Involvement of Centrally Projecting Edinger–Westphal Nucleus Neuropeptides in Actions of Addictive Drugs
Abstract
:1. Introduction to the Centrally-Projecting Edinger-Westphal Nucleus
2. Neuromodulators Produced in the EWcp
3. Sensitivity of the EWcp to Alcohol and Other Drugs of Abuse
3.1. Sensitivity of Undefined Populations of the EWcp
3.2. Sensitivity of Specific Subpopulations of EWcp
4. Involvement of the EWcp in the Regulation of Alcohol Self-Administration
4.1. Involvement of Undefined Populations of the EWcp
4.2. Involvement of Specific Subpopulations of the EWcp
4.2.1. Urocortin 1
4.2.2. CART
4.2.3. Cholecystokinin
4.2.4. Substance P
5. Projections of the EWcp
6. Limitations and Future Directions
7. Conclusions
Funding
Conflicts of Interest
References
- Cajal, S.R. Histology of the Nervous System of Man and Vertebrates, 1st ed.; Swanson, N., Swanson, L., Eds.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Kozicz, T.; Bittencourt, J.C.; May, P.J.; Reiner, A.; Gamlin, P.D.R.; Palkovits, M.; Horn, A.K.; Toledo, C.A.B.; Ryabinin, A.E. The Edinger-Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. J. Comp. Neurol. 2011, 519, 1413–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavani, J.; Cuthbertson, S.; Bittencourt, J.; Toledo, C.; Reiner, A. Evidence that urocortin is absent from neurons of the Edinger-Westphal nucleus in pigeons. Braz. J. Med. Biol. Res. 2003, 36, 1695–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, P.J.; Reiner, A.J.; Ryabinin, A.E. Comparison of the distributions of urocortin-containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J. Comp. Neurol. 2008, 507, 1300–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryabinin, A.; Tsivkovskaia, N.; Ryabinin, S. Urocortin 1-containing neurons in the human Edinger-Westphal nucleus. Neuroscience 2005, 134, 1317–1323. [Google Scholar] [CrossRef]
- Weitemier, A.; Tsivkovskaia, N.; Ryabinin, A. Urocortin 1 distribution in mouse brain is strain-dependent. Neuroscience 2005, 132, 729–740. [Google Scholar] [CrossRef]
- Lee, S.K.; Ryu, P.D.; Lee, S.Y. Differential distributions of neuropeptides in hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla in the rat. Neurosci. Lett. 2013, 556, 160–165. [Google Scholar] [CrossRef]
- Kozicz, T. Neurons colocalizing urocortin and cocaine and amphetamine-regulated transcript immunoreactivities are induced by acute lipopolysaccharide stress in the Edinger-Westphal nucleus in the rat. Neuroscience 2003, 116, 315–320. [Google Scholar] [CrossRef]
- Okere, B.; Xu, L.; Roubos, E.W.; Sonetti, D.; Kozicz, T. Restraint stress alters the secretory activity of neurons co-expressing urocortin-1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 in the mouse Edinger–Westphal nucleus. Brain Res. 2010, 1317, 92–99. [Google Scholar] [CrossRef]
- Bloem, B.; Xu, L.; Morava, E.; Faludi, G.; Palkovits, M.; Roubos, E.W.; Kozicz, T. Sex-specific differences in the dynamics of cocaine- and amphetamine-regulated transcript and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls. Neuropharmacology 2012, 62, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Innis, R.B.; Aghajanian, G.K. Cholecystokinin-containing and nociceptive neurons in rat edinger-westphal nucleus. Brain Res. 1986, 363, 230–238. [Google Scholar] [CrossRef]
