Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges
Abstract
:1. Introduction
2. Healthcare Scalability Importance and Challenges
3. Brain Tumor Classification
4. Brain Tumor Prediction
5. Exploring Deep Features for Brain Tumor
6. Brain Tumor Segmentation
6.1. Feasibility Studies on Segmentation
6.2. Proposed Approaches for Segmentation
6.3. Enhancement Approaches towards Segmentation
6.4. Approaches toward Automatic Segmentation
7. Brain Tumor Evaluation
8. Frameworks for Brain Tumor
9. Discussion
9.1. Overview
9.2. Key Aspects of Successful Deep Learning Methods
9.3. Open Research Challenges, Limitations and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 2018, 43, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Jindal, A. Ultra sonogram images for thyroid segmentation and texture classification in diagnosis of malignant (cancerous) or benign (non-cancerous) nodules. Int. J. Eng. Innov. Technol. 2012, 1, 202–206. [Google Scholar]
- Christ, M.C.J.; Sivagowri, S.; Babu, P.G. Segmentation of brain tumors using Meta heuristic algorithms. Open J. Commun. Soft. 2014, 1, 1–10. [Google Scholar] [CrossRef]
- Singh, L.; Chetty, G.; Sharma, D. A novel machine learning approach for detecting the brain abnormalities from MRI structural images. In IAPR International Conference on Pattern Recognition in Bioinformatics; Springer: Berlin, Germany, 2012; pp. 94–105. [Google Scholar]
- Charfi, S.; Lahmyed, R.; Rangarajan, L. A novel approach for brain tumor detection using neural network. Int. J. Res. Eng. Technol. 2014, 2, 93–104. [Google Scholar]
- Logeswari, T.; Karnan, M. An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map. Int. J. Comput. Theory Eng. 2010, 2, 591. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Raschke, F.; Barrick, T.R.; Howe, F.A. Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering. Magn. Reson. Med. 2015, 74, 868–878. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Raschke, F.; Barrick, T.R.; Howe, F.A. Classification of brain tumour 1 h mr spectra: Extracting features by metabolite quantification or nonlinear manifold learning? In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 1039–1042. [Google Scholar]
- Yang, G.; Nawaz, T.; Barrick, T.R.; Howe, F.A.; Slabaugh, G. Discrete wavelet transform-based whole-spectral and subspectral analysis for improved brain tumor clustering using single voxel MR spectroscopy. IEEE Trans. Biomed. Eng. 2015, 62, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
- Kleihues, P.; Burger, P.C.; Scheithauer, B.W. The new WHO classification of brain tumours. Brain Pathol. 1993, 3, 255–268. [Google Scholar] [CrossRef]
- Von Deimling, A. Gliomas; Springer: Berlin, Germany, 2009; Volume 171. [Google Scholar]
- Mittal, M.; Goyal, L.M.; Kaur, S.; Kaur, I.; Verma, A.; Hemanth, D.J. Deep learning based enhanced tumor segmentation approach for MR brain images. Appl. Soft Comput. 2019, 78, 346–354. [Google Scholar] [CrossRef]
- Bauer, S.; Wiest, R.; Nolte, L.-P.; Reyes, M. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 2013, 58, R97. [Google Scholar] [CrossRef]
- Reza, S.; Iftekharuddin, K.M. Improved brain tumor tissue segmentation using texture features. In Proceedings of the MICCAI BraTS (Brain Tumor Segmentation Challenge), Boston, MA, USA, 14 September 2014; pp. 27–30. [Google Scholar]
- Goetz, M.; Weber, C.; Bloecher, J.; Stieltjes, B.; Meinzer, H.-P.; Maier-Hein, K. Extremely randomized trees based brain tumor segmentation. In Proceedings of the BRATS Challenge-MICCAI, Boston, MA, USA, 14 September 2014; pp. 6–11. [Google Scholar]
- Kleesiek, J.; Biller, A.; Urban, G.; Kothe, U.; Bendszus, M.; Hamprecht, F. Ilastik for multi-modal brain tumor segmentation. In Proceedings of the MICCAI BraTS (Brain Tumor Segmentation Challenge), Boston, MA, USA, 14 September 2014; pp. 12–17. [Google Scholar]
- Ruan, S.; Lebonvallet, S.; Merabet, A.; Constans, J.-M. Tumor segmentation from a multispectral MRI images by using support vector machine classification. In Proceedings of the 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; pp. 1236–1239. [Google Scholar]
- Li, H.; Song, M.; Fan, Y. Segmentation of brain tumors in multi-parametric MR images via robust statistic information propagation. In Asian Conference on Computer Vision; Springer: Berlin, Germany, 2010; pp. 606–617. [Google Scholar]
- Li, H.; Fan, Y. Label propagation with robust initialization for brain tumor segmentation. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012; pp. 1715–1718. [Google Scholar]
- Meier, R.; Bauer, S.; Slotboom, J.; Wiest, R.; Reyes, M. Appearance-and context-sensitive features for brain tumor segmentation. In Proceedings of the MICCAI BRATS Chall., Boston, MA, USA, 14 September 2014; pp. 20–26. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; NIPS: Pasadena, CA, USA, 2012; pp. 1097–1105. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Torr, P.H. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1529–1537. [Google Scholar]
- Liu, Z.; Li, X.; Luo, P.; Loy, C.-C.; Tang, X. Semantic image segmentation via deep parsing network. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1377–1385. [Google Scholar]
- Wang, G.; Zuluaga, M.A.; Pratt, R.; Aertsen, M.; Doel, T.; Klusmann, M.; Ourselin, S. Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views. Med. Image Anal. 2016, 34, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Top, A.; Hamarneh, G.; Abugharbieh, R. Active learning for interactive 3D image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany, 2011; pp. 603–610. [Google Scholar]
- Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 2004, 23, 309–314. [Google Scholar] [CrossRef]
- Vaidhya, K.; Thirunavukkarasu, S.; Alex, V.; Krishnamurthi, G. Multi-modal brain tumor segmentation using stacked denoising autoencoders. BrainLes 2015, 2015, 181–194. [Google Scholar]
- Agn, M.; Puonti, O.; Law, I.; Rosenschöld, P.M.A.; van Leemput, K. Brain tumor segmentation by a generative model with a prior on tumor shape. In Proceedings of the Multimodal Brain Tumor Image Segmentation Chall., Munich, Germany, 5–9 October 2015; pp. 1–4. [Google Scholar]
