A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations
Abstract
:1. Introduction
2. Methods
2.1. Systematic Search of fMRI Studies
- -
- Original peer-reviewed data-based publication, reported in the English language.
- -
- Compared habitual, otherwise healthy cannabis users (>50 occasions of self-reported lifetime cannabis use) with healthy controls (<50 occasions of self-reported lifetime cannabis use).
- -
- Used fMRI in conjunction with a memory-based cognitive activation task.
2.2. Review of Other Evidence of Effects of Persistent Cannabis Use on Memory Performance (Preclinical and Clinical Evidence) and on Memory-Related Brain-Function Alterations Using Neuroimaging Modalities Other than fMRI
3. Results
3.1. Systematic Review of Human fMRI Studies Investigating the Association between Cannabis Use and Memory-Related Brain Function
3.1.1. Summary of Results—Adult Studies
3.1.2. Summary of Results—Adolescent Studies
3.2. Human Studies Investigating Memory-Related Brain Function Alterations Using Neuroimaging Modalities other than fMRI
3.3. Human Studies Investigating Association between Cannabis Use and Memory Performance Alterations—Cross-Sectional Studies
3.3.1. Summary of Results—Adult Studies
3.3.2. Summary of Results—Adolescent Studies
3.4. Human Studies Investigating Association between Cannabis Use and Memory—Longitudinal Studies
3.5. Preclinical Studies Investigating the Effect of Cannabis Use on Memory
4. Discussion
4.1. Systematic Review of fMRI Studies Using Memory Tasks
4.2. Review of Cross-Sectional Human Studies Investigating Memory Task Performance
4.3. Review of Longitudinal Human Studies Investigating Memory Task Performance
4.4. Review of Preclinical Studies Investigating Memory Task Performance
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Unodc. Market Analysis of Plant-Based Drugs. Available online: http://www.unodc.org/wdr2016/en/cannabis.html (accessed on 3 July 2017).
- Clark, T.T.; Doyle, O.; Clincy, A. Age of first cigarette, alcohol, and marijuana use among U.S. biracial/ethnic youth: A population-based study. Addict. Behav. 2013, 38, 2450–2454. [Google Scholar] [CrossRef] [Green Version]
- Kann, L.; Kinchen, S.; Shanklin, S.L.; Flint, K.H.; Kawkins, J.; Harris, W.A.; Lowry, R.; Olsen, E.O.; McManus, T.; Chyen, D.; et al. Youth risk behavior surveillance—United States, 2013. Mmwr. Suppl. 2014, 63, 1–168. [Google Scholar]
- Crean, R.D.; Crane, N.A.; Mason, B.J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 2011, 5, 1–8. [Google Scholar] [CrossRef]
- Schoeler, T.; Bhattacharyya, S. The effect of cannabis use on memory function: An update. Subst. Abus. Rehabil. 2013, 4, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Bossong, M.G.; Jansma, J.M.; van Hell, H.H.; Jager, G.; Oudman, E.; Saliasi, E.; Kahn, R.S.; Ramsey, N.F. Effects of delta9-tetrahydrocannabinol on human working memory function. Biol. Psychiatry 2012, 71, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Schoeler, T.; Kambeitz, J.; Behlke, I.; Murray, R.; Bhattacharyya, S. The effects of cannabis on memory function in users with and without a psychotic disorder: Findings from a combined meta-analysis. Psychol. Med. 2016, 46, 177–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yucel, M.; Lorenzetti, V.; Suo, C.; Zalesky, A.; Fornito, A.; Takagi, M.J.; Lubman, D.I.; Solowij, N. Hippocampal harms, protection and recovery following regular cannabis use. Transl. Psychiatry 2016, 6, e710. [Google Scholar] [CrossRef] [Green Version]
- Lorenzetti, V.; Solowij, N.; Yucel, M. The Role of Cannabinoids in Neuroanatomic Alterations in Cannabis Users. Biol. Psychiatry 2016, 79, e17–e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chye, Y.; Suo, C.; Yucel, M.; den Ouden, L.; Solowij, N.; Lorenzetti, V. Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users. Psychopharmacology (Berl.) 2017, 234, 2149–2157. [Google Scholar] [CrossRef] [PubMed]
- Yücel, M.; Solowij, N.; Respondek, C.; Whittle, S.; Fornito, A.; Pantelis, C.; Lubman, D.I. Regional brain abnormalities associated with long-term heavy cannabis use. Arch. Gen. Psychiatry 2008, 65, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, M.; Avants, B.; Cyckowski, L.; Cervellione, K.L.; Roofeh, D.; Cook, P.; Gee, J.; Sevy, S.; Kumra, S. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J. Psychiatr. Res. 2011, 45, 1055–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cousijn, J.; Wiers, R.W.; Ridderinkhof, K.R.; van den Brink, W.; Veltman, D.J.; Goudriaan, A.E. Grey matter alterations associated with cannabis use: Results of a VBM study in heavy cannabis users and healthy controls. Neuroimage 2012, 59, 3845–3851. [Google Scholar] [CrossRef] [PubMed]
- Battistella, G.; Fornari, E.; Annoni, J.M.; Chtioui, H.; Dao, K.; Fabritius, M.; Favrat, B.; Mall, J.F.; Maeder, P.; Giroud, C. Long-term effects of cannabis on brain structure. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2014, 39, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Filbey, F.M.; Aslan, S.; Calhoun, V.D.; Spence, J.S.; Damaraju, E.; Caprihan, A.; Segall, J. Long-term effects of marijuana use on the brain. Proc. Natl. Acad. Sci. USA 2014, 111, 16913–16918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, J.S.; McQueeny, T.; Shollenbarger, S.; Browning, E.L.; Wieser, J.; Lisdahl, K.M. Effects of marijuana use on prefrontal and parietal volumes and cognition in emerging adults. Psychopharmacology (Berl.) 2015, 232, 2939–2950. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, Y.; Sava, S.; Sneider, J.T.; Nickerson, L.D.; Silveri, M.M. Cortical thinness and volume differences associated with marijuana abuse in emerging adults. Drug Alcohol. Depend. 2015, 155, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Shollenbarger, S.G.; Price, J.; Wieser, J.; Lisdahl, K. Impact of cannabis use on prefrontal and parietal cortex gyrification and surface area in adolescents and emerging adults. Dev. Cogn. Neurosci. 2015, 16, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Tzilos, G.K.; Cintron, C.B.; Wood, J.B.; Simpson, N.S.; Young, A.D.; Pope, H.G., Jr.; Yurgelun-Todd, D.A. Lack of hippocampal volume change in long-term heavy cannabis users. Am. J. Addict. 2005, 14, 64–72. [Google Scholar] [CrossRef]
- Medina, K.L.; Nagel, B.J.; Park, A.; McQueeny, T.; Tapert, S.F. Depressive symptoms in adolescents: Associations with white matter volume and marijuana use. J. Child. Psychol Psychiatry 2007, 48, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Koenders, L.; Lorenzetti, V.; de Haan, L.; Suo, C.; Vingerhoets, W.; van den Brink, W.; Wiers, R.W.; Meijer, C.J.; Machielsen, M.; Goudriaan, A.E.; et al. Longitudinal study of hippocampal volumes in heavy cannabis users. J. Psychopharmacol. 2017, 31, 1027–1034. [Google Scholar] [CrossRef]
- Lorenzetti, V.; Solowij, N.; Whittle, S.; Fornito, A.; Lubman, D.I.; Pantelis, C.; Yucel, M. Gross morphological brain changes with chronic, heavy cannabis use. Br. J. Psychiatry 2015, 206, 77–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, J.M.; Paschall, C.J.; Banich, M.T. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry. Neuroimage Clin. 2016, 12, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata, I.; Perez-Iglesias, R.; Roiz-Santianez, R.; Tordesillas-Gutierrez, D.; Pazos, A.; Gutierrez, A.; Vazquez-Barquero, J.L.; Crespo-Facorro, B. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use. Brain Res. 2010, 1317, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalesky, A.; Solowij, N.; Yucel, M.; Lubman, D.I.; Takagi, M.; Harding, I.H.; Lorenzetti, V.; Wang, R.; Searle, K.; Pantelis, C.; et al. Effect of long-term cannabis use on axonal fibre connectivity. Brain 2012, 135, 2245–2255. [Google Scholar] [CrossRef] [Green Version]
- Gilman, J.M.; Kuster, J.K.; Lee, S.; Lee, M.J.; Kim, B.W.; Makris, N.; van der Kouwe, A.; Blood, A.J.; Breiter, H.C. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J. Neurosci. 2014, 34, 5529–5538. [Google Scholar] [CrossRef]
- Weiland, B.J.; Thayer, R.E.; Depue, B.E.; Sabbineni, A.; Bryan, A.D.; Hutchison, K.E. Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J. Neurosci. 2015, 35, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Chye, Y.; Suo, C.; Lorenzetti, V.; Batalla, A.; Cousijn, J.; Goudriaan, A.E.; Martin-Santos, R.; Whittle, S.; Solowij, N.; Yucel, M. Cortical surface morphology in long-term cannabis users: A multi-site MRI study. Eur. Neuropsychopharmacol. 2018. [Google Scholar] [CrossRef]
- Rocchetti, M.; Crescini, A.; Borgwardt, S.; Caverzasi, E.; Politi, P.; Atakan, Z.; Fusar-Poli, P. Is cannabis neurotoxic for the healthy brain? A meta-analytical review of structural brain alterations in non-psychotic users. Psychiatry Clin. Neurosci. 2013, 67, 483–492. [Google Scholar] [CrossRef]
