The Association between a MAOB Variable Number Tandem Repeat Polymorphism and Cocaine and Opiate Addictions in Polyconsumers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Phenotyping
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bierut, L.J.; Strickland, J.R.; Thompson, J.R.; Afful, S.E.; Cottler, L.B. Drug use and dependence in cocaine dependent subjects, community-based individuals, and their siblings. Drug Alcohol Depend. 2008, 95, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Staines, G.L.; Magura, S.; Foote, J.; Deluca, A.; Kosanke, N. Polysubstance use among alcoholics. J. Addict. Dis. 2001, 20, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Gossop, M.; Marsden, J.; Stewart, D.; Lehmann, P.; Edwards, C.; Wilson, A.; Segar, G. Substance use, health and social problems of service users at 54 drug treatment agencies. Intake data from the National Treatment Outcome Research Study. Br. J. Psychiatry 1998, 173, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kedia, S.; Sell, M.A.; Relyea, G. Mono- versus polydrug abuse patterns among publicly funded clients. Subst. Abus. Treat. Prev. Policy 2007, 2, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinotti, G.; Carli, V.; Tedeschi, D.; Di Giannantonio, M.; Roy, A.; Janiri, L.; Sarchiapone, M. Mono- and polysubstance dependent subjects differ on social factors, childhood trauma, personality, suicidal behaviour, and comorbid Axis I diagnoses. Addict. Behav. 2009, 34, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Juli, G.; Juli, L. Genetic of addiction: Common and uncommon factors. Psychiatr. Danub. 2015, 27, S383–S390. [Google Scholar] [PubMed]
- Cigler, T.; Steven Laforge, K.; McHugh, P.F.; Kapadia, S.U.; Leal, S.M.; Kreek, M.J. Novel and previously reported single-nucleotide polymorphisms in the human 5-HT1B receptor gene: No association with cocaine or alcohol abuse or dependence. Am. J. Med. Genet.-Neuropsychiatr. Genet. 2001, 105, 489–497. [Google Scholar] [CrossRef]
- Tsuang, M.T.; Lyons, M.J.; Meyer, J.M.; Doyle, T.; Eisen, S.A.; Goldberg, J.; True, W.; Lin, N.; Toomey, R.; Eaves, L. Co-occurrence of Abuse of Different Drugs in Men. Arch. Gen. Psychiatry 1998, 55, 967. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Z.; Xu, K.; Zhang, X.; Amei, A.; Gelernter, J.; Zhao, H.; Justice, A.C.; Wang, Z. Retrospective Association Analysis of Longitudinal Binary Traits Identifies Important Loci and Pathways in Cocaine Use. bioRxiv 2019. [Google Scholar] [CrossRef]
- Fang, C.P.; Liu, T.H.; Chung, R.H.; Tsou, H.H.; Kuo, H.W.; Wang, S.C.; Liu, C.C.; Liu, S.C.; Chen, A.C.H.; Liu, Y.L. Genetic variants in NECTIN4 encoding an adhesion molecule are associated with continued opioid use. PLoS ONE 2020, 15, e0234549. [Google Scholar] [CrossRef]
- Huggett, S.B.; Stallings, M.C. Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction. J. Neurosci. 2020, 40, 5300–5313. [Google Scholar] [CrossRef]
- Marees, A.T.; Gamazon, E.R.; Gerring, Z.; Vorspan, F.; Fingal, J.; van den Brink, W.; Smit, D.J.A.; Verweij, K.J.H.; Kranzler, H.R.; Sherva, R.; et al. Post-GWAS analysis of six substance use traits improves the identification and functional interpretation of genetic risk loci. Drug Alcohol Depend. 2020, 206, 107703. [Google Scholar] [CrossRef]