- Zikic, D.; Ioannou, Y.; Brown, M.; Criminisi, A. Segmentation of brain tumor tissues with convolutional neural networks. In Proceedings of the MICCAI-BRATS, Boston, MA, USA, 14–18 September 2014; pp. 36–39. [Google Scholar]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Dvořák, P.; Menze, B. Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. In International MICCAI Workshop on Medical Computer Vision; Springer: Berlin, Germany, 2015; pp. 59–71. [Google Scholar]
- Havaei, M.; Dutil, F.; Pal, C.; Larochelle, H.; Jodoin, P.-M. A convolutional neural network approach to brain tumor segmentation. BrainLes 2015, 2015, 195–208. [Google Scholar]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. BrainLes 2015, 2015, 131–143. [Google Scholar]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Yi, D.; Zhou, M.; Chen, Z.; Gevaert, O. 3-D convolutional neural networks for glioblastoma segmentation. arXiv 2016, arXiv:1611.04534. [Google Scholar]
- Salman, O.H.; Rasid, M.F.A.; Saripan, M.I.; Subramaniam, S.K. Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 2014, 38, 103. [Google Scholar] [CrossRef]
- Alanazi, H.O.; Jalab, H.A.; Gazi, M.A.; Zaidan, B.B.; Zaidan, A.A. Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. J. Med. Plants Res. 2010, 4, 2059–2074. [Google Scholar]
- Alanazi, H.O.; Zaidan, A.A.; Zaidan, B.B.; Kiah, M.L.M.; Al-Bakri, S.H. Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 2015, 39, 165. [Google Scholar] [CrossRef] [PubMed]
- Kiah, M.L.M.; Nabi, M.S.; Zaidan, B.B.; Zaidan, A.A. An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 2013, 37, 9971. [Google Scholar] [CrossRef] [PubMed]
- Kiah, M.L.M.; Zaidan, B.B.; Zaidan, A.A.; Nabi, M.; Ibraheem, R. MIRASS: Medical informatics research activity support system using information mashup network. J. Med. Syst. 2014, 38, 37. [Google Scholar] [CrossRef] [PubMed]
- MKiah, L.M.; Haiqi, A.; Zaidan, B.B.; Zaidan, A.A. Open source EMR software: Profiling, insights and hands-on analysis. Comput. Methods Programs Biomed. 2014, 117, 360–382. [Google Scholar]
- Kiah, M.L.M.; Al-Bakri, S.H.; Zaidan, A.A.; Zaidan, B.B.; Hussain, M. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture. J. Med. Syst. 2014, 38, 133. [Google Scholar] [CrossRef] [PubMed]
- Nabi, M.S.A.; Kiah, M.L.M.; Zaidan, B.B.; Zaidan, A.A.; Alam, G.M. Suitability of SOAP protocol in securing transmissions of EMR database. Int. J. Pharmacol. 2010, 6, 959–964. [Google Scholar]
- Zaidan, B.B.; Zaidan, A.A.; Kiah, M.L.M. Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol. 2011, 7, 382–387. [Google Scholar] [CrossRef]
- Zaidan, B.B.; Haiqi, A.; Zaidan, A.A.; Abdulnabi, M.; Kiah, M.L.M.; Muzamel, H. A security framework for nationwide health information exchange based on telehealth strategy. J. Med. Syst. 2015, 39, 51. [Google Scholar] [CrossRef]
- Zaidan, A.A.; Zaidan, B.B.; Kadhem, Z.; Larbani, M.; Lakulu, M.B.; Hashim, M. Challenges, alternatives, and paths to sustainability: Better public health promotion using social networking pages as key tools. J. Med. Syst. 2015, 39, 7. [Google Scholar] [CrossRef]
- Topaz, M. Developing a Tool to Support Decisions on Patient Prioritization at Admission to Home Health Care; Penn: Philadelphia, PA, USA, 2014. [Google Scholar]
- Chan, M.; EstèVe, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef]
- CFernandes, M.B.; Wuerz, R.; Clark, S.; Djurdjev, O.; Group, M.O.R. How reliable is emergency department triage? Ann. Emerg. Med. 1999, 34, 141–147. [Google Scholar] [CrossRef]
- Li, S.-H.; Cheng, K.-A.; Lu, W.-H.; Lin, T.-C. Developing an active emergency medical service system based on WiMAX technology. J. Med. Syst. 2012, 36, 3177–3193. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F. Mobile telemedicine: A survey study. J. Med. Syst. 2012, 36, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gui, Q.; Liu, B.; Jin, Z.; Chen, Y. Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring. IEEE J. Biomed. Heal. Inform. 2013, 18, 739–745. [Google Scholar] [CrossRef]
- Wei, H.; Li, H.; Tan, J. Body sensor network based context-aware QRS detection. J. Signal Process. Syst. 2012, 67, 93–103. [Google Scholar] [CrossRef]
- Culley, J.M.; Svendsen, E.; Craig, J.; Tavakoli, A. A validation study of 5 triage systems using data from the 2005 Graniteville, South Carolina, chlorine spill. J. Emerg. Nurs. 2014, 40, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Mazomenos, E.B.; Biswas, D.; Acharyya, A.; Chen, T.; Maharatna, K.; Rosengarten, J.; Curzen, N. A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Heal. informatics 2013, 17, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Seising, R.; Tabacchi, M.E. Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care: A Companion Volume to Sadegh-Zadeh’s Handbook of Analytical Philosophy of Medicine; Springer: Berlin, Germany, 2013; Volume 302. [Google Scholar]
- Klimova, B. Mobile health devices for aging population groups: A review study. In International Conference on Mobile Web and Information Systems; Springer: Berlin, Germany, 2016; pp. 295–301. [Google Scholar]
- Chung, Y.-F.; Liu, C.-H. Design of a wireless sensor network platform for tele-homecare. Sensors 2013, 13, 17156–17175. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Guo, Y.; Wang, X.; Zeng, Q. mHealth for aging China: Opportunities and challenges. Aging Dis. 2016, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Parekh, A.K.; Goodman, R.A.; Gordon, C.; Koh, H.K.; HHS Interagency Workgroup on Multiple Chronic Conditions. Managing multiple chronic conditions: A strategic framework for improving health outcomes and quality of life. Public Health Rep. 2011, 126, 460–471. [Google Scholar] [CrossRef] [Green Version]
- Palozzi, G.; Binci, D.; Appolloni, A. E-health and co-production: Critical drivers for chronic diseases management. In Service Business Model Innovation in Healthcare and Hospital Management; Springer: Berlin, Germany, 2017; pp. 269–296. [Google Scholar]
- Sparks, R.; Celler, B.; Okugami, C.; Jayasena, R.; Varnfield, M. Telehealth monitoring of patients in the community. J. Intell. Syst. 2016, 25, 37–53. [Google Scholar] [CrossRef]
- Touati, F.; Tabish, R. U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 2013, 37, 9949. [Google Scholar] [CrossRef] [PubMed]