- Iversen, L. Cannabis and the brain. Brain 2003, 126, 1252–1270. [Google Scholar] [CrossRef] [Green Version]
- Herkenham, M. Characterization and localization of cannabinoid receptors in brain: An in vitro technique using slide-mounted tissue sections. Nida Res. Monogr. 1991, 112, 129–145. [Google Scholar]
- Rubino, T.; Parolaro, D. The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models. Biol. Psychiatry 2016, 79, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Eustache, F.; Desgranges, B.; Laville, P.; Guillery, B.; Lalevee, C.; Schaeffer, S.; de la Sayette, V.; Iglesias, S.; Baron, J.C.; Viader, F. Episodic memory in transient global amnesia: Encoding, storage, or retrieval deficit? J. Neurol. Neurosurg. Psychiatry 1999, 66, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedel, W.J.; Blokland, A. Declarative memory. Handb Exp. Pharm. 2015, 228, 215–236. [Google Scholar] [CrossRef]
- Weinstein, A.; Livny, A.; Weizman, A. Brain Imaging Studies on the Cognitive, Pharmacological and Neurobiological Effects of Cannabis in Humans: Evidence from Studies of Adult Users. Curr. Pharm. Des. 2016, 22, 6366–6379. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.G.; Kusunoki, M.; Sigala, N.; Nili, H.; Gaffan, D.; Duncan, J. Dynamic coding for cognitive control in prefrontal cortex. Neuron 2013, 78, 364–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugase-Miyamoto, Y.; Liu, Z.; Wiener, M.C.; Optican, L.M.; Richmond, B.J. Short-term memory trace in rapidly adapting synapses of inferior temporal cortex. PLoS Comput. Biol. 2008, 4, e1000073. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, C.; Yonelinas, A.P.; Cohen, M.X.; Dy, C.J.; Tom, S.M.; D’Esposito, M. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 2004, 42, 2–13. [Google Scholar] [CrossRef]
- Curtis, C.E.; D’Esposito, M. The effects of prefrontal lesions on working memory performance and theory. Cogn. Affect. Behav. Neurosci. 2004, 4, 528–539. [Google Scholar] [CrossRef] [Green Version]
- Spellman, T.; Rigotti, M.; Ahmari, S.E.; Fusi, S.; Gogos, J.A.; Gordon, J.A. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 2015, 522, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Brasted, P.J.; Bussey, T.J.; Murray, E.A.; Wise, S.P. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 2003, 126, 1202–1223. [Google Scholar] [CrossRef] [Green Version]
- Law, J.R.; Flanery, M.A.; Wirth, S.; Yanike, M.; Smith, A.C.; Frank, L.M.; Suzuki, W.A.; Brown, E.N.; Stark, C.E. Functional magnetic resonance imaging activity during the gradual acquisition and expression of paired-associate memory. J. Neurosci. 2005, 25, 5720–5729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, W.A. Making new memories: The role of the hippocampus in new associative learning. Ann. N. Y. Acad. Sci. 2007, 1097, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wirth, S.; Yanike, M.; Frank, L.M.; Smith, A.C.; Brown, E.N.; Suzuki, W.A. Single neurons in the monkey hippocampus and learning of new associations. Science 2003, 300, 1578–1581. [Google Scholar] [CrossRef] [Green Version]
- Pergola, G.; Suchan, B. Associative learning beyond the medial temporal lobe: Many actors on the memory stage. Front. Behav. Neurosci. 2013, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Yonelinas, A.P.; Aly, M.; Wang, W.C.; Koen, J.D. Recollection and familiarity: Examining controversial assumptions and new directions. Hippocampus 2010, 20, 1178–1194. [Google Scholar] [CrossRef] [Green Version]
- Elger, C.E.; Grunwald, T.; Lehnertz, K.; Kutas, M.; Helmstaedter, C.; Brockhaus, A.; Van Roost, D.; Heinze, H.J. Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 1997, 35, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Rugg, M.D.; Vilberg, K.L. Brain networks underlying episodic memory retrieval. Curr. Opin. Neurobiol. 2013, 23, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.D.; Shannon, B.J.; Kahn, I.; Buckner, R.L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 2005, 9, 445–453. [Google Scholar] [CrossRef]
- Zeineh, M.M.; Engel, S.A.; Thompson, P.M.; Bookheimer, S.Y. Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science 2003, 299, 577–580. [Google Scholar] [CrossRef] [Green Version]
- Ganzer, F.; Bröning, S.; Kraft, S.; Sack, P.M.; Thomasius, R. Weighing the Evidence: A Systematic Review on Long-Term Neurocognitive Effects of Cannabis Use in Abstinent Adolescents and Adults. Neuropsychol. Rev. 2016, 26, 186–222. [Google Scholar] [CrossRef]
- Broyd, S.J.; van Hell, H.H.; Beale, C.; Yucel, M.; Solowij, N. Acute and Chronic Effects of Cannabinoids on Human Cognition-A Systematic Review. Biol. Psychiatry 2016, 79, 557–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, N.A.; Schuster, R.M.; Fusar-Poli, P.; Gonzalez, R. Effects of cannabis on neurocognitive functioning: Recent advances, neurodevelopmental influences, and sex differences. Neuropsychol. Rev. 2013, 23, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Solowij, N.; Battisti, R. The chronic effects of cannabis on memory in humans: A review. Curr. Drug Abus. Rev. 2008, 1, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Bossong, M.G.; Jager, G.; Bhattacharyya, S.; Allen, P. Acute and non-acute effects of cannabis on human memory function: A critical review of neuroimaging studies. Curr. Pharm. Des. 2014, 20, 2114–2125. [Google Scholar] [CrossRef] [PubMed]
- Batalla, A.; Bhattacharyya, S.; Yucel, M.; Fusar-Poli, P.; Crippa, J.A.; Nogue, S.; Torrens, M.; Pujol, J.; Farre, M.; Martin-Santos, R. Structural and functional imaging studies in chronic cannabis users: A systematic review of adolescent and adult findings. PLoS ONE 2013, 8, e55821. [Google Scholar] [CrossRef]
- Batalla, A.; Crippa, J.A.; Busatto, G.F.; Guimaraes, F.S.; Zuardi, A.W.; Valverde, O.; Atakan, Z.; McGuire, P.K.; Bhattacharyya, S.; Martin-Santos, R. Neuroimaging studies of acute effects of THC and CBD in humans and animals: A systematic review. Curr. Pharm. Des. 2014, 20, 2168–2185. [Google Scholar] [CrossRef]
- Martin-Santos, R.; Fagundo, A.B.; Crippa, J.A.; Atakan, Z.; Bhattacharyya, S.; Allen, P.; Fusar-Poli, P.; Borgwardt, S.; Seal, M.; Busatto, G.F.; et al. Neuroimaging in cannabis use: A systematic review of the literature. Psychol. Med. 2010, 40, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Nader, D.A.; Sanchez, Z.M. Effects of regular cannabis use on neurocognition, brain structure, and function: A systematic review of findings in adults. Am. J. Drug Alcohol. Abus. 2018, 44, 4–18. [Google Scholar] [CrossRef]
- Brumback, T.; Castro, N.; Jacobus, J.; Tapert, S. Effects of Marijuana Use on Brain Structure and Function: Neuroimaging Findings from a Neurodevelopmental Perspective. Int. Rev. Neurobiol. 2016, 129, 33–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blest-Hopley, G.; Giampietro, V.; Bhattacharyya, S. Residual effects of cannabis use in adolescent and adult brains—A meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 2018, 88, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Blest-Hopley, G.; Giampietro, V.; Bhattacharyya, S. Regular cannabis use is associated with altered activation of central executive and default mode networks even after prolonged abstinence in adolescent users: Results from a complementary meta-analysis. Neurosci. Biobehav. Rev. 2018, 96, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Yanes, J.A.; Riedel, M.C.; Ray, K.L.; Kirkland, A.E.; Bird, R.T.; Boeving, E.R.; Reid, M.A.; Gonzalez, R.; Robinson, J.L.; Laird, A.R.; et al. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing. J. Psychopharmacol. 2018, 32, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.L. Trajectories of brain development: Point of vulnerability or window of opportunity? Neurosci. Biobehav. Rev. 2003, 27, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Belue, R.C.; Howlett, A.C.; Westlake, T.M.; Hutchings, D.E. The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats. Neurotoxicol. Teratol. 1995, 17, 25–30. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Env. Health Perspect 2000, 108, 511–533. [Google Scholar]
- Spear, L.P. Assessment of adolescent neurotoxicity: Rationale and methodological considerations. Neurotoxicol. Teratol. 2007, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, A.M.; Dunn, M.E. Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: A meta-analysis. Exp. Clin. Psychopharmacol. 2012, 20, 420–429. [Google Scholar] [CrossRef]
- Jpt, H. Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration, 2011. Available online: www.handbook.cochrane.org (accessed on 12 February 2020).
