From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding
Abstract
:1. Introduction
2. Flexibility of the Recruitment of the Sensorimotor System: The Case of Affordances, and Affordances and Language
2.1. Affordances among Perception, Action, and Social Practices
2.2. Affordances in Different Physical, Linguistic, and Social Contexts
2.3. Affordances and the Differential Involvement of Tactile and Kinesthetic Modalities
3. Different Levels of Involvement of the Sensorimotor System, and Integration with the Linguistic System: The Case of Abstract Concepts
3.1. Grounding of Abstract Concepts in the Sensorimotor System
3.1.1. Different Abstract Concepts Are Couched in Different Modalities
3.1.2. Culture and Language Shape Bodily Components of Abstract Concepts
3.2. Grounding of Abstract Concepts in Metacognition
3.3. Abstract Concepts, Language, and Their Relation with Mouth Motor Areas
Mouth Engagement and Abstract Concepts in a Developmental Perspective
3.4. Abstract Concepts and Inner Speech
3.5. Grounding Abstract Concepts in Social Interactions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, M.L. Neural reuse: A fundamental organizational principle of the brain. Behav. Brain Sci. 2010, 33, 245–313. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M. After Phrenology: Neural Reuse and the Interactive Brain; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Gallese, V. Empathy, embodied simulation and the brain. J. Am. Psychoanl. Assn. 2008, 56, 769–781. [Google Scholar] [CrossRef]
- Kemmerer, D. Concepts in the Brain: The View from Cross-Linguistic Diversity; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Gibson, J.J. The Theory of Affordances—The Ecological Approach to Visual Perception; Houghton Mifflin Harcourt: Boston, MA, USA, 1979. [Google Scholar]
- Tucker, M.; Ellis, R. On the relations between seen objects and components of potential actions. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 830–846. [Google Scholar] [CrossRef]
- Tucker, M.; Ellis, R. Action priming by briefly presented objects. Acta Psychol. 2004, 116, 185–203. [Google Scholar] [CrossRef]
- Ellis, R.; Tucker, M. Micro-affordance: The potentiation of components of action by seen objects. Br. J. Psychol. 2000, 91 Pt 4, 451–471. [Google Scholar] [CrossRef]
- Cisek, P. Cortical mechanisms of action selection: The affordance competition hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1585–1599. [Google Scholar] [CrossRef]
- Rietveld, E.; Kiverstein, J. A rich landscape of affordances. Ecol. Psychol. 2014, 26, 325–352. [Google Scholar] [CrossRef]
- Borghi, A.M.; Barca, L.; Binkofski, F.; Tummolini, L. Varieties of abstract concepts: Development, use and representation in the brain. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170121. [Google Scholar] [CrossRef]
- Thill, S.; Caligiore, D.; Borghi, A.M.; Ziemke, T.; Baldassarre, G. Theories and computational models of affordance and mirror systems: An integrative review. Neurosci. Biobehav. Rev. 2013, 37, 491–521. [Google Scholar] [CrossRef] [Green Version]
- Wokke, M.E.; Knot, S.L.; Fouad, A.; Ridderinkhof, K.R. Conflict in the kitchen: Contextual modulation of responsiveness to affordances. Conscious. Cogn. 2016, 40, 141–146. [Google Scholar] [CrossRef]
- Iacoboni, M.; Molnar-Szakacs, I.; Gallese, V.; Buccino, G.; Mazziotta, J.C.; Rizzolatti, G. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol. 2005, 3, e79. [Google Scholar] [CrossRef] [Green Version]
- Wurm, M.F.; Schubotz, R.I. Squeezing lemons in the bathroom: Contextual information modulates action recognition. NeuroImage 2012, 59, 1551–1559. [Google Scholar] [CrossRef]
- Amoruso, L.; Urgesi, C. Contextual modulation of motor resonance during the observation of everyday actions. NeuroImage 2016, 134, 74–84. [Google Scholar] [CrossRef]
- Cardellicchio, P.; Sinigaglia, C.; Costantini, M. Grasping affordances with the other’s hand: A TMS study. Soc. Cogn. Affect. Neurosci. 2012, 8, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Fini, C.; Costantini, M.; Committeri, G. Sharing Space: The Presence of Other Bodies Extends the Space Judged as Near. PLoS ONE 2014, 9, e114719. [Google Scholar] [CrossRef] [Green Version]