- Kalid, N.; Zaidan, A.A.; Zaidan, B.B.; Salman, O.H.; Hashim, M.; Muzammil, H. Based real time remote health monitoring systems: A review on patients prioritization and related‘ big data’ using body sensors information and communication technology. J. Med. Syst. 2018, 42, 30. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Mitra, S.; Masulli, F.; Rovetta, S. Brain Tumor Detection and Classification from Multi-Sequence MRI: Study Using ConvNets. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 170–179. [Google Scholar]
- Zhou, Y.; Li, Z.; Zhu, H.; Chen, C.; Gao, M.; Xu, K.; Xu, J. Holistic Brain Tumor Screening and Classification Based on DenseNet and Recurrent Neural Network. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 208–217. [Google Scholar]
- Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain tumor classification using convolutional neural network. In World Congress on Medical Physics and Biomedical Engineering; Springer: Berlin, Germany, 2018; pp. 183–189. [Google Scholar]
- Alberts, E.; Tetteh, G.; Trebeschi, S.; Bieth, M.; Valentinitsch, A.; Wiestler, B.; Menze, B.H. Multi-modal image classification using low-dimensional texture features for genomic brain tumor recognition. In Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics; Springer: Berlin, Germany, 2017; pp. 201–209. [Google Scholar]
- Ari, A.; Hanbay, D. Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 2275–2286. [Google Scholar] [CrossRef]
- Iqbal, S.; Khan, M.U.G.; Saba, T.; Rehman, A. Computer-assisted brain tumor type discrimination using magnetic resonance imaging features. Biomed. Eng. Lett. 2018, 8, 5–28. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Washiya, K.; Aoki, K.; Nagahashi, H. Brain tumor classification of microscopy images using deep residual learning. SPIE BioPhotonics Australas. 2016, 10013, 100132Y. [Google Scholar]
- Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learning neural networks for brain tumors. Futur. Comput. Inform. J. 2018, 3, 68–71. [Google Scholar] [CrossRef]
- Paul, J.S.; Plassard, A.J.; Landman, B.A.; Fabbri, D. Deep learning for brain tumor classification. In Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging; Krol, A., Gimi, B., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10137, p. 1013710. [Google Scholar]
- Xu, Y.; Jia, Z.; Ai, Y.; Zhang, F.; Lai, M.; Eric, I.; Chang, C. Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 947–951. [Google Scholar]
- Ahmed, K.B.; Hall, L.O.; Goldgof, D.B.; Liu, R.; Gatenby, R.A. Fine-tuning convolutional deep features for MRI based brain tumor classification. In Proceedings of the Medical Imaging 2017: Computer-Aided Diagnosis, Orlando, FL, USA, 3 March 2017; Volume 10134, p. 101342E. [Google Scholar]
- Deepa, A.R.; Emmanuel, W.R.S. An efficient detection of brain tumor using fused feature adaptive firefly backpropagation neural network. Multimed. Tools Appl. 2019, 78, 11799–11814. [Google Scholar] [CrossRef]
- Ismael, M.R. Hybrid Model-Statistical Features and Deep Neural Network for Brain Tumor Classification in MRI Images; Western Michigan University: Kalamazoo, MI, USA, 2018. [Google Scholar]
- Liu, R.; Hall, L.O.; Goldgof, D.B.; Zhou, M.; Gatenby, R.A.; Ahmed, K.B. Exploring deep features from brain tumor magnetic resonance images via transfer learning. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 235–242. [Google Scholar]
- Ladefoged, C.N.; Marner, L.; Hindsholm, A.; Law, I.; Højgaard, L.; Andersen, F.L. Deep learning based attenuation correction of PET/MRI in pediatric brain tumor patients: Evaluation in a clinical setting. Front. Neurosci. 2018, 2, 1005. [Google Scholar] [CrossRef]
- Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.F.; Márquez, M. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors 2019, 19, 920. [Google Scholar] [CrossRef] [Green Version]
- Suter, Y.; Jungo, A.; Rebsamen, M.; Knecht, U.; Herrmann, E.; Wiest, R.; Reyes, M. Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 429–440. [Google Scholar]
- Li, Y.; Shen, L. Deep learning based multimodal brain tumor diagnosis. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 149–158. [Google Scholar]
- Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany, 2016; pp. 212–220. [Google Scholar]
- Amin, J.; Sharif, M.; Raza, M.; Yasmin, M. Detection of Brain Tumor based on Features Fusion and Machine Learning. J. Ambient. Intell. Humaniz. Comput. 2018. [Google Scholar] [CrossRef]
- Chato, L.; Latifi, S. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, USA, 23–25 October 2017; pp. 9–14. [Google Scholar]
- Amarapur, B. Computer-aided diagnosis applied to MRI images of brain tumor using cognition based modified level set and optimized ANN classifier. Multimed. Tools Appl. 2018. [Google Scholar] [CrossRef] [Green Version]
- Benson, E.; Pound, M.P.; French, A.P.; Jackson, A.S.; Pridmore, T.P. Deep Hourglass for Brain Tumor Segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 419–428. [Google Scholar]
- Zhou, C.; Chen, S.; Ding, C.; Tao, D. Learning contextual and attentive information for brain tumor segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 497–507. [Google Scholar]
- McKinley, R.; Jungo, A.; Wiest, R.; Reyes, M. Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 169–177. [Google Scholar]
- Kim, G. Brain tumor segmentation using deep fully convolutional neural networks. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 344–357. [Google Scholar]
- Hu, Y.; Xia, Y. 3D deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 423–434. [Google Scholar]
- Natarajan, A.; Kumarasamy, S. Efficient Segmentation of Brain Tumor Using FL-SNM with a Metaheuristic Approach to Optimization. J. Med. Syst. 2019, 43, 25. [Google Scholar] [CrossRef] [PubMed]
- Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging 2019, 6, 34002. [Google Scholar] [CrossRef] [PubMed]
- Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain tumor type classification via capsule networks. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3129–3133. [Google Scholar]
- Amiri, S.; Mahjoub, M.A.; Rekik, I. Bayesian Network and Structured Random Forest Cooperative Deep Learning for Automatic Multi-label Brain Tumor Segmentation. ICAART 2018, 2, 183–190. [Google Scholar]