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Cohen, K.; Weinstein, A. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids-A Systematic Review. Brain Sci. 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, P.R.; Tolomeo, S.; Steele, J.D.; Baldacchino, A. Neurocognitive consequences of chronic cannabis use: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 108, 358–369. [Google Scholar] [CrossRef]
- Tervo-Clemmens, B.; Simmonds, D.; Calabro, F.J.; Day, N.L.; Richardson, G.A.; Luna, B. Adolescent cannabis use and brain systems supporting adult working memory encoding, maintenance, and retrieval. Neuroimage 2018, 169, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Blest-Hopley, G.; O’Neill, A.; Wilson, R.; Giampietro, V.; Bhattacharyya, S. Disrupted parahippocampal and midbrain function underlie slower verbal learning in adolescent-onset regular cannabis use. Psychopharmacology (Berl.) 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Riba, J.; Valle, M.; Sampedro, F.; Rodriguez-Pujadas, A.; Martinez-Horta, S.; Kulisevsky, J.; Rodriguez-Fornells, A. Telling true from false: Cannabis users show increased susceptibility to false memories. Mol. Psychiatry 2015, 20, 772–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jager, G.; Block, R.I.; Luijten, M.; Ramsey, N.F. Cannabis use and memory brain function in adolescent boys: A cross-sectional multicenter functional magnetic resonance imaging study. J. Am. Acad. Child. Adolesc. Psychiatry 2010, 49, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Schweinsburg, A.D.; Schweinsburg, B.C.; Nagel, B.J.; Eyler, L.T.; Tapert, S.F. Neural correlates of verbal learning in adolescent alcohol and marijuana users. Addiction 2011, 106, 564–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweinsburg, A.D.; Brown, S.A.; Tapert, S.F. The influence of marijuana use on neurocognitive functioning in adolescents. Curr. Drug Abus. Rev. 2008, 1, 99–111. [Google Scholar]
- Sneider, J.T.; Gruber, S.A.; Rogowska, J.; Silveri, M.M.; Yurgelun-Todd, D.A. A preliminary study of functional brain activation among marijuana users during performance of a virtual water maze task. J. Addict. 2013, 2013, 461029. [Google Scholar] [CrossRef] [Green Version]
- Kanayama, G.; Rogowska, J.; Pope, H.G.; Gruber, S.A.; Yurgelun-Todd, D.A. Spatial working memory in heavy cannabis users: A functional magnetic resonance imaging study. Psychopharmacology (Berl.) 2004, 176, 239–247. [Google Scholar] [CrossRef]
- Nestor, L.; Roberts, G.; Garavan, H.; Hester, R. Deficits in learning and memory: Parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. Neuroimage 2008, 40, 1328–1339. [Google Scholar] [CrossRef]
- Jager, G.; Van Hell, H.H.; De Win, M.M.; Kahn, R.S.; Van Den Brink, W.; Van Ree, J.M.; Ramsey, N.F. Effects of frequent cannabis use on hippocampal activity during an associative memory task. Eur. Neuropsychopharmacol. 2007, 17, 289–297. [Google Scholar] [CrossRef]
- Carey, S.E.; Nestor, L.; Jones, J.; Garavan, H.; Hester, R. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity. Drug Alcohol. Depend. 2015, 155, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Cousijn, J.; Wiers, R.W.; Ridderinkhof, K.R.; van den Brink, W.; Veltman, D.J.; Goudriaan, A.E. Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective fMRI study. Hum. Brain Mapp. 2014, 35, 2470–2482. [Google Scholar] [CrossRef] [PubMed]
- Jager, G.; Kahn, R.S.; Van Den Brink, W.; Van Ree, J.M.; Ramsey, N.F. Long-term effects of frequent cannabis use on working memory and attention: An fMRI study. Psychopharmacology (Berl.) 2006, 185, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Schweinsburg, A.D.; Schweinsburg, B.C.; Medina, K.L.; McQueeny, T.; Brown, S.A.; Tapert, S.F. The influence of recency of use on fMRI response during spatial working memory in adolescent marijuana users. J. Psychoact. Drugs 2010, 42, 401–412. [Google Scholar] [CrossRef]
- Schweinsburg, A.D.; Nagel, B.J.; Schweinsburg, B.C.; Park, A.; Theilmann, R.J.; Tapert, S.F. Abstinent adolescent marijuana users show altered fMRI response during spatial working memory. Psychiatry Res. 2008, 163, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dager, A.D.; Tice, M.R.; Book, G.A.; Tennen, H.; Raskin, S.A.; Austad, C.S.; Wood, R.M.; Fallahi, C.R.; Hawkins, K.A.; Pearlson, G.D. Relationship between fMRI response during a nonverbal memory task and marijuana use in college students. Drug Alcohol. Depend. 2018, 188, 71–78. [Google Scholar] [CrossRef]
- Cousijn, J.; Vingerhoets, W.A.; Koenders, L.; de Haan, L.; van den Brink, W.; Wiers, R.W.; Goudriaan, A.E. Relationship between working-memory network function and substance use: A 3-year longitudinal fMRI study in heavy cannabis users and controls. Addict. Biol. 2014, 19, 282–293. [Google Scholar] [CrossRef]
- Block, R.I.; O’Leary, D.S.; Hichwa, R.D.; Augustinack, J.C.; Boles Ponto, L.L.; Ghoneim, M.M.; Arndt, S.; Hurtig, R.R.; Watkins, G.L.; Hall, J.A.; et al. Effects of frequent marijuana use on memory-related regional cerebral blood flow. Pharm. Biochem Behav. 2002, 72, 237–250. [Google Scholar] [CrossRef]
- Friedman, D.; Johnson, R., Jr. Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microsc. Res. Tech. 2000, 51, 6–28. [Google Scholar] [CrossRef]
- Cengel, H.Y.; Bozkurt, M.; Evren, C.; Umut, G.; Keskinkilic, C.; Agachanli, R. Evaluation of cognitive functions in individuals with synthetic cannabinoid use disorder and comparison to individuals with cannabis use disorder. Psychiatry Res. 2018, 262, 46–54. [Google Scholar] [CrossRef]
- Battisti, R.A.; Roodenrys, S.; Johnstone, S.J.; Respondek, C.; Hermens, D.F.; Solowij, N. Chronic use of cannabis and poor neural efficiency in verbal memory ability. Psychopharmacology (Berl.) 2010, 209, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J. Cognitive performance amongst recreational users of “ecstasy”. Psychopharmacology (Berl.) 2000, 151, 19–24. [Google Scholar] [CrossRef] [PubMed]
- McKetin, R.; Parasu, P.; Cherbuin, N.; Eramudugolla, R.; Anstey, K.J. A longitudinal examination of the relationship between cannabis use and cognitive function in mid-life adults. Drug Alcohol. Depend. 2016, 169, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadsworth, E.J.; Moss, S.C.; Simpson, S.A.; Smith, A.P. Cannabis use, cognitive performance and mood in a sample of workers. J. Psychopharmacol. 2006, 20, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G., Jr.; Gruber, A.J.; Hudson, J.I.; Huestis, M.A.; Yurgelun-Todd, D. Cognitive measures in long-term cannabis users. J. Clin. Pharm. 2002, 42, 41S–47S. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G., Jr.; Gruber, A.J.; Hudson, J.I.; Huestis, M.A.; Yurgelun-Todd, D. Neuropsychological performance in long-term cannabis users. Arch. Gen. Psychiatry 2001, 58, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Messinis, L.; Kyprianidou, A.; Malefaki, S.; Papathanasopoulos, P. Neuropsychological deficits in long-term frequent cannabis users. Neurology 2006, 66, 737–739. [Google Scholar] [CrossRef]
