Novel Instruments for Percutaneous Biportal Endoscopic Spine Surgery for Full Decompression and Dural Management: A Comparative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement of Ethics
2.2. Study Design and Population
2.3. Operative Technique
2.4. Evaluation and Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Efficacy and Safety of the Novel Instruments
4. Discussion
4.1. Overall Outcomes
4.2. Endoscopic Surgery in Degenerative Spine Disease
4.3. Trials for Overcoming Limitation of Instruments
4.4. Other Technical Solutions for a Biportal Technique
4.5. Pros and Cons of Biportal Instruments Compared to Other Endoscopic or Microscopic Techniques
4.6. Effects of the New Instruments on Operative Time
4.7. Limitations of the Study and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, C.-W.; Peng, P.W.H. Failed Back Surgery Syndrome. Pain Med. 2011, 12, 577–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.F. Failed back surgery syndrome. COMSIG Rev. 1992, 1, 3–6. [Google Scholar] [PubMed]
- Choi, C.M.; Chung, J.T.; Lee, S.J.; Choi, D.J. How I do it? Biportal endoscopic spinal surgery (BESS) for treatment of lumbar spinal stenosis. Acta Neurochir. 2016, 158, 459–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.W.B.; Yue, W.M.; Poh, S.Y.; Yeo, W.; Tan, S.B. Clinical and Radiological Outcomes of Minimally Invasive Versus Open Transforaminal Lumbar Interbody Fusion. Spine 2009, 34, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Choi, D.-J. Biportal Endoscopic Transforaminal Lumbar Interbody Fusion with Arthroscopy. Clin. Orthop. Surg. 2018, 10, 248–252. [Google Scholar] [CrossRef]
- Torudom, Y.; Dilokhuttakarn, T. Two Portal Percutaneous Endoscopic Decompression for Lumbar Spinal Stenosis: Preliminary Study. Asian Spine J. 2016, 10, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Kim, S.-K.; Kang, S.-S.; Park, H.-J.; Han, S.; Lee, S.-C. Pooled analysis of unsuccessful percutaneous biportal endoscopic surgery outcomes from a multi-institutional retrospective cohort of 797 cases. Acta Neurochir. 2019, 162, 1–9. [Google Scholar] [CrossRef]
- Dafford, E.E.; Anderson, P.A. Comparison of dural repair techniques. Spine J. 2015, 15, 1099–1105. [Google Scholar] [CrossRef]
- Park, H.-J.; Kim, S.-K.; Lee, S.-C.; Kim, W.; Han, S.; Kang, S.-S. Dural Tears in Percutaneous Biportal Endoscopic Spine Surgery: Anatomical Location and Management. World Neurosurg. 2020, 136, e578–e585. [Google Scholar] [CrossRef]
- Schizas, C.; Theumann, N.; Burn, A.; Tansey, R.; Wardlaw, D.; Smith, F.W.; Kulik, G. Qualitative Grading of Severity of Lumbar Spinal Stenosis Based on the Morphology of the Dural Sac on Magnetic Resonance Images. Spine 2010, 35, 1919–1924. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.-C.; Kim, J.-S.; Kang, B.-U.; Lee, C.D.; Lee, S.-H. Changes in Back Pain After Percutaneous Endoscopic Lumbar Discectomy and Annuloplasty for Lumbar Disc Herniation: A Prospective Study. Pain Med. 2011, 12, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.T.; Nam, H.G.W.; Kim, S.B.; Kim, H.S.; Park, J.S.; Park, C.-K. Therapeutic Feasibility of Full Endoscopic Decompression in One- to Three-Level Lumbar Canal Stenosis via a Single Skin Port Using a New Endoscopic System, Percutaneous Stenoscopic Lumbar Decompression. Asian Spine J. 2018, 13, 272–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komp, M.; Hahn, P.; Oezdemir, S.; Giannakopoulos, A.; Heikenfeld, R.; Kasch, R.; Ruetten, S. Bilateral spinal decompression of lumbar central stenosis with the full-endoscopic interlaminar versus microsurgical laminotomy technique: A prospective, randomized, controlled study. Pain Phys. 2015, 18, 61–70. [Google Scholar]