- Bachtell, R.K.; Tsivkovskaia, N.O.; Ryabinin, A.E. Alcohol-Induced c-Fos Expression in the Edinger-Westphal Nucleus: Pharmacological and Signal Transduction Mechanisms. J. Pharmacol. Exp. Ther. 2002, 302, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagida, M.A.; Konstantinidou, A.E.; Tsekoura, E.; Patsouris, E.; Panayotacopoulou, M.T. Immunohistochemical demonstration of urocortin 1 in Edinger–Westphal nucleus of the human neonate: Colocalization with tyrosine hydroxylase under acute perinatal hypoxia. Neurosci. Lett. 2013, 554, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhong, P.; Hu, F.; Barger, Z.; Ren, Y.; Ding, X.; Li, S.; Weber, F.; Chung, S.; Palmiter, R.D.; et al. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019, 177, 1293–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzog, E.; Bellenchi, G.C.; Gras, C.; Bernard, V.; Ravassard, P.; Bedet, C.; Gasnier, B.; Giros, B.; El Mestikawy, S. The Existence of a Second Vesicular Glutamate Transporter Specifies Subpopulations of Glutamatergic Neurons. J. Neurosci. 2001, 21, RC181. [Google Scholar] [CrossRef] [PubMed]
- Vigneault, E.; Poirel, O.; Riad, M.; Prud’Homme, J.; Dumas, S.; Turecki, G.; Fasano, C.; Mechawar, N.; El Mestikawy, S. Distribution of vesicular glutamate transporters in the human brain. Front. Neuroanat. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Gaszner, B.; Kormos, V.; Kozicz, T.; Hashimoto, H.; Reglodi, D.; Helyes, Z. The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger–Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience 2012, 202, 283–299. [Google Scholar]
- Ryabinin, E.A.; Criado, J.R.; Henriksen, S.J.; Bloom, E.F.; Wilson, M.C. Differential sensitivity of c-Fos expression in hippocampus and other brain regions to moderate and low doses of alcohol. Mol. Psychiatry 1997, 2, 32–43. [Google Scholar] [CrossRef]
- Ryabinin, E.A.; Wang, Y.M. Repeated alcohol administration differentially affects c-Fos and FosB protein immunoreactivity in DBA/2J mice. Alcohol. Clin. Exp. Res. 1998, 22, 1646–1654. [Google Scholar] [CrossRef]
- Turek, V.F.; Tsivkovskaia, N.O.; Hyytiä, P.; Harding, S.; Lê, A.D.; Ryabinin, A.E. Urocortin 1 expression in five pairs of rat lines selectively bred for differences in alcohol drinking. Psychopharmacology 2005, 181, 511–517. [Google Scholar] [CrossRef]
- Topple, A.N.; Hunt, E.G.; McGregor, I.S. Possible neural substrates of beer-craving in rats. Neurosci. Lett. 1998, 252, 99–102. [Google Scholar] [CrossRef]
- Weitemier, A.Z.; Woerner, A.; Backstrom, P.; Hyytia, P.; Ryabinin, A.E. Expression of c-Fos in Alko alcohol rats responding for ethanol in an operant paradigm. Alcohol. Clin. Exp. Res. 2001, 25, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Bachtell, R.K.; Wang, Y.-M.; Freeman, P.; Risinger, O.F.; Ryabinin, E.A. Alcohol drinking produces brain region-selective changes in expression of inducible transcription factors. Brain Res. 1999, 847, 157–165. [Google Scholar] [CrossRef]
- Ryabinin, E.A.; Bachtell, R.K.; Freeman, P.; Risinger, O.F. ITF expression in mouse brain during acquisition of alcohol self-administration. Brain Res. 2001, 890, 192–195. [Google Scholar] [CrossRef]
- Ryabinin, A.E.; Galvan-Rosas, A.; Bachtell, R.K.; Risinger, F.O. High alcohol/sucrose consumption during dark circadian phase in C57BL/6J mice: Involvement of hippocampus, lateral septum and urocortin-positive cells of the Edinger-Westphal nucleus. Psychopharmacology 2003, 165, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Ryabinin, A.E.; Freeman, P.; Risinger, F.O.; Wang, Y.-M. Selective Effects of Alcohol Drinking on Restraint-Induced Expression of Immediate Early Genes in Mouse Brain. Alcohol. Clin. Exp. Res. 1999, 23, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.L.; Tsivkovskaia, N.O.; Ryabinin, A.E. Ataxia and c-Fos expression in mice drinking ethanol in a limited access session. Alcohol. Clin. Exp. Res. 2005, 29, 1419–1426. [Google Scholar] [CrossRef]
