Distinct Effects of Stereotactically Injected Human Cerebrospinal Fluid Containing Glutamic Acid Decarboxylase Antibodies into the Hippocampus of Rats on the Development of Spontaneous Epileptic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stereotactic Intrahippocampal Injection in Vivo
2.2. Hippocampal Slice Preparation
2.3. Field Potential Recordings
2.4. Data Processing and Statistical Analysis
2.5. Ethics Approval Statement
3. Results
3.1. Marker Dispersion in the Hippocampus
3.2. Morphology of REDs
3.3. Average Frequency of REDs
3.4. Average Duration of REDs
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tüzün, E.; Dalmau, J. Limbic encephalitis and variants: Classification, diagnosis and treatment. Neurologist 2007, 13, 261–271. [Google Scholar]
- Brierley, J.B.; Corsellis, J.A.; Hierons, R.; Nevin, S. Subacute encephalitisof later adult life mainly affecting the limbic areas. Brain 1960, 1960, 357–368. [Google Scholar] [CrossRef]
- Corsellis, J.A.; Goldberg, G.J.; Norton, A.R. “Limbic encephalitis” and its association with carcinoma. Brain 1968, 91, 481–496. [Google Scholar] [CrossRef]
- Finelli, P.F. Autoimmune Limbic Encephalitis with GAD Antibodies. Neurohospitalist 2011, 1, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmau, J.; Furneaux, H.M.; Cordon-Cardo, C.; Posner, J.B. The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues. Am. J. Pathol. 1992, 141, 881–886. [Google Scholar] [PubMed]
- Voltz, R.; Gultekin, S.H.; Rosenfeld, M.R.; Gerstner, E.; Eichen, J.; Posner, J.B.; Dalmau, J. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N. Engl. J. Med. 1999, 340, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Antoine, J.C.; Honnorat, J.; Anterion, C.T.; Aguera, M.; Absi, L.; Fournel, P.; Michel, D. Limbic encephalitis and immunological perturbations in two patients with thymoma. J. Neurol. Neurosurg. Psychiatry 1995, 58, 706–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiz, A.; Blanco, Y.; Sabater, L.; González, F.; Bataller, L.; Casamitjana, R.; Ramió-Torrentà, L.; Graus, F. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: Diagnostic clues for this association. Brain 2008, 131, 2553–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malter, M.P.; Helmstaedter, C.; Urbach, H.; Vincent, A.; Bien, C.G. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann. Neurol. 2010, 67, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Solimena, M.; Folli, F.; Denis-Donini, S.; Comi, G.C.; Pozza, G.; De Camilli, P.; Vicari, A.M. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N. Engl. J. Med. 1988, 318, 1012–1020. [Google Scholar] [CrossRef]
- Baekkeskov, S.; Aanstoot, H.J.; Christgai, S.; Reetz, A.; Solimena, M.; Cascalho, M.; Folli, F.; Richter-Olesen, H.; Camilli, P.D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990, 347, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Honnorat, J.; Saiz, A.; Giometto, B.; Vincent, A.; Brieva, L.; de Andres, C.; Maestre, J.; Fabien, N.; Vighetto, A.; Casamitjana, R.; et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: Study of 14 patients. Arch. Neurol. 2001, 58, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giometto, B.; Nicolao, P.; Macucci, M.; Tavolato, B.; Foxon, R.; Bottazzo, G.F. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 1998, 352, 457. [Google Scholar] [CrossRef]