- Quednow, B.B.; Jessen, F.; Kuhn, K.U.; Maier, W.; Daum, I.; Wagner, M. Memory deficits in abstinent MDMA (ecstasy) users: Neuropsychological evidence of frontal dysfunction. J. Psychopharmacol. 2006, 20, 373–384. [Google Scholar] [CrossRef]
- Gruber, S.A.; Sagar, K.A.; Dahlgren, M.K.; Racine, M.; Lukas, S.E. Age of onset of marijuana use and executive function. Psychol. Addict. Behav. 2012, 26, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Levar, N.; Francis, A.N.; Smith, M.J.; Ho, W.C.; Gilman, J.M. Verbal Memory Performance and Reduced Cortical Thickness of Brain Regions Along the Uncinate Fasciculus in Young Adult Cannabis Users. Cannabis. Cannabinoid. Res. 2018, 3, 56–65. [Google Scholar] [CrossRef]
- Schuster, R.M.; Hoeppner, S.S.; Evins, A.E.; Gilman, J.M. Early onset marijuana use is associated with learning inefficiencies. Neuropsychology 2016, 30, 405–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solowij, N.; Jones, K.A.; Rozman, M.E.; Davis, S.M.; Ciarrochi, J.; Heaven, P.C.; Lubman, D.I.; Yucel, M. Verbal learning and memory in adolescent cannabis users, alcohol users and non-users. Psychopharmacology (Berl.) 2011, 216, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Hanson, K.L.; Winward, J.L.; Schweinsburg, A.D.; Medina, K.L.; Brown, S.A.; Tapert, S.F. Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addict. Behav. 2010, 35, 970–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, K.L.; Hanson, K.L.; Schweinsburg, A.D.; Cohen-Zion, M.; Nagel, B.J.; Tapert, S.F. Neuropsychological functioning in adolescent marijuana users: Subtle deficits detectable after a month of abstinence. J. Int. Neuropsychol. Soc. 2007, 13, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Solowij, N.; Stephens, R.S.; Roffman, R.A.; Babor, T.; Kadden, R.; Miller, M.; Christiansen, K.; McRee, B.; Vendetti, J.; Marijuana Treatment Project Research, G. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA 2002, 287, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Fried, P.A.; Watkinson, B.; Gray, R. Neurocognitive consequences of marihuana--a comparison with pre-drug performance. Neurotoxicol. Teratol. 2005, 27, 231–239. [Google Scholar] [CrossRef]
- Tait, R.J.; Mackinnon, A.; Christensen, H. Cannabis use and cognitive function: 8-year trajectory in a young adult cohort. Addiction 2011, 106, 2195–2203. [Google Scholar] [CrossRef]
- Meier, M.H.; Caspi, A.; Ambler, A.; Harrington, H.; Houts, R.; Keefe, R.S.; McDonald, K.; Ward, A.; Poulton, R.; Moffitt, T.E. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc. Natl. Acad. Sci. USA 2012, 109, E2657–E2664. [Google Scholar] [CrossRef] [Green Version]
- Auer, R.; Vittinghoff, E.; Yaffe, K.; Kunzi, A.; Kertesz, S.G.; Levine, D.A.; Albanese, E.; Whitmer, R.A.; Jacobs, D.R., Jr.; Sidney, S.; et al. Association Between Lifetime Marijuana Use and Cognitive Function in Middle Age: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern. Med. 2016, 176, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Ryan, N.; Pingault, J.B.; Parent, S.; Vitaro, F.; Tremblay, R.E.; Seguin, J.R. Adolescent cannabis use, change in neurocognitive function, and high-school graduation: A longitudinal study from early adolescence to young adulthood. Dev. Psychopathol. 2017, 29, 1253–1266. [Google Scholar] [CrossRef] [Green Version]
- Stiglick, A.; Kalant, H. Residual effects of chronic cannabis treatment on behavior in mature rats. Psychopharmacology (Berl.) 1985, 85, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Mateos, B.; Borcel, E.; Loriga, R.; Luesu, W.; Bini, V.; Llorente, R.; Castelli, M.P.; Viveros, M.P. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors. J. Psychopharmacol. 2011, 25, 1676–1690. [Google Scholar] [CrossRef] [PubMed]
- Kirschmann, E.K.; Pollock, M.W.; Nagarajan, V.; Torregrossa, M.M. Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2017, 42, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Harte, L.C.; Dow-Edwards, D. Sexually dimorphic alterations in locomotion and reversal learning after adolescent tetrahydrocannabinol exposure in the rat. Neurotoxicol. Teratol. 2010, 32, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.; Koch, M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2003, 28, 1760–1769. [Google Scholar] [CrossRef]
- Higuera-Matas, A.; Botreau, F.; Miguens, M.; Del Olmo, N.; Borcel, E.; Perez-Alvarez, L.; Garcia-Lecumberri, C.; Ambrosio, E. Chronic periadolescent cannabinoid treatment enhances adult hippocampal PSA-NCAM expression in male Wistar rats but only has marginal effects on anxiety, learning and memory. Pharm. Biochem Behav. 2009, 93, 482–490. [Google Scholar] [CrossRef]
- O’Shea, M.; Singh, M.E.; McGregor, I.S.; Mallet, P.E. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J. Psychopharmacol. 2004, 18, 502–508. [Google Scholar] [CrossRef]
- Stiglick, A.; Kalant, H. Learning impairment in the radial-arm maze following prolonged cannabis treatment in rats. Psychopharmacology (Berl.) 1982, 77, 117–123. [Google Scholar] [CrossRef]
- Rubino, T.; Realini, N.; Braida, D.; Guidi, S.; Capurro, V.; Vigano, D.; Guidali, C.; Pinter, M.; Sala, M.; Bartesaghi, R.; et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus 2009, 19, 763–772. [Google Scholar] [CrossRef]
- Renard, J.; Krebs, M.O.; Jay, T.M.; Le Pen, G. Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: A strain comparison. Psychopharmacology (Berl.) 2013, 225, 781–790. [Google Scholar] [CrossRef]
- Abush, H.; Akirav, I. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats. PLoS ONE 2012, 7, e31731. [Google Scholar] [CrossRef] [PubMed]
- Fehr, K.A.; Kalant, H.; LeBlanc, A.E. Residual learning deficit after heavy exposure to cannabis or alcohol in rats. Science 1976, 192, 1249–1251. [Google Scholar] [CrossRef] [PubMed]
- Rubino, T.; Vigano, D.; Realini, N.; Guidali, C.; Braida, D.; Capurro, V.; Castiglioni, C.; Cherubino, F.; Romualdi, P.; Candeletti, S.; et al. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: Behavioral and biochemical correlates. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2008, 33, 2760–2771. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Froc, D.J.; Fox, C.J.; Gorzalka, B.B.; Christie, B.R. Prolonged cannabinoid treatment results in spatial working memory deficits and impaired long-term potentiation in the CA1 region of the hippocampus in vivo. Eur. J. Neurosci. 2004, 20, 859–863. [Google Scholar] [CrossRef]
- Cha, Y.M.; Jones, K.H.; Kuhn, C.M.; Wilson, W.A.; Swartzwelder, H.S. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav. Pharm. 2007, 18, 563–569. [Google Scholar] [CrossRef]
- Cha, Y.M.; White, A.M.; Kuhn, C.M.; Wilson, W.A.; Swartzwelder, H.S. Differential effects of delta9-THC on learning in adolescent and adult rats. Pharm. Biochem Behav. 2006, 83, 448–455. [Google Scholar] [CrossRef]
- Schneider, M.; Drews, E.; Koch, M. Behavioral effects in adult rats of chronic prepubertal treatment with the cannabinoid receptor agonist WIN 55,212-2. Behav. Pharm. 2005, 16, 447–454. [Google Scholar] [CrossRef]