- Giardino, W.J.; Rodriguez, E.D.; Smith, M.L.; Ford, M.M.; Galili, D.; Mitchell, S.H.; Chen, A.; Ryabinin, E.A. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl. Psychiatry 2017, 7, e1021. [Google Scholar] [CrossRef] [Green Version]
- Anacker, A.M.J.; Loftis, J.M.; Kaur, S.; Ryabinin, A.E. Prairie voles as a novel model of socially facilitated excessive drinking. Addict. Biol. 2011, 16, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Walcott, A.T.; Ryabinin, A.E. Alcohol’s Effects on Pair-Bond Maintenance in Male Prairie Voles. Front. Psychol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Walcott, A.T.; Ryabinin, E.A. Effects of Alcohol Consumption on Pair Bond Maintenance and Potential Neural Substrates in Female Prairie Voles. Alcohol Alcohol. 2019, 54, 353–360. [Google Scholar] [CrossRef]
- Ozburn, A.R.; Mayfield, R.D.; Ponomarev, I.; Jones, A.T.; Blednov, A.Y.; Harris, A.R. Chronic self-administration of alcohol results in elevated ΔFosB: Comparison of hybrid mice with distinct drinking patterns. BMC Neurosci. 2012, 13, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.E.; McGregor, I.S.; Mallet, P.E. Perinatal Exposure to Δ9-Tetrahydrocannabinol Alters Heroin-Induced Place Conditioning and Fos-Immunoreactivity. Neuropsychopharmacology 2006, 31, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Verty, A.; Price, I.; McGregor, I.; Mallet, P. Modulation of morphine-induced Fos-immunoreactivity by the cannabinoid receptor antagonist SR 141716. Neuropharmacology 2004, 47, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Spangler, E.; Cote, D.M.; Anacker, A.M.; Mark, G.P.; Ryabinin, A.E. Differential sensitivity of the perioculomotor urocortin-containing neurons to ethanol, psychostimulants and stress in mice and rats. Neuroscience 2009, 160, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Bachtell, R.; Ryabinin, A. Interactive effects of nicotine and alcohol co-administration on expression of inducible transcription factors in mouse brain. Neuroscience 2001, 103, 941–954. [Google Scholar] [CrossRef]
- Bachtell, R.; Tsivkovskaia, N.; Ryabinin, A. Strain differences in urocortin expression in the Edinger–Westphal nucleus and its relation to alcohol-induced hypothermia. Neuroscience 2002, 113, 421–434. [Google Scholar] [CrossRef]
- Dandekar, M.P.; Bharne, A.P.; Borkar, P.D.; Subhedar, N.K.; Kokare, D.M. Maternal ethanol exposure reshapes CART system in the rat brain: Correlation with development of anxiety, depression and memory deficits. Neuroscience 2019, 406, 126–139. [Google Scholar] [CrossRef]
- Bachtell, R.K.; Weitemier, A.Z.; Ryabinin, A.E. Lesions of the Edinger-Westphal nucleus in C57BL/6J mice disrupt ethanol-induced hypothermia and ethanol consumption. Eur. J. Neurosci. 2004, 20, 1613–1623. [Google Scholar] [CrossRef]
- Weitemier, A.Z.; Ryabinin, A.E. Lesions of the Edinger-Westphal nucleus alter food and water consumption. Behav. Neurosci. 2005, 119, 1235–1243. [Google Scholar] [CrossRef]
- Kozicz, T.; Yanaihara, H.; Arimura, A. Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J. Comp. Neurol. 1998, 391, 1–10. [Google Scholar] [CrossRef]
- Vaughan, J.; Donaldson, C.; Bittencourt, J.; Perrin, M.H.; Lewis, K.; Sutton, S.; Chan, R.; Turnbull, A.V.; Lovejoy, D.; Rivier, C.; et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995, 378, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Al-Shekhlee, A.; Bongiorno, P.B.; Esposito, A.; Khatri, P.; Sternberg, E.M.; Gold, P.W.; Licinio, J. Localization of urocortin messenger RNA in rat brain and pituitary. Mol. Psychiatry 1996, 1, 307–312. [Google Scholar] [PubMed]