- Chang, P.D. Fully convolutional deep residual neural networks for brain tumor segmentation. In International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer: Berlin, Germany, 2016; pp. 108–118. [Google Scholar]
- Isensee, F.; Kickingereder, P.; Bonekamp, D.; Bendszus, M.; Wick, W.; Schlemmer, H.P.; Maier-Hein, K. Brain tumor segmentation using large receptive field deep convolutional neural networks. In Bildverarbeitung für die Medizin 2017; Springer: Berlin, Germany, 2017; pp. 86–91. [Google Scholar]
- Kumar, S.; Negi, A.; Singh, J.N. Semantic Segmentation Using Deep Learning for Brain Tumor MRI via Fully Convolution Neural Networks. In Information and Communication Technology for Intelligent Systems; Springer: Berlin, Germany, 2019; pp. 11–19. [Google Scholar]
- Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 61–72. [Google Scholar]
- Jiang, Y.; Hou, J.; Xiao, X.; Deng, H. A Brain Tumor Segmentation New Method Based on Statistical Thresholding and Multiscale CNN. In International Conference on Intelligent Computing; Springer: Berlin, Germany, 2018; pp. 235–245. [Google Scholar]
- Liu, D.; Zhang, D.; Song, Y.; Zhang, F.; O’Donnell, L.J.; Cai, W. 3d large kernel anisotropic network for brain tumor segmentation. In Proceedings of the International Conference on Neural Information Processing, Siem Reap, Cambodia, 13–16 December 2018; pp. 444–454. [Google Scholar]
- Rezaei, M.; Yang, H.; Meinel, C. voxel-GAN: Adversarial Framework for Learning Imbalanced Brain Tumor Segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 321–333. [Google Scholar]
- Shen, H.; Wang, R.; Zhang, J.; McKenna, S.J. Boundary-aware fully convolutional network for brain tumor segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; pp. 433–441. [Google Scholar]
- Shreyas, V.; Pankajakshan, V. A deep learning architecture for brain tumor segmentation in MRI images. In Proceedings of the 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 16–18 October 2017; pp. 1–6. [Google Scholar]
- Tustison, N.J.; Shrinidhi, K.L.; Wintermark, M.; Durst, C.R.; Kandel, B.M.; Gee, J.C.; Avants, B.B. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 2015, 13, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jia, K. Deep feature learning with discrimination mechanism for brain tumor segmentation and diagnosis. In Proceedings of the 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, SA, Australia, 23–25 September 2015; pp. 306–309. [Google Scholar]
- Thillaikkarasi, R.; Saravanan, S. An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation Using Kernel Based CNN with M-SVM. J. Med. Syst. 2019, 43, 84. [Google Scholar] [CrossRef]
- Deng, W.; Shi, Q.; Luo, K.; Yang, Y.; Ning, N. Brain Tumor Segmentation Based on Improved Convolutional Neural Network in Combination with Non-quantifiable Local Texture Feature. J. Med. Syst. 2019, 43, 152. [Google Scholar] [CrossRef]
- Mok, T.C.W.; Chung, A.C.S. Learning data augmentation for brain tumor segmentation with coarse-to-fine generative adversarial networks. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 70–80. [Google Scholar]
- Sharma, A.; Kumar, S.; Singh, S.N. Brain tumor segmentation using DE embedded OTSU method and neural network. Multidimens. Syst. Signal Process. 2019, 30, 1263–1291. [Google Scholar]
- Xiao, Z.; Huang, R.; Ding, Y.; Lan, T.; Dong, R.; Qin, Z.; Wang, W. A deep learning-based segmentation method for brain tumor in MR images. In Proceedings of the 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Atlanta, GA, USA, 13–15 October 2016; pp. 1–6. [Google Scholar]
- Kermi, A.; Mahmoudi, I.; Khadir, M.T. Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 37–48. [Google Scholar]
- Yao, H.; Zhou, X.; Zhang, X. Automatic Segmentation of Brain Tumor Using 3D SE-Inception Networks with Residual Connections. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 346–357. [Google Scholar]
- Dai, L.; Li, T.; Shu, H.; Zhong, L.; Shen, H.; Zhu, H. Automatic Brain Tumor Segmentation with Domain Adaptation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 380–392. [Google Scholar]
- Carver, E.; Liu, C.; Zong, W.; Dai, Z.; Snyder, J.M.; Lee, J.; Wen, N. Automatic Brain Tumor Segmentation and Overall Survival Prediction Using Machine Learning Algorithms. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 406–418. [Google Scholar]
- Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 178–190. [Google Scholar]
- Sedlar, S. Brain tumor segmentation using a multi-path CNN based method. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 403–422. [Google Scholar]
- Kapás, Z.; Lefkovits, L.; Iclănzan, D.; Győrfi, Á.; Iantovics, B.L.; Lefkovits, S.; Szilágyi, L. Automatic brain tumor segmentation in multispectral MRI volumes using a random forest approach. In Pacific-Rim Symposium on Image and Video Technology; Springer: Berlin, Germany, 2017; pp. 137–149. [Google Scholar]
- Kumar, G.A.; Sridevi, P.V. Intensity Inhomogeneity Correction for Magnetic Resonance Imaging of Automatic Brain Tumor Segmentation. In Microelectronics, Electromagnetics and Telecommunications; Springer: Berlin, Germany, 2019; pp. 703–711. [Google Scholar]
- Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; pp. 506–517. [Google Scholar]
- Gering, D.; Sun, K.; Avery, A.; Chylla, R.; Vivekanandan, A.; Kohli, L.; Mackie, T. Semi-automatic Brain Tumor Segmentation by Drawing Long Axes on Multi-plane Reformat. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 441–455. [Google Scholar]
- Pourreza, R.; Zhuge, Y.; Ning, H.; Miller, R. Brain tumor segmentation in mri scans using deeply-supervised neural networks. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 320–331. [Google Scholar]
- Caulo, M.; Panara, V.; Tortora, D.; Mattei, P.A.; Briganti, C.; Pravatà, E.; Tartaro, A. Data-driven grading of brain gliomas: A multiparametric MR imaging study. Radiology 2014, 272, 494–503. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 2015, 10, e0140381. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ma, J.; Niu, G.; Zheng, J.; Liu, Z.; Du, Y.; Yang, J. Differentiation between solitary cerebral metastasis and astrocytoma on the basis of subventricular zone involvement on magnetic resonance imaging. PLoS ONE 2015, 10, e0133480. [Google Scholar] [CrossRef] [PubMed]