- Ranganathan, M.; Radhakrishnan, R.; Addy, P.H.; Schnakenberg-Martin, A.M.; Williams, A.H.; Carbuto, M.; Elander, J.; Pittman, B.; Andrew Sewell, R.; Skosnik, P.D.; et al. Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information. Prog Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 176–183. [Google Scholar] [CrossRef]
- Harvey, M.A.; Sellman, J.D.; Porter, R.J.; Frampton, C.M. The relationship between non-acute adolescent cannabis use and cognition. Drug Alcohol. Rev. 2007, 26, 309–319. [Google Scholar] [CrossRef]
- Bolla, K.I.; Brown, K.; Eldreth, D.; Tate, K.; Cadet, J.L. Dose-related neurocognitive effects of marijuana use. Neurology 2002, 59, 1337–1343. [Google Scholar] [CrossRef] [Green Version]
- Pope, H.G., Jr.; Gruber, A.J.; Hudson, J.I.; Cohane, G.; Huestis, M.A.; Yurgelun-Todd, D. Early-onset cannabis use and cognitive deficits: What is the nature of the association? Drug Alcohol. Depend. 2003, 69, 303–310. [Google Scholar] [CrossRef]
- D’Souza, D.C.; Cortes-Briones, J.A.; Ranganathan, M.; Thurnauer, H.; Creatura, G.; Surti, T.; Planeta, B.; Neumeister, A.; Pittman, B.; Normandin, M.; et al. Rapid Changes in CB1 Receptor Availability in Cannabis Dependent Males after Abstinence from Cannabis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirst, R.B.; Young, K.R.; Sodos, L.M.; Wickham, R.E.; Earleywine, M. Trying to remember: Effort mediates the relationship between frequency of cannabis use and memory performance. J. Clin. Exp. Neuropsychol. 2017, 39, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.M.; Adams, W.K.; Morena, M.; Hill, M.N.; Winstanley, C.A. Delta(9)-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats. J. Psychiatry Neurosci. 2017, 42, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, E.A.; Lydiard, J.B.; Goddard, S.D.; Gray, K.M. Objective and subjective memory ratings in cannabis-dependent adolescents. Am. J. Addict. 2015, 24, 47–52. [Google Scholar] [CrossRef]
- Lyons, M.J.; Bar, J.L.; Panizzon, M.S.; Toomey, R.; Eisen, S.; Xian, H.; Tsuang, M.T. Neuropsychological consequences of regular marijuana use: A twin study. Psychol. Med. 2004, 34, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.H.; Caspi, A.; Danese, A.; Fisher, H.L.; Houts, R.; Arseneault, L.; Moffitt, T.E. Associations between adolescent cannabis use and neuropsychological decline: A longitudinal co-twin control study. Addiction 2018, 113, 257–265. [Google Scholar] [CrossRef]
- Jackson, N.J.; Isen, J.D.; Khoddam, R.; Irons, D.; Tuvblad, C.; Iacono, W.G.; McGue, M.; Raine, A.; Baker, L.A. Impact of adolescent marijuana use on intelligence: Results from two longitudinal twin studies. Proc. Natl. Acad. Sci. USA 2016, 113, E500–E508. [Google Scholar] [CrossRef] [Green Version]
- Howlett, A.C.; Johnson, M.R.; Melvin, L.S.; Milne, G.M. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: Development of a cannabinoid receptor model. Mol. Pharm. 1988, 33, 297–302. [Google Scholar]
- Milner, B.; Squire, L.R.; Kandel, E.R. Cognitive neuroscience and the study of memory. Neuron 1998, 20, 445–468. [Google Scholar] [CrossRef] [Green Version]
- Scallet, A.C.; Uemura, E.; Andrews, A.; Ali, S.F.; McMillan, D.E.; Paule, M.G.; Brown, R.M.; Slikker, W. Morphometric studies of the rat hippocampus following chronic delta-9-tetrahydrocannabinol (THC). Brain Res. 1987, 436, 193–198. [Google Scholar] [CrossRef]
- Lawston, J.; Borella, A.; Robinson, J.K.; Whitaker-Azmitia, P.M. Changes in hippocampal morphology following chronic treatment with the synthetic cannabinoid WIN 55,212-2. Brain Res. 2000, 877, 407–410. [Google Scholar] [CrossRef]
- Landfield, P.W.; Cadwallader, L.B.; Vinsant, S. Quantitative changes in hippocampal structure following long-term exposure to delta 9-tetrahydrocannabinol: Possible mediation by glucocorticoid systems. Brain Res. 1988, 443, 47–62. [Google Scholar] [CrossRef]
- Heath, R.G.; Fitzjarrell, A.T.; Fontana, C.J.; Garey, R.E. Cannabis sativa: Effects on brain function and ultrastructure in rhesus monkeys. Biol. Psychiatry 1980, 15, 657–690. [Google Scholar]
- Schoeler, T.; Petros, N.; Di Forti, M.; Klamerus, E.; Foglia, E.; Ajnakina, O.; Gayer-Anderson, C.; Colizzi, M.; Quattrone, D.; Behlke, I.; et al. Effects of continuation, frequency, and type of cannabis use on relapse in the first 2 years after onset of psychosis: An observational study. Lancet. Psychiatry 2016, 3, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Jager, G.; Ramsey, N.F. Long-term consequences of adolescent cannabis exposure on the development of cognition, brain structure and function: An overview of animal and human research. Curr. Drug Abus. Rev. 2008, 1, 114–123. [Google Scholar] [CrossRef]
- Ranganathan, M.; D’Souza, D.C. The acute effects of cannabinoids on memory in humans: A review. Psychopharmacology (Berl.) 2006, 188, 425–444. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Fusar-Poli, P.; Borgwardt, S.; Martin-Santos, R.; Nosarti, C.; O’Carroll, C.; Allen, P.; Seal, M.L.; Fletcher, P.C.; Crippa, J.A.; et al. Modulation of mediotemporal and ventrostriatal function in humans by Delta9-tetrahydrocannabinol: A neural basis for the effects of Cannabis sativa on learning and psychosis. Arch. Gen. Psychiatry 2009, 66, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Horwood, L.J.; Fergusson, D.M.; Hayatbakhsh, M.R.; Najman, J.M.; Coffey, C.; Patton, G.C.; Silins, E.; Hutchinson, D.M. Cannabis use and educational achievement: Findings from three Australasian cohort studies. Drug Alcohol. Depend. 2010, 110, 247–253. [Google Scholar] [CrossRef]
- Lynskey, M.; Hall, W. The effects of adolescent cannabis use on educational attainment: A review. Addiction 2000, 95, 1621–1630. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Falkenberg, I.; Martin-Santos, R.; Atakan, Z.; Crippa, J.A.; Giampietro, V.; Brammer, M.; McGuire, P. Cannabinoid modulation of functional connectivity within regions processing attentional salience. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2015, 40, 1343–1352. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Morrison, P.D.; Fusar-Poli, P.; Martin-Santos, R.; Borgwardt, S.; Winton-Brown, T.; Nosarti, C.; CM, O.C.; Seal, M.; Allen, P.; et al. Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010, 35, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Crippa, J.A.; Allen, P.; Martin-Santos, R.; Borgwardt, S.; Fusar-Poli, P.; Rubia, K.; Kambeitz, J.; O’Carroll, C.; Seal, M.L.; et al. Induction of psychosis by Delta9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing. Arch. Gen. Psychiatry 2012, 69, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, T.P.; Lorenzetti, V. ‘Standard THC units’: A proposal to standardize dose across all cannabis products and methods of administration. Addiction 2019. [Google Scholar] [CrossRef] [PubMed]
Study | Task | No. NU and Age | No. CU and Age | Age of Cannabis Use Onset (Years) | Abstinence Before Scan | Cannabis Use Levels | Results | ||
---|---|---|---|---|---|---|---|---|---|
Whole Brain Analysis | Region of Interest | Task Performance | |||||||
Adult studies | |||||||||