- Peltola, J.; Kulmala, P.; Isojärvi, J.; Saiz, A.; Latvala, K.; Palmio, J.; Savola, K.; Knip, M.; Keränen, T.; Graus, F. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 2000, 55, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Lernmark, A. Glutamic acid decarboxylase—Gene to antigen to disease. J. Intern. Med. 1996, 240, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Dinkel, K.; Meinck, H.M.; Jury, K.M.; Karges, W.; Richter, W. Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann. Neurol. 1998, 44, 194–201. [Google Scholar] [CrossRef]
- Mitoma, H.; Song, S.Y.; Ishida, K.; Yamakuni, T.; Kobayashi, T.; Mizusawa, H. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J. Neurol. Sci. 2000, 175, 40–44. [Google Scholar] [CrossRef]
- Ishida, K.; Mitoma, H.; Song, S.Y.; Uchihara, T.; Inaba, A.; Eguchi, S.; Kobayashi, T.; Mizusawa, H. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann. Neurol. 1999, 46, 263–267. [Google Scholar] [CrossRef]
- Hackert, J.K.; Müller, L.; Rohde, M.; Bien, C.G.; Köhling, R.; Kirschstein, T. Anti-GAD65 Containing Cerebrospinal Fluid Does not Alter GABAergic Transmission. Front. Cell. Neurosci. 2016, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Kersten, M.; Rabbe, T.; Blome, R.; Porath, K.; Sellmann, T.; Bien, C.G.; Köhling, R.; Kirschstein, T. Novel Object Recognition in Rats With NMDAR Dysfunction in CA1 After Stereotactic Injection of Anti-NMDAR Encephalitis Cerebrospinal Fluid. Front. Neurol. 2019, 10, 586. [Google Scholar] [CrossRef] [Green Version]
- Würdemann, T.; Kersten, M.; Tokay, T.; Guli, X.; Kober, M.; Rohde, M.; Porath, K.; Sellmann, T.; Bien, C.G.; Köhling, R.; et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res. 2016, 1633, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Niehusmann, P.; Dalmau, J.; Rudlowski, C.; Vincent, A.; Elger, C.E.; Rossi, J.E.; Bien, C.G. Diagnostic value of N-methyl-D-aspartate receptor antibodies in women with new-onset epilepsy. Arch. Neurol. 2009, 66, 458–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mody, I.; Lambert, J.D.; Heinemann, U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J. Neurophysiol. 1987, 57, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Behrens, C.J.; Van Den Boom, L.P.; Heinemann, U. Effects of the GABA(A) receptor antagonists bicuculline and gabazine on stimulus-induced sharp wave-ripple complexes in adult rat hippocampus in vitro. Eur. J. Neurosci. 2007, 25, 2170–2181. [Google Scholar] [CrossRef]
- Mitoma, H.; Ishida, K.; Shizuka-Ikeda, M.; Mizusawa, H. Dual impairment of GABAA- and GABAB-receptor-mediated synaptic responses by autoantibodies to glutamic acid decarboxylase. J. Neurol. Sci. 2003, 208, 51–56. [Google Scholar] [CrossRef]
- Manto, M.U.; Laute, M.A.; Aguera, M.; Rogemond, V.; Pandolfo, M.; Honnorat, J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann. Neurol. 2007, 61, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Vianello, M.; Vianello, M.; Bisson, G.; Vianello, M.; Bisson, G.; Dal Maschio, M.; Vassanelli, S.; Girardi, S.; Mucignat, C.; Fountzoulas, K.; et al. Increased spontaneous activity of a network of hippocampal neurons in culture caused by suppression of inhibitory potentials mediated by anti-gad antibodies. Autoimmunity 2008, 41, 66–73. [Google Scholar] [CrossRef]
- Stemmler, N.; Rohleder, K.; Malter, M.P.; Widman, G.; Elger, C.E.; Beck, H.; Surges, R. Serum from a Patient with GAD65 Antibody-Associated Limbic Encephalitis Did Not Alter GABAergic Neurotransmission in Cultured Hippocampal Networks. Front. Neurol. 2015, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Geis, C.; Weishaupt, A.; Hallermann, S.; Grünewald, B.; Wessig, C.; Wultsch, T.; Reif, A.; Byts, N.; Beck, M.; Jablonka, S.; et al. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 2010, 133, 3166–3180. [Google Scholar] [CrossRef] [Green Version]