- Chaddad, A. Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models. J. Biomed. Imaging 2015, 1015, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajini, N.H.; Narmatha, T.; Bhavani, R. Automatic classification of MR brain tumor images using decision tree. In Proceedings of the International Conference on Electronics, Near Madurai, Tamilnadu, India, 2–3 November 2012; Volume 31. [Google Scholar]
- Javed, U.; Riaz, M.M.; Ghafoor, A.; Cheema, T.A. MRI brain classification using texture features, fuzzy weighting and support vector machine. Prog. Electromagn. Res. 2013, 53, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Al-Shaikhli, S.D.S.; Yang, M.Y.; Rosenhahn, B. Brain tumor classification using sparse coding and dictionary learning. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2774–2778. [Google Scholar]
- Lahmiri, S.; Boukadoum, M. Classification of brain MRI using the LH and HL wavelet transform sub-bands. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1025–1028. [Google Scholar]
- Lin, B.J.; Chou, K.N.; Kao, H.W.; Lin, C.; Tsai, W.C.; Feng, S.W.; Hueng, D.Y. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J. Neurosurg. 2014, 121, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Sun, G.; Wu, Q.; Liu, J.; Lin, F. Hybrid Pyramid U-Net Model for Brain Tumor Segmentation. In Proceedings of the International Conference on Intelligent Information Processing, Nanning, China, 19 October 2018; pp. 346–355. [Google Scholar]
- Ge, C.; Gu, I.Y.-H.; Jakola, A.S.; Yang, J. Brain Tumor Classification Using Slice-Based Deep Learning and Fusion of Multi-Modal MR Images. In Proceedings of the 40th Annual Int’l Conf of the IEEE Engineering in Medicine and Biology Society (EMBC18), Honolulu, HI, USA, 17–21 July 2017. [Google Scholar]
- Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Shen, D. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Badie, B.; Brooks, N.; Souweidane, M.M. Endoscopic and minimally invasive microsurgical approaches for treating brain tumor patients. J. Neurooncol. 2004, 69, 209–219. [Google Scholar] [CrossRef]
- Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Gillies, R. Radiomics in brain tumor: Image assessment, quantitative feature descriptors, and machine-learning approaches. Am. J. Neuroradiol. 2018, 39, 208–216. [Google Scholar] [CrossRef]
- Rao, V.; Sarabi, M.S.; Jaiswal, A. Brain Tumor Segmentation with Deep Learning. In Proceedings of the MICCAI Multimodal Brain Tumor Segmentation Chall, Munich, Germany, 5–9 October 2015; pp. 56–59. [Google Scholar]
- Amiri, S.; Rekik, I.; Mahjoub, M.A. Deep random forest-based learning transfer to SVM for brain tumor segmentation. In Proceedings of the 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Monastir, Tunisia, 21–23 March 2016; pp. 297–302. [Google Scholar]
- Wang, G.; Li, W.; Zuluaga, M.A.; Pratt, R.; Patel, P.A.; Aertsen, M.; Vercauteren, T. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 2018, 37, 1562–1573. [Google Scholar] [CrossRef]
- Agn, M.; Puonti, O.; Rosenschöld, P.M.A.; Law, I.; van Leemput, K. Brain tumor segmentation using a generative model with an RBM prior on tumor shape. BrainLes 2015, 2015, 168–180. [Google Scholar]
- McKinley, R.; Jungo, A.; Wiest, R.; Reyes, M. Pooling-Free Fully Convolutional Networks with Dense Skip Connections for Semantic Segmentation, with Application to Segmentation of White Matter Lesions; Springer: Berlin, Germany, 2017. [Google Scholar]
- Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. Deep Learning with Mixed Supervision for Brain Tumor Segmentation. arXiv 2018, arXiv:1812.04571. [Google Scholar] [CrossRef] [PubMed]
- Sheller, M.J.; Reina, G.A.; Edwards, B.; Martin, J.; Bakas, S. Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 92–104. [Google Scholar]
- Belcastro, V.; Pisani, L.R.; Bellocchi, S.; Casiraghi, P.; Gorgone, G.; Mula, M.; Pisani, F. Brain tumor location influences the onset of acute psychiatric adverse events of levetiracetam therapy: An observational study. J. Neurol. 2017, 264, 921–927. [Google Scholar] [CrossRef]
- Ramírez, I.; Martín, A.; Schiavi, E. Optimization of a variational model using deep learning: An application to brain tumor segmentation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 631–634. [Google Scholar]
- van der Heyden, B.; Wohlfahrt, P.; Eekers, D.B.; Richter, C.; Terhaag, K.; Troost, E.G.; Verhaegen, F. Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach. Sci. Rep. 2019, 9, 4126. [Google Scholar] [CrossRef] [Green Version]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432. [Google Scholar]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Milletari, F.; Ahmadi, S.A.; Kroll, C.; Plate, A.; Rozanski, V.; Maiostre, J.; Navab, N. Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image Underst. 2017, 164, 92–102. [Google Scholar] [CrossRef] [Green Version]
Sr. No | Paper | Acquisition Method | Dataset Sources |
---|---|---|---|
1. | Xiaomei Zhao et al. [1]. | Online repository | BraTS 2013, BraTS 2015 and BraTS 2016 |
2. | Mamta Mittal et al. [12]. | Online repository | BRAINIX medical images. (https://www.medicalimages.com/search/brain.html) |
3. | Guotai Wang et al. [26]. | Online repository | BraTS 2018 |
4. | Mikael Agn1 et al. [30]. | Online repository | BraTS (http://braintumorsegmentation.org/) |
5. | M. Zhou et al. [37]. | Not given | Not Mentioned |
6. | Subhashis Banerjee et al. [67]. | Online repository | TCGA-GBM, TCGA-LGG (https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG) |
7. | Yufan Zhou et al. [68]. | Custom-developed | Proprietary Dataset. The public dataset [5] includes 3064 (2D) slices of brain MRI from 233 patients. |
8. | Nyoman Abiwinanda et al. [69]. | Online repository | Ffigshare Cheng (Brain Tumor Dataset, 2017) |
9. | Esther Alberts et al. [70]. | Online repository | The Cancer Imaging Archive” (TCIA) (https://www.cancerimagingarchive.net/) |
10. | Ali ARI [71]. | Not given | Not Mentioned |
11. | Sajid Iqbal1 et al. [72]. | Not given | Not Mentioned |
12. | Yota Ishikawa et al. [73]. | Not given | Not Mentioned |
13. | Heba Mohsen et al. [74]. | Custom developed | Harvard Medical School website (http://med.harvard.edu/AANLIB/) |