- Pellicano, A.; Iani, C.; Borghi, A.M.; Rubichi, S.; Nicoletti, R. Simon-like and functional affordance effects with tools: The effects of object perceptual discrimination and object action state. Q. J. Exp. Psychol. 2010, 63, 2190–2201. [Google Scholar] [CrossRef]
- Tipper, S.P.; Paul, M.A.; Hayes, A.E. Vision-for-action: The effects of object property discrimination and action state on affordance compatibility effects. Psychon. Bull. Rev. 2006, 13, 493–498. [Google Scholar] [CrossRef]
- Borghi, A.M. Action Language Comprehension, Affordances and Goals. In Language and Action in Cognitive Neuroscience: Contemporary Topics in Cognitive Neuroscience Series; Coello, Y., Bartolo, A., Eds.; Psychology Press: Hove, UK, 2012. [Google Scholar]
- Natraj, N.; Poole, V.; Mizelle, J.; Flumini, A.; Borghi, A.M.; Wheaton, L.A. Context and hand posture modulate the neural dynamics of tool—Object perception. Neuropsychologia 2013, 51, 506–519. [Google Scholar] [CrossRef]
- Natraj, N.; Pella, I.M.; Borghi, A.M.; Wheaton, L.A. The visual encoding of tool-object affordances. Neuroscience 2015, 310, 512–527. [Google Scholar] [CrossRef]
- Kalénine, S.; Shapiro, A.D.; Flumini, A.; Borghi, A.M.; Buxbaum, L.J. Visual context modulates potentiation of grasp types during semantic object categorization. Psychon. Bull. Rev. 2014, 21, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Rio, L.; Lugli, L.; Benassi, M.; Nicoletti, R.; Borghi, A.M. The Familiar and Non-Familiar Stimuli (FANS) Database: A Collection of Everyday Objects classified by Children and Adults. 2021. In preparation. [Google Scholar]
- Rio, L.; Lugli, L.; Benassi, M.; Nicoletti, R.; Borghi, A.M. For adults it is a bottle, for children a maraca: Manipulating familiar and non-familiar objects. 2021. In preparation. [Google Scholar]
- Constable, M.D.; Kritikos, A.; Bayliss, A.P. Grasping the concept of personal property. Cognition 2011, 119, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Scorolli, C.; Borghi, A.M.; Tummolini, L. Cues of control modulate the ascription of object ownership. Psychol. Res. 2018, 82, 929–954. [Google Scholar] [CrossRef]
- De Bortoli Vizioli, A.; Borghi, A.M.; Tummolini, L. When me is mine: An embodied origin of psychological ownership? Cog. Sci. 2020, 2473–2479, PsyArXiv Preprints. [Google Scholar] [CrossRef]
- Anelli, F.; Ranzini, M.; Nicoletti, R.; Borghi, A.M. Perceiving object dangerousness: An escape from pain? Exp. Brain Res. 2013, 228, 457–466. [Google Scholar] [CrossRef]
- Mustile, M.; Kourtis, D.; Ladouce, S.; Learmonth, G.; Edwards, M.G.; Donaldson, D.I.; Ietswaart, M. Mobile EEG reveals functionally dissociable dynamic processes supporting real-world ambulatory obstacle avoidance: Evidence for early proactive control. Eur. J. Neurosci. 2021. [Google Scholar] [CrossRef]
- Lupyan, G. Linguistically modulated perception and cognition: The label-feedback hypothesis. Front. Psychol. 2012, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Foerster, F.R.; Borghi, A.M.; Goslin, J. Labels strengthen motor learning of new tools. Cortex 2020, 129, 1–10. [Google Scholar] [CrossRef]
- Costantini, M.; Ambrosini, E.; Tieri, G.; Sinigaglia, C.; Commitieri, G. Where does an object trigger an action? An investigation about affordances in space. Exp. Brain Res. 2010, 207, 95–103. [Google Scholar] [CrossRef]
- Costantini, M.; Ambrosini, E.; Scorolli, C.; Borghi, A.M. When objects are close to me: Affordances in the peripersonal space. Psychon. Bull. Rev. 2011, 18, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Borghi, A.M.; Riggio, L. Sentence comprehension and simulation of object temporary, canonical and stable affordances. Brain Res. 2009, 1253, 117–128. [Google Scholar] [CrossRef]
- Gianelli, C.; Scorolli, C.; Borghi, A.M. Acting in perspective: The role of body and language as social tools. Psychol. Res. 2013, 77, 40–52. [Google Scholar] [CrossRef]