- Zhou, Y.; Zhang, C.; Wang, J.; Chu, T.-W.; Li, C.-Q.; Zhang, Z.-F.; Zheng, W.-J. Endoscopic transforaminal lumbar decompression, interbody fusion and pedicle screw fixation-a report of 42 cases. Chin. J. Traumatol. 2008, 11, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-K.; Park, S.-A.; Son, S.-K.; Park, W.-W.; Choi, S.-H.; Son, S.-K. Clinical and radiological outcomes of unilateral biportal endoscopic lumbar interbody fusion (ULIF) compared with conventional posterior lumbar interbody fusion (PLIF): 1-year follow-up. Neurosurg. Rev. 2019, 42, 753–761. [Google Scholar] [CrossRef]
- Kang, S.-S.; Lee, S.-C.; Kim, S.-K. A Novel Percutaneous Biportal Endoscopic Technique for Symptomatic Spinal Epidural Lipomatosis: Technical Note and Case Presentations. World Neurosurg. 2019, 129, 49–54. [Google Scholar] [CrossRef]
- Pomeranz, S.; Constantini, S.; Umansky, F. The use of fibrin sealant in cerebrospinal fluid leakage. Neurochirurgia 1991, 34, 166–169. [Google Scholar] [CrossRef]
- Lee, C.-W.; Yoon, K.-J.; Ha, S.-S. Comparative Analysis between Three Different Lumbar Decompression Techniques (Microscopic, Tubular, and Endoscopic) in Lumbar Canal and Lateral Recess Stenosis: Preliminary Report. BioMed Res. Int. 2019, 2019, 6078469. [Google Scholar] [CrossRef] [Green Version]
- Guiot, B.H.; Khoo, L.T.; Fessler, R.G. A Minimally Invasive Technique for Decompression of the Lumbar Spine. Spine 2002, 27, 432–438. [Google Scholar] [CrossRef]
- Ohyama, S.; Takahashi, S.; Tamai, K.; Hori, Y.; Hirakawa, Y.; Hoshino, M.; Suzuki, A.; Nakamura, H. Prevention of Nerve Root Thermal Injury Caused by Bipolar Cauterization Near the Nerve Roots. Spine 2019, 44, E321–E328. [Google Scholar] [CrossRef]
- Feltes, C.; Fountas, K.; Davydov, R.; Dimopoulos, V.; Robinson, J.S. Effects of nerve root retraction in lumbar discectomy. Neurosurg. Focus 2002, 13, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.H.; Hsu, F.P.K. An Endoscopic Dural Retractor for Spinal Stenosis Surgery. Minim. Invasive Neurosurg. 2002, 45, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, S.; Karthigeyan, M. “Microendoscopic” versus “pure endoscopic” surgery for spinal intradural mass lesions: A comparative study and review. Spine J. 2018, 18, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Jung, S.B. Percutaneous unilateral biportal endoscopic spine surgery using a 30-degree arthroscope in patients with severe lumbar spinal stenosis: A technical note. Clin. Spine Surg. 2019, 32, 324. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, S.; Tian, Y.; Wang, L.; Gong, L.; Zheng, Y.; Li, J. Comparison of percutaneous endoscopic transforaminal discectomy, microendoscopic discectomy, and microdiscectomy for symptomatic lumbar disc herniation: Minimum 2-year follow-up results. J. Neurosurg. Spine 2018, 28, 317–325. [Google Scholar] [CrossRef]
Factors | Total (n = 165) | Dural Protector (n = 92) | Control (n = 73) | p-Value |
---|---|---|---|---|
Age, years; mean (SD) | 60.59 (13.12) | 61.13 (14.19) | 59.83 (11.68) | 0.50 † |
Sex, n (%) | 0.08 ‡ | |||
Male | 101 (61.21) | 82 (89.13) | 19 (26.03) | |
Female | 64 (38.79) | 10 (10.87) | 54 (73.97) | |
Type of surgery, n (%) | 0.01 ¶* | |||
Ipsilateral laminotomy | 25 (15.15) | 11 (6.67) | 14 (8.48) | |
Contralateral laminotomy | 1 (0.61) | 0 (0) | 1 (0.6) | |