- Hsu, S.Y.; Hsueh, A.J. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat. Med. 2001, 7, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Deussing, J.M.; Ryabinin, A.E.; Zuniga, A.; Kozicz, T. Action of CRF/urocortin peptides. In Hormones, Brain and Behavior, 3: Molecular and Cellular Mechanismss; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ryabinin, A.E.; Giardino, W.J. Contribution of Urocortin to the Development of Excessive Drinking. Int. Rev. Neurobiol. 2017, 136, 275–291. [Google Scholar] [PubMed]
- Ryabinin, A.E.; Weitemier, A.Z. The urocortin 1 neurocircuit: Ethanol-sensitivity and potential involvement in alcohol consumption. Brain Res. Rev. 2006, 52, 368–380. [Google Scholar] [CrossRef]
- Benoit, S.C.; Thiele, E.T.; Heinrichs, S.C.; Rushing, A.P.; Blake, A.K.; Steeley, R.J. Comparison of central administration of corticotropin-releasing hormone and urocortin on food intake, conditioned taste aversion, and c-Fos expression. Peptides 2000, 21, 345–351. [Google Scholar] [CrossRef]
- Kiianmaa, K.; Hyyti, P.; Samson, H.H.; Engel, J.A.; Svensson, L.; Sderpalm, B.; Larsson, A.; Colombo, G.; Vacca, G.; Finn, D.A.; et al. New Neuronal Networks Involved in Ethanol Reinforcement. Alcohol. Clin. Exp. Res. 2003, 27, 209–219. [Google Scholar] [CrossRef]
- Giardino, W.J.; Cote, D.M.; Li, J.; Ryabinin, A.E. Characterization of Genetic Differences within the Centrally Projecting Edinger-Westphal Nucleus of C57BL/6J and DBA/2J Mice by Expression Profiling. Front. Neuroanat. 2012, 6, 5. [Google Scholar] [CrossRef]
- Weitemier, A.Z.; Ryabinin, A.E. Brain region-specific regulation of urocortin 1 innervation and corticotropin-releasing factor receptor type 2 binding by ethanol exposure. Alcohol. Clin. Exp. Res. 2005, 29, 1610–1620. [Google Scholar] [CrossRef]
- Kaur, S.; Li, J.; Stenzel-Poore, M.P.; Ryabinin, A.E. Corticotropin-releasing factor acting on corticotropin-releasing factor receptor type 1 is critical for binge alcohol drinking in mice. Alcohol. Clin. Exp. Res. 2012, 36, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Giardino, W.J.; Cocking, D.L.; Kaur, S.; Cunningham, C.L.; Ryabinin, A.E. Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference. PLoS ONE 2011, 6, e26997. [Google Scholar] [CrossRef] [PubMed]
- Gysling, K. Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behaviour. Biochem. Pharmacol. 2012, 83, 1–5. [Google Scholar] [CrossRef]
- Ekblad, E. CART in the enteric nervous system. Peptides 2006, 27, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Koylu, O.E.; Couceyro, P.R.; Lambert, P.D.; Kuhar, M.J. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 1998, 391, 115–132. [Google Scholar] [CrossRef]
- Kuhar, M.J.; Yoho, L.L. CART peptide analysis by Western blotting. Synapse 1999, 33, 163–171. [Google Scholar] [CrossRef]
- Douglass, J.; McKinzie, A.; Couceyro, P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 1995, 15, 2471–2481. [Google Scholar] [CrossRef]
- Vicentic, A.; Jones, D.C. The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J. Pharmacol. Exp. Ther. 2007, 320, 499–506. [Google Scholar] [CrossRef]
- Jaworski, J.N.; Kozel, M.A.; Philpot, K.B.; Kuhar, M.J. Intra-Accumbal Injection of CART (Cocaine-Amphetamine Regulated Transcript) Peptide Reduces Cocaine-Induced Locomotor Activity. J. Pharmacol. Exp. Ther. 2003, 307, 1038–1044. [Google Scholar] [CrossRef] [Green Version]