Carey et al., 2015 [82] | Associative Memory | 15 22.8 (2.9) (SD) | 15 22.7 (4.2) | 15.97 (0.42) | 101.67 (37.45) h | 6.43 (1.07) years 7341.40 (2340.80) lifetime uses | N/A | Decreased in the dACC and left hippocampus during processing of error-related and re-encoding or correct response in CU. | Decrease in error recall and correction rate in CU and poorer learning from errors. |
Cousijn et al., 2014 [83] | Working Memory | 41 22.0 (2.3) (SD) | 32 21.4 (2.4) | 18.9 (2.3) Onset of Heavy Use | 24 h | 2.5 (1.9) Years 1619.5 (1428.9) Lifetime uses | N/A | No significant difference found in the task-defined working-memory network. | No significant difference |
Jager et al., 2006 [84] | Working Memory | 10 23.3 (0.95) (SD) | 10 22.4 (1.11) | 7 days | 7.1 (3.9) years 1300 [675–5400] lifetime uses | N/A | No significant difference found in learning or recall for both tasks. | No difference in task performance for both tasks. | |
Jager et al., 2007 [81] | Associative Memory | 20 23.6 (3.9) (SD) | 20 24.5 (5.2) | 7 days | 1900 [675–10150] lifetime uses | N/A | Decrease activation in bilateral parahippocampal regions and R DLPFC during learning for CU. Decreased activation in the right ACC in CU during recall. | No difference in task performance. | |
Kanayama et al., 2004 [79] | Spatial Working Memory Task | 12 27.8 (7.9) | 10 37.9 (7.4) | 6–36 h | [5100–54000] lifetime use | Increased activation in; R SFG, IFG, STG, PCG, putamen; bilaterally, ACG, MFG, caudate. Decreased activation in bilateral MFC in CU. | N/A | No significant difference | |
Nestor et al., 2008 [80] | Associative Memory | 14 24.1 ± 1.3 (SEM) | 14 24.4 ± 1.4 | 16.5 ± 0.4 | 2–45 h | 5.7 ± 0.6 years | Decreased activation in R STG, SFG, MFG, and L SFG during learning for CU. No difference in recall. | Increased in activation in R parahippocampal gyrus during learning for CU. No difference in recall. | Lower level of recall performance in CU. |
Riba et al., 2015 [74] | False Memory Task | 16 37.6 (11.8) | 16 37.6 (10.8) | 17 (12–20) | 28 days | 21 years [3–39] 42000 lifetime uses average | Decreased activation in CU in the R temporal cortex and precuneus; left, DLPFC, thalamus, caudate and medial temporal lobe, bilateral parietal cortex when recognising false memories over correct. | N/A | CU showed significantly more false memories. |
Sneider et al., 2013 [78] | Spatial Memory | 18 22.8 (5.0) (SD) | 10 20.3 (3.6) | 15.6 (1.2) | 12 hs | 4 (2.4) years | Decreased activation in CU frontal pars triangularis, bilateral inferior frontal pars orbitalis, bilateral MFG, right pallidum and R putamen. | Decrease activation of R parahippocampal gyrus and cingulate gyrus in CU for recall motor control. No difference found in the hippocampus. | Similar performance, although CU showed more deficit in memory retrieval |
Tervo-Clemmens et al., 2018 [72] | Spatial working memory | 15 28.16 (0.71) | 46 28.22 (0.72) | 15.14 (2.27) | All THC negative | 0.367 (0.683) mean joints per day—Only 15 used in the last year | No Significant Difference | N/A | No significant difference |
Blest-Hopley et al., 2020 [73] | Associative Memory | 21 24.24 (4.11) | 22 24.95 (3.56) | 14.67 (1.98) | 12 h | 6.19 (1.20) days per week 10.29 (3.10) years | Increased activation of bilateral; SFG, IFG, MFG, right medial FG in CU during encoding. No significant difference in Recall | N/A | No significant difference |
Adolescent studies | |||||||||
Jager et al., 2010 [75] | Working Memory and Associative Memory | 24 16.8 (1.3) (SD) [13–19] | 21 17.2 (1.0) [15–19] | 13.2 (2.3) | 5.1 (4.2) weeks | 4006 (7555) lifetime uses | N/A | Increased activation in the IFG, SPC and PCC/DLPFC of users during novel working-memory task. No group difference in associative memory task. | No difference in task performance. |
Schweinsburg et al., 2008 [77] | Spatial working memory Task | 17 17.9 (1.0) (SD) | 15 18.1 (0.7) (SD) | 28 days | 480.7 (277.2) lifetime uses 4 (1.6) years | Increased activation R superior parietal lobe, decreased activation R DLPFC in CU. | N/A | No significant difference | |
Schweinsburg et al., 2011 [76] | Verbal Encoding Task | 22/16 17.6 (0.8) 18.1 (0.7) (SD) | 8/28 18.1 (0.9) 18.0 (1.0) | 14.5 (2.5) 14.9 (3.4) | 117.6 (153.9) 43.4 (37.1) | 426.5 (280.1) 517.6 (451.3) lifetime uses | No significant difference | No significant activation in hippocampus. | No significant difference |
Study | Task | No. NU and Age | No. CU and Age | Age of Cannabis Use Onset (years) | Abstinence Period | CU Levels | Results | Notes |
---|---|---|---|---|---|---|---|---|
Adult studies | ||||||||
Gruber, Sagar, Dahlgren, Racine, and Lukas, 2012 [92] | Rey-Osterrieth Complex Gigure (visual memory) | 28 24.32 (6.65) | 34 22.76 (6.57) | 15.53 (2.16) | 12 h | 7.24 (7.30) years 19.24 (19.58) smokes per week | No significant difference seen between CU and NU | Had an early- (<16 years ) and late- (> 16 years) onset group. No significant difference was seen between early- and late-onset in either task |
California Verbal Learning Test | No significant difference seen between CU and NU | |||||||
Battisti et al., 2010 [90] | Verbal Memory Task | 24 35.5 (11.5) | 24 36.4 (11.2) | 15 [12,13,14,15,16,17,18,19,20,21,22,23,24,25] | 20 h (mean) | 20.2 (9.7) years 30 [4–30] days per month | CU recalled significantly fewer words, which had a marginal correlation with the duration of use. | |
Wadsworth, Moss, Simpson, and Smith, 2006 [93] | Immediate free recall task (episodic memory) | 85 26.79 (4.64) | 34 24.03 (5.28) | 7.63 years [1–20] | No significant difference seen between CU and NU | This study was carried out in a workforce population | ||
Delayed free recall task (episodic memory) | No significant difference seen between CU and NU | |||||||
Delayed recognition memory task (episodic memory) | No significant difference seen between CU and NU | |||||||
Verbal reasoning task (working memory) | CU performed significantly worse; however, when cannabis use was considered for the last 24 h, this deficit was in line with the last use of cannabis | |||||||
Semantic processing task | No significant difference seen between CU and NU | |||||||
Solowij et al., 2002 [94] | Rey Auditory Verbal Learning Test | 33 34.8 (11.1) | ST—51 28.7 (5.5) LT—51 42.1 (5.2) | 15.3 (2.6) | 12 h | ST—10.2 [2.7–17] years 28.3 (5.2–30) days per month LT—23.9 [17.3–31.7] years (27.4 (3.5–30) days per month | LT—recalled fewer words and learned slower than both controls and ST—correlating with duration of use. ST- did not differ from controls | ST = Short term user LT = Long term user |
Rey Auditory Verbal Learning Test—long recall | All CU performed worse than controls overall; however, LT—recalled significantly less than before the delay time than ST—and NU | |||||||
Quednow et al., 2006 [95] | Rey Auditory Verbal Learning Test | 19 23.42 (4.30) | 19 21.42 (5.77) | 3 days | 6.55 (3.67) years 3.89 (4.72) times per week | No significant difference seen between CU and NU | This study mostly looking at an MDMA group. Did not have a high-using CU group | |
Pope, Gruber, Hudson, Huestis, and Yurgelun-Todd, 2002 [96] | Benton Visula Retention Test (visual memory) | 87 40 [34–45] | 77 36 [32–43] | 0–28 days (month-long trial) | No significant difference seen between CU and NU on the test carried out on day 0, 7, and 28 | |||