- Abdellaoui, A.; Smit, D.J.A.; van den Brink, W.; Denys, D.; Verweij, K.J.H. Genomic relationships across psychiatric disorders including substance use disorders. Drug Alcohol Depend. 2021, 220, 108535. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C. Profound decreases in dopamine release in striatum in detoxified alcoholics: Possible orbitofrontal involvement. J. Neurosci. 2007, 27, 12700–12706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroche, A.P.; Rovaris, D.L.; Grevet, E.H.; Stolf, A.R.; Sanvicente-Vieira, B.; Kessler, F.H.P.; von Diemen, L.; Grassi-Oliveira, R.; Bau, C.H.D.; Schuch, J.B. Association of CHRNA5 Gene Variants with Crack Cocaine Addiction. Neuromol. Med. 2020, 22, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Duaux, E.; Krebs, M.O.; Loo, H.; Poirier, M.F. Genetic vulnerability to drug abuse. Eur. Psychiatry 2000, 15, 109–114. [Google Scholar] [CrossRef]
- Dlugos, A.M.; Palmer, A.A.; De Wit, H. Negative emotionality: Monoamine oxidase B gene variants modulate personality traits in healthy humans. J. Neural Transm. 2009, 116, 1323–1334. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, J.; Long, J.C.; Eggert, M.; Ozaki, N.; Robin, R.W.; Brown, G.L.; Naukkarinen, H.; Virkkunen, M.; Linnoila, M.; Goldman, D. Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch. Gen. Psychiatry 1998, 55, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Demchyshyn, L.; Sunahara, R.K.; Miller, K.; Teitler, M.; Hoffman, B.J.; Kennedy, J.L.; Seeman, P.; Van Tol, H.H.M.; Niznik, H.B. A human serotonin ID receptor variant (5HT1Dβ) encoded by an intronless gene on chromosome. Proc. Natl. Acad. Sci. USA 1992, 89, 5522–5526. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.W.; Metcalf, M.A.; McGuffin, R.W.; Karpells, S. Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: A homologue of the rat 5-HT1B receptor with 5-HT1D-like pharmacological specificity. Biochem. Biophys. Res. Commun. 1992, 184, 752–759. [Google Scholar] [CrossRef]
- Jin, H.; Oksenberg, D.; Ashkenazi, A.; Peroutka, S.J.; Duncan, A.M.V.; Rozmahel, R.; Yang, Y.; Mengod, G.; Palacios, J.M.; O’Dowd, B.F. Characterization of the human 5-hydroxytryptamine(1B) receptor. J. Biol. Chem. 1992, 267, 5735–5738. [Google Scholar] [CrossRef]
- Ruf, B.; Bhagwagar, Z. The 5-HT1B Receptor: A Novel Target for the Pathophysiology of Depression (Supplementary Tables). Curr. Drug Targets 2009, 10, 1118–1138. [Google Scholar] [CrossRef]
- Kim, S.J.; Namkoong, K.; Kang, J.I.; Kim, C.H. Association of a 5-HT1Dβ receptor gene polymorphism with obsessive-compulsive disorder in Korean male subjects. Neuropsychobiology 2009, 59, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Gorwood, P.; Aissi, F.; Batel, P.; Adès, J.; Cohen-Salmon, C.; Hamon, M.; Boni, C.; Lanfumey, L. Reappraisal of the serotonin 5-HT1B receptor gene in alcoholism: Of mice and men. Brain Res. Bull. 2002, 57, 103–107. [Google Scholar] [CrossRef]
- Kranzler, H.R.; Hernandez-Avila, C.A.; Gelernter, J. Polymorphism of the 5-HT1B receptor gene (HTR1B): Strong within-locus linkage disequilibrium without association to antisocial substance dependence. Neuropsychopharmacology 2002, 26, 115–122. [Google Scholar] [CrossRef]