- Michalland, A.; Falcinelli, I.; Liuzza, M.T.; Tummolini, L.; Borghi, A.M. Affordances in the CoviD-19 pandemic: The case of objects touched by unknown people. R. Soc. Open Sci. 2021. Pre registered report—in principle acceptance. [Google Scholar]
- Gianelli, C.; Kühne, K.; Miklashevsky, A.; Mende, M.; Canessa, N.; Borghi, A.M. COVID-19 and the perceived dangerousness of everyday objects: A behavioural online study in Italy and Germany. Collabra 2021. In principle acceptance. [Google Scholar]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef]
- Zimmerman, A.; Bai, L.; Ginty, D.D. The gentle touch receptors of mammalian skin. Science 2014, 346, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Lederman, S.J.; Klatzky, R.L. Hand movements: A window into haptic object recognition. Cogn. Psychol. 1987, 19, 342–368. [Google Scholar] [CrossRef]
- Lederman, S.J.; Klatzky, R.L. Relative availability of surface and object properties during early haptic processing. J. Exp. Psychol. Hum. Percept. Perform. 1997, 23, 1680–1707. [Google Scholar] [CrossRef]
- Lederman, S.J.; Klatzky, R.L. Haptic perception: A tutorial. Atten. Percept. psychophys. 2009, 71, 1439–1459. [Google Scholar] [CrossRef] [Green Version]
- Scilingo, E.P.; Bianchi, M.; Grioli, G.; Bicchi, A. Rendering softness: Integration of kinesthetic and cutaneous information in a haptic device. IEEE Trans. Haptics 2010, 2, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345. [Google Scholar] [CrossRef]
- Anelli, F.; Nicoletti, R.; Borghi, A.M. Categorization and action. What about object consistence? Acta Psychol. 2010, 133, 203–211. [Google Scholar] [CrossRef]
- Pfister, R. Effect-based action control with body-related effects: Implications for empirical approaches to ideomotor action control. Psychol. Rev. 2019, 126, 153–161. [Google Scholar] [CrossRef]
- Pfister, R.; Janczyk, M.; Gressmann, M.; Fournier, L.R.; Kunde, W. Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Exp. Brain Res. 2014, 232, 847–854. [Google Scholar] [CrossRef]
- Thébault, G.; Michalland, A.H.; Derozier, V.; Chabrier, S.; Brouillet, D. When the vibrations allow for anticipating the force to be produced: An extend to Pfister et al. (2014). Exp. Brain Res. 2018, 236, 1219–1223. [Google Scholar] [CrossRef]
- Thébault, G.; Pfister, R.; Michalland, A.H.; Brouillet, D. Flexible weighting of body-related effects in action production. Q. J. Exp. Psychol. 2020, 73, 1360–1367. [Google Scholar] [CrossRef]
- Wolpert, D.M.; Flanagan, J.R. Motor prediction. Curr. Biol. 2001, 11, R729–R732. [Google Scholar] [CrossRef] [Green Version]
- Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 2002, 5, 1226. [Google Scholar] [CrossRef]
- Bays, P.M.; Wolpert, D.M. Computational principles of sensorimotor control that minimize uncertainty and variability. J. Physiol. 2007, 578, 387–396. [Google Scholar] [CrossRef]
- Friston, K. What is optimal about motor control? Neuron 2011, 72, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Brouillet, D.; Michalland, A.H.; Guerineau, R.; Draushika, M.; Thebault, G. How does simulation of an observed external body state influence categorisation of an easily graspable object? Q. J. Exp. Psychol. 2019, 72, 1466–1477. [Google Scholar] [CrossRef]
- Hayward, V. Is there a ‘plenhaptic’ function? Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3115–3122. [Google Scholar] [CrossRef]
- André, T.; Lévesque, V.; Hayward, V.; Lefèvre, P.; Thonnard, J.L. Effect of skin hydration on the dynamics of fingertip gripping contact. J. R. Soc. Interface 2011, 8, 1574–1583. [Google Scholar] [CrossRef]
- Michalland, A.H.; Thébault, G.; Briglia, J.; Fraisse, P.; Brouillet, D. Grasping a chestnut burr: Manual laterality in action’s coding strategies. Exp. Psychol. 2019, 66, 310–317. [Google Scholar] [CrossRef]
- Michalland, A.H.; Thébault, G.; Derozier, V.; Marreiro Garcia, S.; Servajean, P.; Fraisse, P.; Brouillet, T. Anticipating haptic features, Right or no left regarding pressure modulation. (Under review in Laterality).