14. | Justin S. Paula et al. [75]. | Custom-developed | Publically available Nanfang Hospital, Guangzhou, China, and General Hospital, Tianjing Medical University |
15. | Yan Xu et al. [76]. | Online repository | TCGA (https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG) |
16. | Kaoutar B. Ahmed et al. [77]. | Online repository | H. Lee Moffitt Cancer Research Center |
17. | A. R. Deepa1 & W. R. Sam Emmanuel [78]. | Online repository | BraTS 2015 |
18. | Mustafa Rashid Ismael [79] | Online repository | BraTS |
19. | Renhao Liua et al. [80]. | Custom d developed | H. Lee Moffitt Cancer Research Center |
20. | Nøhr Ladefoged et al. [81]. | Custom-developed | PET/MRI system (Siemens Biograph mMR, Siemens Healthcare, Erlangen, Germany) (Delso et al., 2011) between February 2015 and October 2017, and 86 FET PET |
21. | Himar Fabelo et al. [82]. | Custom-developed | The intraoperative hyperspectral (HS) acquisition system was employed to create the HS image database. |
22. | Yannick Suter1 et al. [83]. | Online repository | BraTS 2018 |
23. | Yuexiang Li and Linlin She [84]. | Online repository | BraTS 17 |
24. | Dong Nie et al. [85]. | Custom-developed | Glioma image database (collected during 2010–2015) of Huashan hospital, Shanghai, China |
25. | Javeria Amin1 et al. [86]. | Online repository | BraTS 2012 |
26. | Lina Chato and Shahram Latifi [87] | Online repository | BraTS 2017 |
27. | Virupakshappa & Basavaraj Amarapur [88] | Not given | Not Mentioned |
28. | Eze Benson et al. [89]. | Online repository | BraTS 2018 |
29. | Chenhong Zhou et al. [90]. | Online repository | BraTS 2018 |
30. | Richard McKinley et al. [91]. | Online repository | 2017 BraTS |
31. | Geena Kim [92]. | Online repository | BraTS2017 |
32. | Yan Hu and Yong Xia [93] | Online repository | BraTS 2017 |
33. | Aparna Natarajan& Sathiyasekar Kumarasamy [94] | Not given | Not Mentioned |
34. | Pawel Mlynarskia et al. [95]. | Online repository | BraTS 2018 |
35. | Parnian Afshar et al. [96]. | Not given | Not Mentioned |
36. | Samya AMIRI [97] | Online repository | BraTS |
37. | Peter D. Chang [98] | Online repository | 2016 BraTS |
38. | Fabian Isensee et al. [99]. | Custom-developed | Not Mentioned |
39. | Sanjay Kumar et al. [100]. | Online repository | BraTS Dec 2017 |
40. | Guotai Wang et al. [101]. | Not given | Not Mentioned |
541 | Yun Jiang et al. [102]. | Online repository | BraTS2015 |
42. | Dongnan Liu et al. [103]. | Online repository | BraTS17 |
43. | Mina Rezaei et al. [104]. | Online repository | BraTS-2018 ISLES-2018 (http://www.isles-challenge.org/) |
44. | Haocheng Shen et al. [105]. | Online repository | BraTS15, BraTS13 |
45. | V. Shreyas and Vinod Pankajakshan [106] | Online repository | BraTS |
46. | Nicholas J et al. [107]. | Online repository | MICCAI 2013 BraTS |
47. | Liya Zhao and Kebin Jia [108] | Online repository | BraTS |
48. | R. Thillaikkarasi & S. Saravanan [109] | Not given | Not Mentioned |
49. | Wu Deng1 et al. [110]. | Online repository | BraTS 2015 |
50. | |||
51. | Tony C. W. Mok et al. [111]. | Online repository | BraTS15 |
52. | Anshika Sharma et al. [112]. | Online repository | IBSR data set Cyprus (http://www.medinfo.cs.ucy.ac.cy/) |
53. | Zhe Xiao et al. [113]. | Custom-developed | MRIs from real patients in West China Hospital |
54. | Adel Kermi et al. [114]. | Online repository | BraTS’2018 |
55. | Hongdou et al. [115]. | Online repository | BraTs 2018 |
56. | Lutao Dai1 et al. [116]. | Online repository | BraTS 2018 |
57. | Eric Carver et al. [117]. | Online repository | BraTS |
58. | Guotai Wanget al. [118]. | Online repository | BraTS 2017 |
59. | Sara Sedlar [119] | Online repository | BraTS 2017 |
60. | Zoltan Kap et al. [120]. | Online repository | BraTS 2016 |
61. | G. Anand Kumar and P. V. Sridevi [121]. | Online repository | BraTS 2015 |
62. | Hao Dong et al. [122]. | Online repository | BraTS 2015 |
63. | David Gering et al. [123]. | Online repository | 2018 BraTS |
64. | Reza Pourreza et al. [124]. | Online repository | BraTS 2017 |
65. | Caulo et al. [125]. | Custom developed Jan 2008–Sep 2012 | University G. d’Annunzio of Chieti-Pescara, Chieti, Italy |
66. | Cheng et al. [126]. | Custom-developed 2005–2010 | Nanfang Hospital and General Hospital, Tianjin Medical University |
67. | Wang et al. [127]. | Custom-developed May 2004–Nov 2011 | Hospital of Xi’an Jiaotong University |
68. | Chaddad [128]. | Online repository | Cancer Imaging Archive (http://www.cancerimagingarchive.net/) |
69. | Rajini et al. [129]. | Custom-developed | Department of Radiology, Rajah Muthiah Medical College Hospital (RMMCH), Tamil Nadu, India |
70. | Javed et al. [130]. | Online repository | brain database http://www.med.harvard.edu/AANLIB/home.html |
71. | Al-Shaikhli et al. [131]. | Online repository | Brain web for simulated brain database (http://brainweb.bic.mni.mcgill.ca/brainweb/) |
72 | Lahmiri et al. [132]. | Online repository | Harvard Medical School (http://www.med.harvard.edu/aanlib/home.html) |
73 | Lin et al. [133]. | Custom-developed Jan 2006–Dec 2012 | National Defense Medical Center, Taipei, Taiwan, Republic of China |
74 | Xiangmao Kong et al. [134]. | Online repository | BraTS 2015 and BraTS 2017 |
Study | Method | Proposed Solution and Preprocessing Approach | Software’s/Tools/Languages/ Libraries used for Simulation and Implementation | Evaluation |
---|---|---|---|---|
Subhashis Banerjee et al. [67]. | Deep Convolutional Neural Networks (ConvNets) using multi-sequence MR images. | Terser flow and Python | Accuracy = 97% | |
Yufan Zhou et al. [68]. | Convolutional Neural Networks | DenseNet-RNN, DenseNet-LSTM, DenseNet-DenseNET | Tensor Flow, Nvidia Titan Xp GPU | Accuracy = 92.13% |
Nyoman Abiwinanda et al. [69]. | Convolutional Neural Network | AlexNet,VGG16,ResNet | Matlab | Accuracy = 84.19% |
Esther Alberts et al. [70]. | SVM, RF, KNN, LOG, MLP and PCA | LBP, BRIEF and HOG | Not Mention | Accuracy = 83% |
Ali ARI & Davut HANBAY [71] | Convolutional Neural Network | ELM-LRF | MATLAB 2015 | Accuracy = 97.18% |
Yota Ishikawaet et al. [73]. | Deep Convolutional Neural Networks | BING objectness estimation, Voronoi diagram, Binarization, Watershed transform | Not Mention | Accuracy = 98.5% |
