI | N | MI | N | MI | |
tACS (n = 16) | 1 | 4.0 | 6 | 2.2 | 2 | 2.0 |
Sham (n = 9) | 3 | 2.5 | 6 | 2.2 | 5 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antal, A.; Bischoff, R.; Stephani, C.; Czesnik, D.; Klinker, F.; Timäus, C.; Chaieb, L.; Paulus, W. Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sci. 2020, 10, 888. https://doi.org/10.3390/brainsci10110888
Antal A, Bischoff R, Stephani C, Czesnik D, Klinker F, Timäus C, Chaieb L, Paulus W. Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sciences. 2020; 10(11):888. https://doi.org/10.3390/brainsci10110888
Chicago/Turabian StyleAntal, Andrea, Rebecca Bischoff, Caspar Stephani, Dirk Czesnik, Florian Klinker, Charles Timäus, Leila Chaieb, and Walter Paulus. 2020. "Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study" Brain Sciences 10, no. 11: 888. https://doi.org/10.3390/brainsci10110888
APA StyleAntal, A., Bischoff, R., Stephani, C., Czesnik, D., Klinker, F., Timäus, C., Chaieb, L., & Paulus, W. (2020). Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sciences, 10(11), 888. https://doi.org/10.3390/brainsci10110888