- Salinas, A.; Wilde, J.D.; Maldve, R.E. Ethanol enhancement of cocaine- and amphetamine-regulated transcript mRNA and peptide expression in the nucleus accumbens. J. Neurochem. 2006, 97, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Salinas, A.G.; Nguyen, C.T.Q.; Ahmadi-Tehrani, D.; Morrisett, R.A. Reduced ethanol consumption and preference in cocaine- and amphetamine-regulated transcript (CART) knockout mice. Addict. Biol. 2014, 19, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Maciewicz, R.; Phipps, B.; Grenier, J.; Poletti, C. Edinger-Westphal nucleus: Cholecystokinin immunocytochemistry and projections to spinal cord and trigeminal nucleus in the cat. Brain Res. 1984, 299, 139–145. [Google Scholar] [CrossRef]
- Rehfeld, J.F. The Cholecystokinin—Gastrin Family of Peptides and Their Receptors. Neurotransm. Interact. Cogn. Funct. 1999, 26, 293–321. [Google Scholar]
- Gibbs, J.; Young, R.C.; Smith, G.P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 1973, 84, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, J.F. Cholecystokinin—From Local Gut Hormone to Ubiquitous Messenger. Front. Endocrinol. 2017, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Hökfelt, T.; Rehfeld, J.F.; Skirboll, L.; Ivemark, B.; Goldstein, M.; Markey, K. Evidence for coexistence of dopamine and CCK in meso-limbic neurones. Nature 1980, 285, 476–478. [Google Scholar] [CrossRef]
- Ho, T.; Skirboll, L.; Rehfeld, J.; Goldstein, M.; Markey, K.; Dann, O. A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 1980, 5, 2093–2124. [Google Scholar]
- Fuxe, K.; Andersson, K.; Locatelli, V.; Agnati, L.F.; Hökfelt, T.; Skirboll, L.; Mutt, V. Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection. Eur. J. Pharmacol. 1980, 67, 329–331. [Google Scholar] [CrossRef]
- Vickroy, T.; Bianchi, B. Pharmacological and mechanistic studies of cholecystokinin-facilitated [3H]dopamine efflux from rat nucleus accumbens. Neuropeptides 1989, 13, 43–50. [Google Scholar] [CrossRef]
- White, F.J.; Wang, R.Y. Interactions of cholecystokinin octapeptide and dopamine on nucleus accumbens neurons. Brain Res. 1984, 300, 161–166. [Google Scholar] [CrossRef]
- Wunderlich, R.G.; DeSousa, J.N.; Vaccarino, J.F. Cholecystokinin modulates both the development and the expression of behavioral sensitization to amphetamine in the rat. Psychopharmacology 2000, 151, 283–290. [Google Scholar] [CrossRef]
- Beinfeld, M.C.; Connolly, K.; Pierce, R. OLETF (Otsuka Long-Evans Tokushima Fatty) rats that lack the CCK 1 (A) receptor develop less behavioral sensitization to repeated cocaine treatment than wild type LETO (Long Evans Tokushima Otsuka) rats. Peptides 2001, 22, 1285–1290. [Google Scholar] [CrossRef]
- Kulkosky, P.J.; Chavez, M.R. Sulphated cholecystokinin octapeptide inhibits ethanol consumption in the rat. Alcohol 1984, 1, 409–412. [Google Scholar] [CrossRef]
- Kulkosky, P.; Foderaro, M.; Sandoval, S.; Cesar, S.; Marrinan, D. Cholecystokinin-induced satiation with ethanol: Effects of lighting cycle and limited access procedures. Alcohol 1991, 8, 223–227. [Google Scholar] [CrossRef]
- Crespi, F. The role of cholecystokinin (CCK), CCK-A or CCK-B receptor antagonists in the spontaneous preference for drugs of abuse (alcohol or cocaine) in naive rats. Methods Find. Exp. Clin. Pharmacol. 1998, 20, 679. [Google Scholar] [CrossRef] [PubMed]
- Crespi, F.; Corsi, M.; England, T.; Ratti, E.; Trist, D.G.; Gaviraghi, G. Spontaneous preference for ethanol in naive rats is influenced by cholecystokininA receptor antagonism. Alcohol 1997, 14, 327–332. [Google Scholar] [CrossRef]
- Chang, M.M.; Leeman, E.S. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J. Biol. Chem. 1970, 245, 4784–4790. [Google Scholar]
- Ingi, T.; Kitajima, Y.; Minamitake, Y.; Nakanishi, S. Characterization of ligand-binding properties and selectivities of three rat tachykinin receptors by transfection and functional expression of their cloned cDNAs in mammalian cells. J. Pharmacol. Exp. Ther. 1991, 259, 968–975. [Google Scholar]