- Sun, H.F.S.; Chang, Y.T.; Fann, C.S.J.; Chang, C.J.; Chen, Y.H.; Hsu, Y.P.; Yu, W.Y.; Cheng, A.T.A. Association study of novel human serotonin 5-HT1B polymorphisms with alcohol dependence in Taiwanese Han. Biol. Psychiatry 2002, 51, 896–901. [Google Scholar] [CrossRef]
- Cao, J.X.; Hu, J.; Ye, X.M.; Xia, Y.; Haile, C.A.; Kosten, T.R.; Zhang, X.Y. Association between the 5-HTR1B gene polymorphisms and alcohol dependence in a Han Chinese population. Brain Res. 2011, 1376, 1–9. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lin, W.W.; Huang, S.Y.; Kuo, P.H.; Wang, C.L.; Wu, P.L.; Chen, S.L.; Wu, J.Y.W.; Ko, H.C.; Lu, R.B. The relationship between serotonin receptor 1B polymorphisms A-161T and alcohol dependence. Alcohol. Clin. Exp. Res. 2009, 33, 1589–1595. [Google Scholar] [CrossRef]
- Ujike, H.; Kishimoto, M.; Okahisa, Y.; Kodama, M.; Takaki, M.; Inada, T.; Uchimura, N.; Yamada, M.; Iwata, N.; Iyo, M.; et al. Association Between 5HT1b Receptor Gene and Methamphetamine Dependence. Curr. Neuropharmacol. 2011, 9, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Proudnikov, D.; LaForge, K.S.; Hofflich, H.; Levenstien, M.; Gordon, D.; Barral, S.; Ott, J.; Kreek, M.J. Association analysis of polymorphisms in serotonin 1B receptor (HTR1B) gene with heroin addiction: A comparison of molecular and statistically estimated haplotypes. Pharmacogenet. Genom. 2006, 16, 25–36. [Google Scholar] [CrossRef]
- Xie, E.; Zhu, L.; Zhao, L.; Chang, L.S. The human serotonin 5-HT(2C) receptor: Complete cDNA, genomic structure, and alternatively spliced variant. Genomics 1996, 35, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Drago, A.; Serretti, A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150, 601–637. [Google Scholar] [CrossRef]
- Gurevich, I.; Tamir, H.; Arango, V.; Dwork, A.J.; Mann, J.J.; Schmauss, C. Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 2002, 34, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Chan, D.; Chan, K.; McMain, S.; Kennedy, J.L. Serotonin genes and gene-gene interactions in borderline personality disorder in a matched case-control study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 128–133. [Google Scholar] [CrossRef]
- Samochowiec, J.; Smolka, M.; Winterer, G.; Rommelspacher, H.; Schmidt, L.G.; Sander, T. Association analysis between a Cys23Ser substitution polymorphism of the human 5-HT2c receptor gene and neuronal hyperexcitability. Am. J. Med. Genet.-Neuropsychiatr. Genet. 1999, 88, 126–130. [Google Scholar] [CrossRef]
- Hill, E.M.; Stoltenberg, S.F.; Bullard, K.H.; Li, S.; Zucker, R.A.; Burmeister, M. Antisocial alcoholism and serotonin-related polymorphisms: Association tests. Psychiatr. Genet. 2002, 12, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Mottagui-Tabar, S.; McCarthy, S.; Reinemund, J.; Andersson, B.; Wahlestedt, C.; Heilig, M. Analysis of 5-hydroxytryptamine 2C receptor gene promoter variants as alcohol-dependence risk factors. Alcohol Alcohol. 2004, 39, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Johann, M.; Bobbe, G.; Putzhammer, A.; Wodarz, N. Comorbidity of Alcohol Dependence With Attention-Deficit Hyperactivity Disorder: Differences in Phenotype With Increased Severity of the Substance Disorder, but Not in Genotype (Serotonin Transporter and 5-Hydroxytryptamine-2c Receptor). Alcohol. Clin. Exp. Res. 2003, 27, 1527–1534. [Google Scholar] [CrossRef]