- Vianello, M.; Giometto, B.; Vassanelli, S.; Canato, M.; Betterle, C.; Mucignat, C. Peculiar labeling of cultured hippocampal neurons by different sera harboring anti-glutamic acid decarboxylase autoantibodies (GAD-Ab). Exp. Neurol. 2006, 202, 514–518. [Google Scholar] [CrossRef]
- Widman, G.; Golombeck, K.; Hautzel, H.; Gross, C.C.; Quesada, C.M.; Witt, J.A.; Rota-Kops, E.; Ermert, J.; Greschus, S.; Surges, R.; et al. Treating a GAD65 Antibody-Associated Limbic Encephalitis with Basiliximab: A Case Study. Front. Neurol. 2015, 6, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancaster, E.; Lai, M.; Peng, X.; Hughes, E.; Constantinescu, R.; Raizer, J.; Friedman, D.; Skeen, M.B.; Grisold, W.; Kimura, A.; et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: Case series and characterisation of the antigen. Lancet Neurol. 2010, 9, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Boronat, A.; Sabater, L.; Saiz, A.; Dalmau, J.; Graus, F. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 2011, 76, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Blome, R.; Bach, W.; Guli, X.; Porath, K.; Sellmann, T.; Bien, C.G.; Köhling, R.; Kirschstein, T. Differentially Altered NMDAR Dependent and Independent Long-Term Potentiation in the CA3 Subfield in a Model of Anti-NMDAR Encephalitis. Front. Synaptic Neurosci. 2018, 10, 26. [Google Scholar] [CrossRef] [PubMed]
Experiment | Anti-GAD Group | Control Groups | Recording Baseline (20 min) | Recording REDs (130 min) |
---|---|---|---|---|
I | anti-GAD-A (n = 5) anti-GAD-B (n = 9) | NaCl (n = 8) naive rat (n = 2) control CSF (n = 9) | ACSF standard | Mg2+ free |
II | anti-GAD-B (n = 9) | NaCl (n = 8) naive rat (n = 4) control CSF (n = 6) | ACSF standard | gabazine 5 µM |
III | anti-GAD-B (n = 14) | NaCl (n = 11) | ACSF standard | Mg2+ free gabazine 5 µM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frerker, B.; Rohde, M.; Müller, S.; Bien, C.G.; Köhling, R.; Kirschstein, T. Distinct Effects of Stereotactically Injected Human Cerebrospinal Fluid Containing Glutamic Acid Decarboxylase Antibodies into the Hippocampus of Rats on the Development of Spontaneous Epileptic Activity. Brain Sci. 2020, 10, 123. https://doi.org/10.3390/brainsci10020123
Frerker B, Rohde M, Müller S, Bien CG, Köhling R, Kirschstein T. Distinct Effects of Stereotactically Injected Human Cerebrospinal Fluid Containing Glutamic Acid Decarboxylase Antibodies into the Hippocampus of Rats on the Development of Spontaneous Epileptic Activity. Brain Sciences. 2020; 10(2):123. https://doi.org/10.3390/brainsci10020123
Chicago/Turabian StyleFrerker, Bernd, Marco Rohde, Steffen Müller, Christian G. Bien, Rüdiger Köhling, and Timo Kirschstein. 2020. "Distinct Effects of Stereotactically Injected Human Cerebrospinal Fluid Containing Glutamic Acid Decarboxylase Antibodies into the Hippocampus of Rats on the Development of Spontaneous Epileptic Activity" Brain Sciences 10, no. 2: 123. https://doi.org/10.3390/brainsci10020123
APA StyleFrerker, B., Rohde, M., Müller, S., Bien, C. G., Köhling, R., & Kirschstein, T. (2020). Distinct Effects of Stereotactically Injected Human Cerebrospinal Fluid Containing Glutamic Acid Decarboxylase Antibodies into the Hippocampus of Rats on the Development of Spontaneous Epileptic Activity. Brain Sciences, 10(2), 123. https://doi.org/10.3390/brainsci10020123