Heba Mohsen et al. [74]. | Deep Neural Network | Discrete Wavelet Transform (DWT), Principal Components Analysis (PCA) | MATLAB R2015a and Weka 3.9 | Accuracy = 96.97% |
Justin S. Paula et al. [75]. | Convolutional Neural Network, Fully Connected Neural Network, Random Forests | Not Mention | Accuracy = 91.43% | |
Yan Xu et al. [76]. | Deep Convolutional Activation Features | Deep Convolutional Activation Features trained by ImageNet knowledge | Not Mention | Accuracy = 97.5% |
Parnian Afshar et al. [96]. | Convolutional Neural Networks(CNNs) | Capsule Networks (CapsNets) | Python 2.7 and Keras library | Accuracy = 86.56% |
Study | Method | Proposed Solution and Preprocessing Approach | Software’s/Tools/Languages/ Libraries used for Simulation and Implementation | Evaluation |
---|---|---|---|---|
Ali ARI & Davut HANBAYaks [71]. | Convolutional Neural Network | ELM-LRF | MATLAB 2015 | Accuracy = 97.18% |
Yannick Suteret al. [83]. | 3D-convolutional neural networks (CNNs) | Support Vector Classifier (SVC), Hand-Crafted Features | Scikit-learn3 version 0.19.1. | Accuracy = 72.2% |
Yuexiang Li & Linlin Shen [84]. | CNN | Multi-view Deep Learning Framework (MvNet) and SPNet | PyTorch Toolbox | Accuracy =88.00% |
Dong Nie et al. [85]. | 3D convolutional neural networks (CNNs) | Multi-Channel Architecture of 3D convolutional neural networks and SVM | Not Mention | Accuracy = 90.66% |
Javeria Aminrt et al. [86]. | Random forest (RF) classifier | Gabor Wavelet Features (GWF), Histograms of Oriented Gradient (HOG), Local Binary Pattern (LBP) and segmentation based Fractal Texture Analysis (SFTA) features | DWI and FLAIR | Dice Scores Complete = 0.91 Non-Enhancing = 0.89 Enhancing = 0.90 |
Lina Chato & Shahram Latifi [87]. | Convolutional Neural Network (CNN), Linear Discriminant | Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear Discriminant, Tree, Ensemble and Logistic Regression | Not Mention | Accuracy = 68.8% |
Virupakshappa & Basavaraj Amarapur [88]. | Adaptive Artificial Neural Network (AANN) | Modified Level Set approach | MATLAB | Accuracy = 98% |
Area | Study | Method | Proposed Solution and Preprocessing Approach | Software’s/Tools/Languages/ Libraries used for Simulation and Implementation | Evaluation |
---|---|---|---|---|---|
Deep Features | Kaoutar B. Ahmed et al. [77]. | Convolutional Neural Networks (CNNs) | Fine-Tuning | Weka | Accuracy = 81% |
A. R. Deepa & W. R. Sam Emmanuel [78]. | Fused Feature Adaptive | MATLAB | Accuracy = 99.84 | ||
Mustafa Rashid Ismael [79]. | deep neural networks | Stacked Sparse Autoencoder (SSA) and Softmax | Not Mention | Accuracy = 94% | |
Renhao Liua et al. [80]. | Deep Convolutional Neural Networks | Pre-trained CNN as a feature extractor to get deep feature representations for brain tumor magnetic resonance images. | Weka | Accuracy = 95.4% | |
Evaluation | Nøhr Ladefoged et al. [81]. | RESOLUTE and DeepUTE | Precision = 0.67 | ||
Frameworks | Himar Fabelo et al. [82]. | 2D convolutional neural network | TensorFlow and Titan-XP NVIDIA GPU | Accuracy = 80% |
Study | Method | Proposed Solution and Preprocessing Approach | Softwares/Tools/Languages/ Libraries used for Simulation and Implementation | Evaluation |
---|---|---|---|---|
Xiaomei Zhao et al. [1]. | Fully Convolutional Neural Networks (FCNNs) | Integration of FCNNs and CRFs | Tesla K80 GPUs and Intel E5-2620 CPUs | Dice Scores Complete = 0.84 Core Tumor = 0.67 Enhancing = 0.62 |
Mamta Mittal et al. [12]. | Stationary Wavelet Transform (SWT) and the new Growing Convolution Neural Network (GCNN). | Not Mention | Accuracy = 98.6 Precision = 0.9881 Recall = 0.9823 | |
Yan Xu et al. [76]. | Deep Convolutional Activation Features(CNNs) | CNN Activations Trained by ImageNet to Extract Features through Feature Selection, Feature Pooling, and Data Augmentation | Not Mention | Accuracy = 84% |
Eze Benson et al. [89]. | Convolutional Neural Network (CNN) | Singular Hourglass Structure | NVIDIA TITAN X GPU | Coefficient = 92% |
Chenhong Zhou et al. [90]. | Convolutional Neural Network | OM-Net MC-baseline and OM-Net from multiple aspects to further promote the performance. | Not Mention | Dice Scores Enhancing = 0.8136 Whole Tumor = 0.909 Core Tumor = 0.8651 |
Geena Kim [92]. | 2D Fully Convolutional Neural Networks | double convolution layers, inception modules, and dense modules were added to a U-Net to achieve a deep architecture | Not Mention | Dice Scores Enhancing = 0.75 Whole Tumor = 0.88 Core Tumor = 0.73 |
Yan Hu & Yong Xia [93]. | Deep Convolutional Neural Network | 3D Deep Neural Network-based Algorithm Cascaded U-Net | NVIDIA GTX 1080 | Dice Scores Enhancing = 0..55 Whole Tumor = 0.81 Core Tumor = 0.69 |
Aparna Natarajan & Sathiyasekar Kumarasamy [94]. | Fuzzy Logic with Spiking Neuron Model (FL-SNM) | MATLABR2017 | Accuracy = 94.87% | |
Peter D. Chang [98]. | Fully Convolutional Neural Networks | Fully Convolutional Residual Neural Network (FCR-NN) | MATLAB R2016a | Dice Scores Complete = 0.87 Core Tumor = 0.81 Enhancing = 0.72 |
Fabian Isensee et al. [99]. | Convolutional Neural Networks | UNet Architecture | Pascal Titan X GPU | Dice Scores Whole = 90.1 Core Tumor = 90.0 Enhancing = 84.5 |
Sanjay Kumar et al. [100]. | Fully Convolution Neural Networks | UNET Architecture | Not Mention | Accuracy = 89% |
Guotai Wang et al. [101]. | Convolutional neural networks (CNNs) | Fine-tuning-based Segmentation (BIFSeg) | NVIDIA GPU | Accuracy = 88.11% |
Yun Jiang et al. [102]. | Convolutional Neural Networks | Statistical Thresholding and Multiscale Convolutional Neural Networks (MSCNN) | Not Mention | Dice Coefficient = 86.6% Predictive Positivity Value (PPV) = 88.6% Sensitivity Coefficient = 85.2% |
Dongnan Liu et al. [103]. | Deep Convolutional Neural Network (DNN) | 3D Large Kernel Anisotropic Network | CBICA’s Image Processing Portal | Dice Scores Whole = 0.86 Core Tumor = 0.81 Enhancing = 0.793 |
Mina Rezaei et al. [104]. | 3D Conditional Generative Adversarial Network (cGAN) | Adversarial Network, named Voxel-GAN | Keras library and Tensorflow | Dice Scores Whole = 0.84 Core Tumor = 0.79 Enhancing = 0.63 Dice = 0.83 Hausdorff = 9.3 Precision = 0.81 Recall = 0.78 |