Buschke’s Selective Reminding Test (verbal memory) | CU had significantly poorer performance at day 0, 1, and 7. At day 28, these differences no longer met significance, except in the long-delay condition | |||||||
Wechseler Memory Test | 28 days | No significant difference seen between CU and NU | ||||||
Pope, Gruber, Hudson, Huestis, and Yurgelun-Todd, 2001 [97] | Benton Visula Retention Test (visual memory) | 72 39.5 [34–44] | 63 36 [32–41] | 0–28 days (month long trial) | 19 [15–24] years smoking >6 joints per week | No significant difference seen between CU and NU | A second former heavy CU group (n = 45) was recruited with < 12 times use in the last month | |
Buschke’s Selective Reminding Test (verbal memory) | CU had significantly poorer performance at day 0, 1, and 7. At day 28, these differences no longer met significance, except in the long-delay condition. | The former users showed no difference from controls on any task. | ||||||
Wechseler Memory Test | No significant difference seen between CU and NU | |||||||
Rodgers, 2000 [98] | Verbal Memory | 15 32 [26–39] | 15 30 [27–43] | 1 month | 4 days per week | CU performed significantly worse than NU | They did not test CU for abstinence | |
Visual Memory | No Significant difference seen between CU and NU | |||||||
General memory | CU performed significantly worse than NU | |||||||
Delayed Recall | CU performed significantly worse than NU | |||||||
McKetin, Parasu, Cherbuin, Eramudugolla, and Anstey, 2016 [99] | Immediate Recall | 4986 42.6 (1.5) | 106 42.7 (1.4) | At least weekly | CU was related in a dose-related fashion to performance | |||
Delayed Recall | CU was related in a dose-related fashion to performance | |||||||
Cengel et al., 2018 [100] | Immediate Memory | 48 27.00 (6.19) | 45 28.84 (6.37) | 18.06 (3.95) | 3 days | 10.32 (6.12) years | No significant difference seen between CU and NU | |
Maximum Learning | CU scored significantly lower than NU | |||||||
Number of repetitions | CU had significantly more/poorer performance than NU | |||||||
Total Learning | CU performed significantly worse than NU | |||||||
Recall Score | No significant difference seen between CU and NU | |||||||
Recognition Scores | No significant difference seen between CU and NU | |||||||
False Learning | CU had significantly more/poorer performance than NU | |||||||
False Recall | CU had significantly more/poorer performance than NU | |||||||
Levar, Francis, Smith, Ho, and Gilman, 2018 [101] | California Verbal Learning Test | 22 21.59 (1.94) | 19 20.58 (2.52) | 16.21 (1.69) | 2.79 (3.10) days | 4.37 (1.67) years | CU had worse performance, but only significant in the long-delay cued recall. | |
Schuster et al. 2016 [102] | California Verbal Learning Test | 48 21.5 (2) | 27 19.6 (2.1) | 15.1 (0.96) | 2.9 (1.7) days per week 3.8 (2.1) years | CU performed significantly worse at encoding and recall than NU | Early-onset cannabis-using group (<16 years of age) | |
21 21.2 (1.8) | 17.8 (0.83) | 2.9 (1.6) days per week 5.5 (1.7) years | No significant differences | Late-onset cannabis-using group (>16 years of age) | ||||
Adolescent studies | ||||||||
Ashtari et al., 2011 [12] | California Verbal Learning Test | 14 18.5 (1.4) | 14 19.3 (0.8) | 13.1 [9–15] | 6.7 months [3–11] | 5.3 (2.1) years | No significant differences | |
Solowij et al., 2011 [103] | Rey Auditory Verbal Learning Test | 62 18.07 (0.48) | 52 18.67 (0.82) | 15 [10–17] | 12 h | 2.36 (1.17) years 13.87 [0.5–30] days per month | CU recalled significantly fewer words than NU | |
Rey Auditory Verbal Learning Test—long recall | CU recalled significantly fewer words than NU | |||||||
Word Recognition Test | CU recognised significantly fewer words that NU | |||||||
Hanson et al., 2010 [104] | Hopkins Verbal Learning Test | 21 17.4 (1.0) | 19 18.1 (0.8) | 15.6 (1.6) regular weekly use | 3.3 (3.2) | 16 (9.2) days past month 465 (294.5) life-time use episodes | CU performed significantly worse than NU | |
Verbal Working Memory | CU performed significantly worse than NU | |||||||
Medina et al., 2007 [105] | California Verbal Learning Test | 34 17.86 (0.99) | 31 18.07 (0.87) | 30 days | 2.91 (2.08) years of weekly cannabis use | CU performed at trend level (p < 0.10) worse than NU | ||
Verbal Story Memory | CU performed at a trend level (p < 0.10) than NU. Performance correlated with cannabis use | |||||||
Verbal List Learning | No significant difference seen between CU and NU | |||||||
Visuo-spatial Memory | No significant difference seen between CU and NU | |||||||
Fried, Watkinson, and Gray, 2005 [106] | Immediate memory | 59 17.7 (0.7) | 19 current light CU < 5 joints a week 18.0 (1.2) | 15.7 (1.7) | 1.8 (2.0) years | Current light CU did not differ significantly from NU on all three memory tasks | Three groups of CU in the study, completed all three of the tasks. | |
General Memory | 19 current heavy CU > 5 joints a week 17.8 (0.8) | 15.0 (1.5) | 2.6 (1.3) years | Current heavy CU performed significantly worse to NU at general and immediate memory, but not working memory | ||||
Working Memory | 16 former CU 17.9 (1.1) | 14.3 (1.3) | 2.2 (1.4) years | Former CU did not differ significantly from NU on all three memory tasks | Former users had no regular use for 3 months |
Study | Task Used | Age of Exposure | Washout Period | Animal Type | Drug Used | Results | Other Notes |
---|---|---|---|---|---|---|---|
Renard, Krebs, Jay, and Le Pen, 2013 [113] | Object Recognition | 29–50 PND | 28 days | Wister Rat | CP55,940 | Drug-treated animals spent less time exploring novel objects and had significantly different times exploring familiar objects to control | Wister Rats had a larger effect of memory performance following drug exposure than Listerhooded Rats |
Object Recognition | 29–50 PND | 28 days | Listerhooded Rat | CP55,940 | Drug-treated animals spent less time exploring novel objects and had significantly different times exploring familiar objects to control | ||
Object Recognition | 70–91 PND | 28 days | Wister Rat | CP55,940 | No difference in time exploring novel objects and familiar objects to control | ||
Object Recognition | 70–91 PND | 28 days | Listerhooded Rat | CP55,940 | No difference in time exploring novel objects and familiar objects to control | ||
Object location | 29–50 PND | 28 days | Wister Rat | CP55,940 | Drug-treated animals did not show a significant change to novel exploration time, where control did | ||
Object location | 29–50 PND | 28 days | Listerhooded Rat | CP55,940 | Drug-treated animals did not show a significant change to novel exploration time, where control did | ||
Object location | 70–91 PND | 28 days | Wister Rat | CP55,940 | Drug-treated animals showed no difference in behaviour to control | ||
Object location | 70–91 PND | 28 days | Listerhooded Rat | CP55,940 | Drug-treated animals showed no difference in behaviour to control | ||