- Herman, A. Balogh Polymorphisms of the serotonin transporter and receptor genes: Susceptibility to substance abuse. Subst. Abuse Rehabil. 2012, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Himei, A.; Kono, Y.; Yoneda, H.; Sakai, T.; Koh, J.; Sakai, J.; Inada, Y.; Imamichi, H. An Association Study Between Alcoholism and the Serotonergic Receptor Genes. Alcohol. Clin. Exp. Res. 2000, 24, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Logan, J.; MacGregor, R.; Alexoff, D.; Shea, C.; Schlyer, D.; Wolf, A.P.; et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996, 379, 733–736. [Google Scholar] [CrossRef]
- Wu, R.M.; Cheng, C.W.; Chen, K.H.; Lu, S.L.; Shan, D.E.; Ho, Y.F.; Chern, H.D. The COMT L allele modifies the association between MAOB polymorphism and PD in Taiwanese. Neurology 2001, 56, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Bortolato, M.; Shih, J.C. Behavioral outcomes of monoamine oxidase deficiency: Preclinical and clinical evidence. Int. Rev. Neurobiol. 2011, 100, 13–42. [Google Scholar] [PubMed] [Green Version]
- Gassó, P.; Bernardo, M.; Mas, S.; Crescenti, A.; Garcia, C.; Parellada, E.; Lafuente, A. Association of A/G polymorphism in intron 13 of the monoamine oxidase B gene with schizophrenia in a Spanish population. Neuropsychobiology 2008, 58, 65–70. [Google Scholar] [CrossRef]
- Mellick, G.D.; Buchanan, D.D.; McCann, S.J.; James, K.M.; Johnson, A.G.; Davis, D.R.; Liyou, N.; Chan, D.; Le Couteur, D.G. Variations in the monoamine oxidase B (MAOB) gene are associated with Parkinson’s disease. Mov. Disord. 1999, 14, 219–224. [Google Scholar] [CrossRef]
- Mellick, G.D.; Buchanan, D.D.; Silburn, P.A.; Chan, D.K.Y.; Le Couteur, D.G.; Law, L.K.; Woo, J.; Pang, C.P. The monoamine oxidase B gene GT repeat polymorphism and Parkinson’s disease in a Chinese population. J. Neurol. 2000, 247, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Nash, M.W.; Sugden, K.; Huezo-Diaz, P.; Williamson, R.; Sterne, A.; Purcell, S.; Sham, P.C.; Craig, I.W. Association analysis of monoamine genes with measures of depression and anxiety in a selected community sample of siblings. Am. J. Med. Genet.-Neuropsychiatr. Genet. 2005, 135 B, 33–37. [Google Scholar] [CrossRef]
- Pandey, G.N.; Fawcett, J.; Gibbons, R.; Clark, D.C.; Davis, J.M. Platelet monoamine oxidase in alcoholism. Biol. Psychiatry 1988, 24, 15–24. [Google Scholar] [CrossRef]
- Cloninger, C.R.; Bohman, M.; Sigvardsson, S. Inheritance of Alcohol Abuse: Cross-Fostering Analysis of Adopted Men. Arch. Gen. Psychiatry 1981, 38, 861–868. [Google Scholar] [CrossRef]
- Von Knorring, A.L.; Bohman, M.; von Knorring, L.; Oreland, L. Platelet MAO activity as a biological marker in subgroups of alcoholism. Acta Psychiatr. Scand. 1985, 72, 51–58. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Baenziger, J.C.; Wagner, D.L.; Rauscher, F.P.; Nurnberger, J.I.; Steven Holmes, J. Platelet MAO in subtypes of alcoholism. Biol. Psychiatry 1990, 27, 911–922. [Google Scholar] [CrossRef]
- Parsian, A.; Suarez, B.K.; Tabakoff, B.; Hoffman, P.; Ovchinnikova, L.; Fisher, L.; Cloninger, C.R. Monoamine oxidases and alcoholism. I. Studies in unrelated alcoholics and normal controls. Am. J. Med. Genet.-Neuropsychiatr. Genet. 1995, 60, 409–416. [Google Scholar] [CrossRef]