- Vanderah, T.W.; Sandweiss, A.J. The pharmacology of neurokinin receptors in addiction: Prospects for therapy. Subst. Abus. Rehabil. 2015, 6, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Otake, K. Cholecystokinin and substance P immunoreactive projections to the paraventricular thalamic nucleus in the rat. Neurosci. Res. 2005, 51, 383–394. [Google Scholar] [CrossRef]
- Skirboll, L.; Hokfelt, T.; Rehfeld, J.; Cuello, A.; Dockray, G. Coexistence of substance P- and cholecystokinin-like immunoreactivity in neurons of the mesencephalic periaqueductal central gray. Neurosci. Lett. 1982, 28, 35–39. [Google Scholar] [CrossRef]
- Maciewicz, R.; Phipps, B.; Foote, W.; Aronin, N.; DiFiglia, M. The distribution of substance P-containing neurons in the cat Edinger-Westphal nucleus: Relationship to efferent projection systems. Brain Res. 1983, 270, 217–230. [Google Scholar] [CrossRef]
- Phipps, B.; Maciewicz, R.; Sandrew, B.; Poletti, C.; Foote, W. Edinger-Westphal neurons that project to spinal cord contain substance P. Neurosci. Lett. 1983, 36, 125–131. [Google Scholar] [CrossRef]
- George, D.T.; Gilman, J.; Hersh, J.; Thorsell, A.; Herion, D.; Geyer, C.; Peng, X.; Kielbasa, W.; Rawlings, R.; Brandt, J.E.; et al. Neurokinin 1 Receptor Antagonism as a Possible Therapy for Alcoholism. Science 2008, 319, 1536–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsell, A.; Schank, J.R.; Singley, E.; Hunt, S.P.; Heilig, M. Neurokinin-1 receptors (NK1R:s), alcohol consumption, and alcohol reward in mice. Psychopharmacology 2010, 209, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Schank, J.R.; Pickens, C.L.; Rowe, K.E.; Cheng, K.; Thorsell, A.; Rice, K.C.; Shaham, Y.; Heilig, M. Stress-induced reinstatement of alcohol-seeking in rats is selectively suppressed by the neurokinin 1 (NK1) antagonist L822429. Psychopharmacology 2011, 218, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.R.S.T.; Yi, H.S.; Mamczarz, J.; June, H.L.; Hwang, B.H.; Gu, Z.-H.; Lumeng, L. Deficits in substance P mRNA levels in the CeA are inversely associated with alcohol-motivated responding. Synapse 2009, 63, 972–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittencourt, J.C.; Vaughan, J.; Arias, C.; A Rissman, R.; Vale, W.W.; E Sawchenko, P. Urocortin expression in rat brain: Evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J. Comp. Neurol. 1999, 415, 285–312. [Google Scholar] [CrossRef]
- Bachtell, R.K.; Weitemier, A.Z.; Galvan-Rosas, A.; Tsivkovskaia, N.O.; Risinger, F.O.; Phillips, T.J.; Grahame, N.J.; Ryabinin, A.E. The Edinger-Westphal–Lateral Septum Urocortin Pathway and Its Relationship to Alcohol Consumption. J. Neurosci. 2003, 23, 2477–2487. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.V.; Torres, K.R.; Haemmerle, C.A.; Cespedes, I.C.; Bittencourt, J.C. The Edinger–Westphal nucleus II: Hypothalamic afferents in the rat. J. Chem. Neuroanat. 2013, 54, 5–19. [Google Scholar] [CrossRef]
- Júnior, E.D.D.S.; Da Silva, A.V.; Da Silva, K.R.; Haemmerle, C.A.; Batagello, D.S.; Da Silva, J.M.; Lima, L.B.; Da Silva, R.J.; Diniz, G.B.; Sita, L.V.; et al. The centrally projecting Edinger–Westphal nucleus—I: Efferents in the rat brain. J. Chem. Neuroanat. 2015, 68, 22–38. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Pan, K.; Li, H.; Pang, P.; Guo, Y.; Shu, S.; Cai, Y.; Pei, L.; Liu, D.; et al. Serotonin receptor 2c-expressing cells in the ventral CA1 control attention via innervation of the Edinger-Westphal nucleus. Nat. Neurosci. 2018, 21, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Gaszner, B.; Kozicz, T. Interaction between catecholaminergic terminals and urocortinergic neurons in the Edinger-Westphal nucleus in the rat. Brain Res. 2003, 989, 117–121. [Google Scholar] [CrossRef]