Kirschmann, Pollock, Nagarajan, and Torregrossa, 2017 [114] | Object Recognition | 34–54 PND | 0 days | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals showed significant effect of drug on object recognition | |
Working Memory test | 34–54 PND | 17 days | Sprague Dawlet Rats | WIN55,212-2 | No significant effect of drug on working memory performance | ||
Object Location | 34–54 PND | 17 days | Sprague Dawlet Rats | WIN55,212-2 | No significant effect of drug on object location test | ||
Harte and Dow-Edwards, 2010 [115] | Active Place Avoidance Testing | 22–40 PND | 33 days | Sprague Dawlet Rats | THC | Drug-treated animals performed worse than control | |
Active Place Avoidance Testing | 41–60 PND | 16 days | Sprague Dawlet Rats | THC | No significant effect of drug seen in performance | ||
Schneider and Koch, 2003 [116] | Object Recognition | 40–65 PND | 20 days | Wister Rat | WIN55,212-2 | Drug-treated animals showed significantly impairment of recognition memory | |
Object Recognition | >70 PND | 20–25 days | Wister Rat | WIN55,212-2 | No significant effect of drug seen in performance | ||
O’Shea, Singh, McGregor, and Mallet, 2004 [117] | Object Recognition | 30–51 PND | Wister Rat | CP55,940 | Novel object recognition was significantly lower in drug-treated animals to controls; however, delay time had no significant effect between groups. | ||
Object Recognition | 56–77 PND | Wister Rat | CP55,940 | No effect of treatment was seen between groups. | Only nine animals in the adult 56-77 PND-treated group | ||
Rubino et al., 2008 [118] | Elevated Plus-Maze | 35–45 PND | 30 days | Sprague Dawlet Rats | THC | No significant effect of drug seen in performance | |
Schneider, Drews, and Koch, 2005 [119] | Object Recognition | 15–40 PND | 45 days | Wister Rat | WIN55,212-2 | No significant effect of drug seen in performance | |
Progressive Ration/Operant learning | 15–40 PND | 35 days | Wister Rat | WIN55,212-2 | No significant effect of drug seen in performance | ||
Abush and Akirav, 2012 [120] | Water Maze | 45–60 PND | 24 h | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals took longer to find the platform | |
Water Maze | 45–60 PND | 10 days | Sprague Dawlet Rats | WIN55,212-2 | A significant difference was found compared to rats tested at 24 h abstinence. | ||
Object Location | 45–60 PND | 24 h | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals showed impaired long-term memory to control animals | ||
Object Location | 45–60 PND | 10 days | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals showed impaired long-term memory to control animals | ||
Object Location | 45–60 PND | 30 days | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals showed impaired long-term memory to control animals | ||
Object Recognition | 45–60 PND | 24 h | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals spent significantly less time exploring novel objects | ||
Object Recognition | 45–60 PND | 10 days | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals spent significantly less time exploring novel objects | ||
Object Recognition | 45–60 PND | 30 days | Sprague Dawlet Rats | WIN55,212-2 | Drug-treated animals spent significantly less time exploring novel objects | ||
Fehr, Kalant, and LeBlanc, 1976 [112] | Closed Field Maze | 14 day treatment | 24 h | Rats | THC | Drug-treated animals performed worse than control animals | |
Closed Field Maze | 25 days | Rats | THC | No significant difference was seen between the groups | |||
Hill, Froc, Fox, Gorzalka, and Christie, 2004 [121] | Water Maze | 15 day treatment | During daily treatment | Long-Evans Rats | 3-11-Δ8-THC | Drug-treated group took much longer to learn the task, showed similar performance | |
Water Maze, plus time delay | 3-11-Δ8-THC | Drug-treated animals had significantly worse performance | |||||
Mateos et al., 2011 [122] | Spontaneous Alternation (Short-term memory) Task | 28–43 PND | 24 h | Wister Rat | CP55,940 | Drug-treated animals performed significantly worse than control | |
Object Location | 28–43 PND | 37 days | Wister Rat | CP55,940 | No significant effect of drug seen in performance | ||
Object Recognition | 28–43 PND | 43 days | Wister Rat | CP55,940 | Drug-treated animals performed significantly worse than control | ||
Rubino et al., 2009 [123] | Passive Avoidance | 35–45 PND | 30 days | Sprague Dawlet Rats | THC | No significant effect of drug seen in performance | |
Radial Maze | 35–45 PND | 30 days | Sprague Dawlet Rats | THC | Drug-treated animals had significantly more errors and took significantly more time to learn the maze layout | ||
Stiglick and Kalant, 1982 [124] | Radial Maze | 180 days | 30 days | Wister Rat | THC and CBN | Drug-treated animals made significantly more errors and less correct responses and took longer to learning the overall task | |
Stiglick and Kalant, 1985 [125] | Radial Maze | 90 days | 31 days | Wister Rat | THC, CBN and CBD | No effect of drug was seen between groups | |
Avoidance test | 90 days | 116 days | Wister Rat | THC, CBN and CBD | Drug-treated animals performed worse than controls | ||
Cha, Jones, Kuhn, Wilson, and Swartzwelder, 2007 [126] | Water Maze | 30–51 PND | 28 days | Sprague Dawlet Rats | THC | No effect of drug was seen between groups | |
Water Maze | 70–91 PND | 28 days | Sprague Dawlet Rats | THC | No effect of drug was seen between groups | ||
Cha, White, Kuhn, Wilson, and Swartzwelder, 2006 [127] | Water Maze—Spatial task | 34/36 PND + 21 day | 28 days | Sprague Dawlet Rats | THC | No effect of drug was seen between groups | |
Water Maze—Non-Spatial Task | 34/36 PND + 21 day | 28 days | Sprague Dawlet Rats | THC | No effect of drug was seen between groups | ||
Water Maze—Spatial task | 69/74 PND + 21 days | Sprague Dawlet Rats | THC | No effect of drug was seen between groups | |||
Water Maze—Non-Spatial Task | 69/74 PND + 21 days | Sprague Dawlet Rats | THC | No effect of drug was seen between groups | |||
Higuera-Matas et al., 2009 [128] | Object Recognition | 28–38 PND | 63 days | Wister Rat | CP55,940 | No effect of drug was seen between groups | |
Water Maze—Reference memory | 28–38 PND | 67 days | Wister Rat | CP55,940 | No effect of drug was seen between groups | ||
Water Maze—Spatial task | 28–38 PND | 67 days | Wister Rat | CP55,940 | No effect of drug was seen between groups |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blest-Hopley, G.; Giampietro, V.; Bhattacharyya, S. A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sci. 2020, 10, 102. https://doi.org/10.3390/brainsci10020102
Blest-Hopley G, Giampietro V, Bhattacharyya S. A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sciences. 2020; 10(2):102. https://doi.org/10.3390/brainsci10020102
Chicago/Turabian StyleBlest-Hopley, Grace, Vincent Giampietro, and Sagnik Bhattacharyya. 2020. "A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations" Brain Sciences 10, no. 2: 102. https://doi.org/10.3390/brainsci10020102
APA StyleBlest-Hopley, G., Giampietro, V., & Bhattacharyya, S. (2020). A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sciences, 10(2), 102. https://doi.org/10.3390/brainsci10020102