bilateral laminotomy, unilateral approach | 88 (53.33) | 32 (19.36) | 56 (33.94) | |
Discectomy | 51 (31.52) | 49 (29.70) | 2 (1.21) | |
ASA-PS, grade; n (%) | 0.71 ¶ | |||
I (Healthy) | 110 (54.55) | 45 (27.27) | 45 (27.27) | |
II (Mild to moderate) | 74 (44.85) | 47 (28.48) | 27 (16.36) | |
III (Severe) | 1 (0.61) | 0 (0) | 1 (0.6) | |
MRI grading | 0.34 ¶ | |||
A (Minor) | 50 (30.3) | 28 (16.97) | 22 (13.33) | |
B (Moderate) | 58 (35.15) | 31 (18.79) | 27 (16.36) | |
C (Severe) | 48 (29.09) | 27 (16.36) | 21 (12.73) | |
D (Extreme) | 9 (5.45) | 6 (3.64) | 3 (1.82) | |
Number of levels, n (%) | 0.08 ¶ | |||
1 | 138 (83.64) | 74 (44.85) | 64 (38.78) | |
2 | 26 (15.76) | 18 (10.90) | 8 (4.85) | |
3 | 1 (0.61) | 0 (0) | 1 (0.6) | |
Operative time, min; mean (SD) | 72.21 (41.40) | 81.52 (48.75) | 60.47 (25.51) | >0.01 †* |
Length of hospital stay, days; mean (SD) | 5.82 (3.03) | 5.80 (2.53) | 6.48 (2.42) | 0.08 † |
Duration of follow-up, months; mean (SD) | 8.52 (3.01) | 9.64 (3.36) | 7.63 (2.38) | 0.11 † |
Total (n = 165) | Dural protector (n = 92) | Control (n = 73) | p-Value | |
---|---|---|---|---|
Pain score, mean (SD) | ||||
Pre-VAS | 7.09 (1.27) | 7.23 (1.05) | 6.91 (1.49) | 0.12 † |
Post-VAS | 1.70 (1.05) | 1.59 (1.17) | 1.84 (0.84) | 0.11 † |
VAS improvement | 5.38 (1.65) | 5.64 (1.53) | 5.06 (1.75) | 0.03 †* |
p-value | >0.01 ‡* | >0.01 ‡* | >0.01 ‡* | |
Disability score, mean (SD) | ||||
Pre-ODI | 29.22 (8.10) | 31.52 (1.05) | 26.33 (6.54) | 0.01 †* |
Post-ODI | 12.10 (4.90) | 13.53 (5.20) | 10.31 (3.82) | 0.01 †* |
ODI improvement | 17.11 (7.02) | 18.00 (7.72) | 16.01 (5.88) | 0.07 |
p-value | >0.01 ‡* | >0.01 ‡* | >0.01 ‡* | |
Satisfaction, n (%) | >0.01 ¶* | |||
Poor | 2 (1.12) | 0 (0) | 2 (1.21) | |
Fair | 3 (1.2) | 1 (0.6) | 2 (1.21) | |
Good | 127 (73.94) | 56 (33.94) | 71 (43.03) | |
Excellent | 38 (23.03) | 36 (21.82) | 2 (1.21) | |
Rate of revision, n (%) | 7 (4.24) | 3 (4.34) | 4 (4.11) | 0.62 ¥ |
Rate of durotomy, n (%) | 12 (7.27) | 4 (4.35) | 8 (10.96) | 0.09 ¥ |
Distribution of durotomy, n (%) | 0.22 ¶ | |||
Exiting zone | 1 (0.6) | 0 (0) | 1 (1.21) | |
Thecal zone | 8 (4.85) | 4 (2.42) | 4 (2.42) | |
Traversing zone | 3 (1.82) | 0 (0) | 3 (1.82) | |
Durotomy management, n (%) | NA | |||
Rest | 5 (3.03) | 1 (0.6) | 4 (2.42) | |
Fibrin sealant | 5 (3.03) | 1 (0.6) | 4 (2.42) | |
Endoscopic suture | 2 (1.21) | 2 (1.21) | 0 (0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.-H.; Kim, S.-K.; Suh, D.-W.; Lee, S.-C. Novel Instruments for Percutaneous Biportal Endoscopic Spine Surgery for Full Decompression and Dural Management: A Comparative Analysis. Brain Sci. 2020, 10, 516. https://doi.org/10.3390/brainsci10080516
Hong Y-H, Kim S-K, Suh D-W, Lee S-C. Novel Instruments for Percutaneous Biportal Endoscopic Spine Surgery for Full Decompression and Dural Management: A Comparative Analysis. Brain Sciences. 2020; 10(8):516. https://doi.org/10.3390/brainsci10080516
Chicago/Turabian StyleHong, Young-Ho, Seung-Kook Kim, Dong-Won Suh, and Su-Chan Lee. 2020. "Novel Instruments for Percutaneous Biportal Endoscopic Spine Surgery for Full Decompression and Dural Management: A Comparative Analysis" Brain Sciences 10, no. 8: 516. https://doi.org/10.3390/brainsci10080516
APA StyleHong, Y. -H., Kim, S. -K., Suh, D. -W., & Lee, S. -C. (2020). Novel Instruments for Percutaneous Biportal Endoscopic Spine Surgery for Full Decompression and Dural Management: A Comparative Analysis. Brain Sciences, 10(8), 516. https://doi.org/10.3390/brainsci10080516