- Anthenelli, R.M.; Tipp, J.; Li, T.K.; Magnes, L.; Schuckit, M.A.; Rice, J.; Daw, W.; Nurnberger, J.I. Platelet monoamine oxidase activity in subgroups of alcoholics and controls: Results from the Collaborative Study on the Genetics of Alcoholism. Alcohol. Clin. Exp. Res. 1998, 22, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Farren, C.K.; Tipton, K.F. Trait markers for alcoholism: Clinical utility. Alcohol Alcohol. 1999, 34, 649–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, J.B.; Pang, D.; Bucholz, K.K.; Madden, P.A.F.; Heath, A.C.; Statham, D.J.; Martin, N.G. Monoamine oxidase: Associations with alcohol dependence, smoking and other measures of psychopathology. Psychol. Med. 2000, 30, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruchkin, V.V.; Af Klinteberg, B.; Koposov, R.A.; Oreland, L.; Grigorenko, E.L. Platelet MAO-B, personality, and psychopathology. J. Abnorm. Psychol. 2005, 114, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Pombo, S.; Levy, P.; Bicho, M.; Ismail, F.; Cardoso, J.M.N. Neuropsychological function and platelet monoamine oxidase activity levels in type I alcoholic patients. Alcohol Alcohol. 2008, 43, 423–430. [Google Scholar] [CrossRef]
- Coccini, T.; Castoldi, A.F.; Gandini, C.; Randine, G.; Vittadini, G.; Baiardi, P.; Manzo, L. Platelet monoamine oxidase B activity as a state marker for alcolism: Trend over time during withdrawal and influence of smoking and gender. Alcohol Alcohol. 2002, 37, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Mokrović, G.; Matosić, A.; Hranilović, D.; Stefulj, J.; Novokmet, M.; Oresković, D.; Balija, M.; Marusić, S.; Cicin-Sain, L. Alcohol dependence and polymorphisms of serotonin-related genes: Association studies. Coll. Antropol. 2008, 32 (Suppl. 1), 127–131. [Google Scholar]
- Loranger, A.W.; Sartorius, N.; Andreoli, A.; Berger, P.; Buchheim, P.; Channabasavanna, S.M.; Coid, B.; Dahl, A.; Diekstra, R.F.W.; Ferguson, B.; et al. The International Personality Disorder Examination: The World Health Organization/Alcohol, Drug Abuse, and Mental Health Administration International Pilot Study of Personality Disorders. Arch. Gen. Psychiatry 1994, 51, 215–224. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–23. [Google Scholar] [PubMed]
- Freeman, B.; Smith, N.; Curtis, C.; Huckett, L.; Mill, J.; Craig, I.W. DNA from buccal swabs recruited by mail: Evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behav. Genet. 2003, 33, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Konradi, C.; Kornhuber, J.; Sofic, E.; Heckers, S.; Riederer, P.; Beckmann, H. Variations of monoamines and their metabolites in the human brain putamen. Brain Res. 1992, 579, 285–290. [Google Scholar] [CrossRef]
- Yuan, X.; Yamada, K.; Ishiyama-Shigemoto, S.; Koyama, W.; Nonaka, K. Identification of polymorphic loci in the promoter region of the serotonin 5-HT(2c) receptor gene and their association with obesity and Type II diabetes. Diabetologia 2000, 43, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Agresti, A. Unconditional small-sample confidence intervals for the odds ratio. Biostatistics 2002, 3, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendler, K.S.; Jacobson, K.C.; Prescott, C.A.; Neale, M.C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 2003, 160, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Hinrichs, A.L.; Dunn, G.; Bertelsen, S.; Dick, D.M.; Saccone, S.F.; Saccone, N.L.; Grucza, R.A.; Wang, J.C.; Cloninger, C.R.; et al. Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. Drug Alcohol Depend. 2008, 93, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Kendler, K.S.; Myers, J.; Prescott, C.A. Specificity of genetic and environmental risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and nicotine dependence. Arch. Gen. Psychiatry 2007, 64, 1313–1320. [Google Scholar] [CrossRef] [Green Version]
- Berlin, I.; Anthenelli, R.M. Monoamine oxidases and tobacco smoking. Int. J. Neuropsychopharmacol. 2001, 4, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiguro, H.; Gong, J.P.; Hall, F.S.; Arinami, T.; Uhl, G.R. Association of PTPRB gene polymorphism with drug addiction. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147, 1167–1172. [Google Scholar] [CrossRef]
- Uhl, G.R.; Drgon, T.; Johnson, C.; Fatusin, O.O.; Liu, Q.R.; Contoreggi, C.; Li, C.Y.; Buck, K.; Crabbe, J. “Higher order” addiction molecular genetics: Convergent data from genome-wide association in humans and mice. Biochem. Pharmacol. 2008, 75, 98–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhl, G.R.; Liu, Q.R.; Walther, D.; Hess, J.; Naiman, D. Polysubstance abuse-vulnerability genes: Genome scans for association, using 1004 subjects and 1494 single-nucleotide polymorphisms. Am. J. Hum. Genet. 2001, 69, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Schuckit, M.A.; Danko, G.P.; Raimo, E.B.; Smith, T.L.; Eng, M.Y.; Carpenter, K.K.T.; Hesselbrock, V.M. A preliminary evaluation of the potential usefulness of the diagnoses of polysubstance dependence. J. Stud. Alcohol 2001, 62, 54–61. [Google Scholar] [CrossRef] [PubMed]
HTR1B | HTR2C | MAOB | |||
---|---|---|---|---|---|
bp | N(%) | bp | N(%) | bp | N(%) |
302 | 385 (69.5) | 259 | 189 (32.5) | 180 | 80 (13.7) |
304 | 70 (12.6) | 265 | 362 (62.2) | 182 | 121 (20.6) |
308 | 66 (11.9) | 1000 | 31 (5.3) | 184 | 141 (24.1) |
1000 | 33 (6) | 186 | 182 (31.1) | ||
1000 | 62 (10.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateu, C.; Rodríguez-Arias, M.; Gil-Miravet, I.; Benito, A.; Tomás, J.M.; Haro, G. The Association between a MAOB Variable Number Tandem Repeat Polymorphism and Cocaine and Opiate Addictions in Polyconsumers. Brain Sci. 2021, 11, 1265. https://doi.org/10.3390/brainsci11101265
Mateu C, Rodríguez-Arias M, Gil-Miravet I, Benito A, Tomás JM, Haro G. The Association between a MAOB Variable Number Tandem Repeat Polymorphism and Cocaine and Opiate Addictions in Polyconsumers. Brain Sciences. 2021; 11(10):1265. https://doi.org/10.3390/brainsci11101265
Chicago/Turabian StyleMateu, César, Marta Rodríguez-Arias, Isis Gil-Miravet, Ana Benito, José M. Tomás, and Gonzalo Haro. 2021. "The Association between a MAOB Variable Number Tandem Repeat Polymorphism and Cocaine and Opiate Addictions in Polyconsumers" Brain Sciences 11, no. 10: 1265. https://doi.org/10.3390/brainsci11101265
APA StyleMateu, C., Rodríguez-Arias, M., Gil-Miravet, I., Benito, A., Tomás, J. M., & Haro, G. (2021). The Association between a MAOB Variable Number Tandem Repeat Polymorphism and Cocaine and Opiate Addictions in Polyconsumers. Brain Sciences, 11(10), 1265. https://doi.org/10.3390/brainsci11101265