- Ryabinin, A.E.; Cocking, D.L.; Kaur, S. Inhibition of VTA neurons activates the centrally projecting Edinger-Westphal nucleus: Evidence of a stress-reward link? J. Chem. Neuroanat. 2013, 54, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaszner, B.; Csernus, V.; Kozicz, T. Urocortinergic neurons respond in a differentiated manner to various acute stressors in the Edinger-Westphal nucleus in the rat. J. Comp. Neurol. 2004, 480, 170–179. [Google Scholar] [CrossRef]
- Kozicz, T.; Li, M.; Arimura, A. The activation of urocortin immunoreactive neurons in the Einger-Westphal nucleus following stress in rats. Stress 2001, 4, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Janssen, D.; Van Der Knaap, N.; Roubos, E.W.; Leshan, R.L.; Myers, M.G.; Gaszner, B.; Kozicz, T. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus. Front. Neuroanat. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Lovett-Barron, M.; Andalman, A.S.; Allen, W.E.; Vesuna, S.; Kauvar, I.; Burns, V.M.; Deisseroth, K. Ancestral Circuits for the Coordinated Modulation of Brain State. Cell 2017, 171, 1411–1423. [Google Scholar] [CrossRef] [Green Version]
- Turek, V.F.; Ryabinin, A.E. Expression of c-Fos in the mouse Edinger–Westphal nucleus following ethanol administration is not secondary to hypothermia or stress. Brain Res. 2005, 1063, 132–139. [Google Scholar] [CrossRef]
- Derks, N.M.; Gaszner, B.; Roubos, E.W.; Kozicz, L.T. Sex differences in urocortin 1 dynamics in the non-preganglionic Edinger-Westphal nucleus of the rat. Neurosci. Res. 2010, 66, 117–123. [Google Scholar] [CrossRef]
- Derks, N.M.; Roubos, E.W.; Kozicz, T. Presence of estrogen receptor β in urocortin 1-neurons in the mouse non-preganglionic Edinger–Westphal nucleus. Gen. Comp. Endocrinol. 2007, 153, 228–234. [Google Scholar] [CrossRef]
- Lim, M.M.; Tsivkovskaia, N.O.; Bai, Y.; Young, L.J.; Ryabinin, A.E. Distribution of corticotropin-releasing factor and urocortin 1 in the vole brain. Brain Behav. Evol. 2006, 68, 229–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, N.A.; Singer, T.; Rotshtein, P.; Dolan, R.J.; Critchley, H.D. Pupillary contagion: Central mechanisms engaged in sadness processing. Soc. Cogn. Affect. Neurosci. 2006, 1, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Aschrafi, A.; Verheijen, J.M.; Gordebeke, P.M.; Loohuis, N.F.O.; Menting, K.; Jager, A.; Palkovits, M.; Geenen, B.; Kos, A.; Martens, G.J.; et al. MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression. J. Psychiatry Neurosci. 2016, 41, 342–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuniga, A.; Ryabinin, A.E. Involvement of Centrally Projecting Edinger–Westphal Nucleus Neuropeptides in Actions of Addictive Drugs. Brain Sci. 2020, 10, 67. https://doi.org/10.3390/brainsci10020067
Zuniga A, Ryabinin AE. Involvement of Centrally Projecting Edinger–Westphal Nucleus Neuropeptides in Actions of Addictive Drugs. Brain Sciences. 2020; 10(2):67. https://doi.org/10.3390/brainsci10020067
Chicago/Turabian StyleZuniga, Alfredo, and Andrey E Ryabinin. 2020. "Involvement of Centrally Projecting Edinger–Westphal Nucleus Neuropeptides in Actions of Addictive Drugs" Brain Sciences 10, no. 2: 67. https://doi.org/10.3390/brainsci10020067
APA StyleZuniga, A., & Ryabinin, A. E. (2020). Involvement of Centrally Projecting Edinger–Westphal Nucleus Neuropeptides in Actions of Addictive Drugs. Brain Sciences, 10(2), 67. https://doi.org/10.3390/brainsci10020067