Haocheng Shen et al. [105]. | Fully Convolutional Network (FCN) | Boundary-Aware Fully Convolutional Network | Keras and Theano | Dice Scores Complete = 88.7 Core Tumor = 71.8 Enhancing = 72.5 |
V. Shreyas and Vinod Pankajakshan [106]. | Simple Fully Convolutional Network (FCN) | U-Net | Uadro K4000 GPU | Dice Scores Whole = 0.83 Core Tumor = 0.75 Enhancing = 0.72 |
Nicholas J et al. [107]. | Random Forests | Random Forests with ANTsR | ANTsR Package, CMake Tool, R-code | Dice Scores Complete = 0.87 Core Tumor = 0.78 Enhancing = 0.74 |
Liya Zhao & Kebin Jia [108]. | Convolutional Neural Networks (CNNs) | Multi-Scale CNN Architecture of tumor Recognitionon 2D slice and Multiple Intermediate Layers in CNNs | Not Mention | Dice Accuracy = 0.88% |
R. Thillaikkarasi & S. Saravanan [109]. | CNN with M-SVM | Novel Deep Learning Algorithm (Kernel-based CNN) with M-SVM | Not Mention | Accuracy = 84% |
Wu Deng et al. [110]. | Convolutional Neural Network | Dense Micro-block Difference Feature (DMDF) and Fisher vector Encoding Non-quantifiable local feature FCNN and Fine Feature Fusion Model | GPU NVIDIA GeForce GTX1070, Ubuntu 16.04 LST 64-Bit operating System | Accuracy = 90.98% |
Tony C. W. Mok et al. [111]. | Generative Adversarial Networks | Novel automatic data augmentation Coarse-to-Fine Generator to capture the Manifold, Coarse-to-Fine Boundary-Aware Generator CB-GANs | Nvidia GTX1080 Ti GPU | Dice Scores Complete = 0.84 Core Tumor = 0.63 Enhancing = 0.57 |
Anshika Sharma et al. [112]. | Neural Network | Differential Evolution algorithm Embedded with OTSU method Hybridization of Differential Evolution(DE) and OTSU | MATLABR2012a | Accuracy = 94.73% |
Zhe Xiao et al. [113]. | Coarse-to-Fine and ’Stacked Auto-Encoder’ (SAE). Stacked Denoising Auto Encoder SDAE | Not Mention | Accuracy = 98.04% | |
Adel Kermi et al. [114]. | 2D Deep Convolutional Neural Networks (DNNs) | Weighted Cross-Entropy (WCE) and Generalized Dice Loss (GDL) U-net | intel Xeon E5-2650 CPU@ 2.00 GHz (64 GB) and NVIDIA Quadro 4000–448 Core CUDA (2 GB) GPU. | Dice Scores Whole = 0.86 Core Tumor = 0.80 Enhancing = 0.78 |
Hongdou Yao et al. [115]. | Cascaded FCN | GTX 1080Ti GPU | Dice Scores Whole = 0.86 Core Tumor = 0.73 Enhancing = 0.63 | |
Lutao Dai et al. [116]. | Deep Convolution Neural Networks | Integration of modified U-Net and its domain-adapted version (DAU-Net). | XGBoost | Dice Scores Whole = 0.91 Core Tumor = 0.85 Enhancing = 0.80 |
Eric Carver et al. [117]. | U-net Neural Network | XGBboost | Dice Scores Whole = 0.88 Core Tumor = 0.76 Enhancing = 0.71 | |
Guotai Wang et al. [118]. | Convolutional Neural Networks | Cascade Fully Convolutional Neural Network with multiple layers of Anisotropic and dilated Convolution Filters | NVIDIA TITAN X GPU | Dice Scores Whole = 0.83 Core Tumor = 0.90 Enhancing = 0.78 |
Sara Sedlar [119]. | Convolutional Neural Network (CNN | Multi-Path Convolutional Neural Network (CNN) | nVidia’s GeForce GTX 980 Ti (6 GB) GPU and Intel Core i7-6700K CPU @ 4.00 GHz (32 GB). | Dice Scores Whole = 0.84 Core Tumor = 0.69 Enhancing = 0.60 |
Zoltan Kap et al. [120]. | Decision Trees and Random Forest technique | Not Mention | Dice score = 80.1% Sensitivity = 83.1% Specificity = 98.6% | |
G. Anand Kumar & P. V. Sridevi [121]. | 3D Convolutional Neural Network (3DCNN) | EGLCM Feature Extraction to Assess, Evaluate and Produce accurate predictions and detailed segmentation maps. | MATLABR2017a | Not Mention |
Hao Dong et al. [122]. | Fully Convolutional Networks | U-Net based Deep Convolutional Networks | NVIDIA Titan X (Pascal) | Dice Scores Complete = 0.86 Core Tumor = 0.86 Enhancing = 0.65 |
David Gering et al. [123]. | Convolution Neural Network | Multi-Plane Reformat (MPR) | TensorFlow and Neural Networking API Keras | Dice Scores Active= 0.76 Core Tumor = 0.86 Whole = 0.89 |
Reza Pourreza et al. [124]. | Deeply-Supervised Neural Network | Holistically-Nested Edge Detection (HED) Network | Caffe library Python and NVIDIA Titan Xp graphic card | Dice Scores Whole = 0.86 Core Tumor = 0.60 Enhancing = 0.69 |
Samya AMIRI [140]. | Random forest (RF) based Learning Transfer to SVM RF-SVM cascaded | MATLAB | Mean Dice index Secore = 72.0% | |
Guotai Wang et al. [141]. | Deep Convolutional Neural Networks (CNNs) | 3D Unet, Cascaded Network of WNet, TNet and ENet | NVIDIA TITAN X GPU | Dice Scores Whole = 90.21 Core Tumor = 85.83 Enhancing = 79.72 |
Mikael Agn et al. [142]. | Gaussian Mixture Model Combined with a Spatial Atlas-based Tissue Prior Generative Model | Convolutional Restricted Boltzmann Machines (cRBMs) | MATLAB 2014b. | Dice Scores Complete = 87 Core Tumor = 82 Enhancing = 70 |
Xiangmao Kong et al. [134]. | U-Net | Novel Hybrid Pyramid U-Net (HPU-Net) Model for Pixel-Level Prediction | NVIDIA Titan X GPU | Dice Scores Complete = 0.90 Core Tumor = 0.71 Enhancing = 0.78 Predictive Positivity Value (PPV) Complete = 0.91 Core Tumor = 0.87 Enhancing = 0.93 Sensitivity Complete = 0.96 Core Tumor = 0.79 Enhancing = 0.67 |
Richard McKinley et al. [143]. | Convolutional Neural Network (CNN) | Densenet and DeepSCAN | Not Mention | Dice Scores |
Pawel Mlynarskia et al. [144]. | Deep Learning Fully-Annotated and Weakly-Annotated | TensorFlow | Accuracy = 85.67% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, M.W.; Ghamdi, M.A.A.; Hussain, M.; Khan, M.A.; Khan, K.M.; Almotiri, S.H.; Butt, S.A. Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sci. 2020, 10, 118. https://doi.org/10.3390/brainsci10020118
Nadeem MW, Ghamdi MAA, Hussain M, Khan MA, Khan KM, Almotiri SH, Butt SA. Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sciences. 2020; 10(2):118. https://doi.org/10.3390/brainsci10020118
Chicago/Turabian StyleNadeem, Muhammad Waqas, Mohammed A. Al Ghamdi, Muzammil Hussain, Muhammad Adnan Khan, Khalid Masood Khan, Sultan H. Almotiri, and Suhail Ashfaq Butt. 2020. "Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges" Brain Sciences 10, no. 2: 118. https://doi.org/10.3390/brainsci10020118
APA StyleNadeem, M. W., Ghamdi, M. A. A., Hussain, M., Khan, M. A., Khan, K. M., Almotiri, S. H., & Butt, S. A. (2020). Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sciences, 10(2), 118. https://doi.org/10.3390/brainsci10020118