- Stone, K.D.; Gonzalez, C.L. The contributions of vision and haptics to reaching and grasping. Front. Psychol. 2015, 6, 1403. [Google Scholar] [CrossRef] [Green Version]
- Dove, G. More than a scaffold: Language is a neuroenhancement. Cogn. Neuropsychol. 2020, 37, 288–311. [Google Scholar] [CrossRef]
- Borghi, A.M.; Mazzuca, C.; Da Rold, F.; Falcinelli, I.; Fini, C.; Michalland, A.H.; Tummolini, L. Abstract Words as Social Tools: Which Necessary Evidence? Front. Psychol. 2021, 11, 613026. [Google Scholar] [CrossRef]
- Brouillet, T.; Michalland, A.H.; Martin, S.; Brouillet, D. When the Action to Be Performed at the Stage of Retrieval Enacts Memory of Action Verbs. Exp. Psychol. 2021, 68, 18–31. [Google Scholar] [CrossRef]
- Warrington, E.K.; Shallice, T. Category specific semantic impairments. Brain 1984, 107, 829–853. [Google Scholar] [CrossRef]
- Humphreys, G.W.; Forde, E.M. Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits. Behav. Brain Sci. 2001, 24, 453–476. [Google Scholar] [CrossRef]
- Warrington, E.K.; McCarthy, R. Category specific access dysphasia. Brain 1983, 106, 859–878. [Google Scholar] [CrossRef]
- Borgo, F.; Shallice, T. When living things and other “sensory-quality” categories behave in the same fashion: A novel category-specific effect. Neurocase 2001, 7, 201–220. [Google Scholar] [CrossRef]
- Martin, A. The representation of object concepts in the brain. Ann. Rev. Psychol. 2007, 58, 25–45. [Google Scholar] [CrossRef] [Green Version]
- Caramazza, A.; Shelton, J.R. Domain specific knowledge systems in the brain: The animate-inanimate distinction. J. Cogn. Neurosci. 1998, 10, 1–34. [Google Scholar] [CrossRef]
- Mahon, B.Z.; Caramazza, A. Concepts and categories: A cognitive neuropsychological perspective. Ann. Rev. Psychol. 2009, 60, 27–51. [Google Scholar] [CrossRef] [Green Version]
- Mahon, B.Z.; Caramazza, A. What drives the organization of object knowledge in the brain? TiCS 2011, 15, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.R.; Caramazza, A. The Domain-Specific Hypothesis: A Developmental and Comparative Perspective on Category-Specific Deficits. In Category-Specificity in the Brain and Mind; Forde, E.M.E., Humphreys, G.W., Eds.; Psychology Press: New York, NY, USA, 2002; pp. 1–23. [Google Scholar]
- Mahon, B.Z.; Caramazza, A. Constraining questions about the organisation and representation of conceptual knowledge. Cogn. Neuropsychol. 2003, 20, 433–450. [Google Scholar] [CrossRef] [PubMed]
- Capitani, E.; Laiacona, M.; Mahon, B.; Caramazza, A. What are the facts of category-specific deficits? A critical review of the clinical evidence. Cogn. Neuropsychol. 2003, 20, 213–262. [Google Scholar] [CrossRef] [PubMed]
- Simmons, W.K.; Ramjee, V.; Beauchamp, M.S.; McRae, K.; Martin, A.; Barsalou, L.W. A common neural substrate for perceiving and knowing about color. Neuropsychologia 2007, 45, 2802–2810. [Google Scholar] [CrossRef] [Green Version]
- Barrós-Loscertales, A.; Gonzalez, J.; Pulvermuller, F.; Ventura-Campos, N.; Bustamante, J.C.; Costumero, V.; Parcet, M.A.; Avila, C. Reading salt activates gustatory brain regions: fMRI evidence for semantic grounding in a novel sensory modality. Cereb. Cortex 2012, 22, 2554–2563. [Google Scholar] [CrossRef]
- González, J.; Barros-Loscertales, A.; Pulvermüller, F.; Meseguer, V.; Sanjuán, A.; Belloch, V.; Ávila, C. Reading cinnamon activates olfactory brain regions. Neuroimage 2006, 32, 906–912. [Google Scholar] [CrossRef]
- Fernandino, L.; Humphries, C.J.; Seidenberg, M.S.; Gross, W.L.; Conant, L.L.; Binder, J.R. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes. Neuropsychologia 2015, 76, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Binder, J.R.; Conant, L.L.; Humphries, C.J.; Fernandino, L.; Simons, S.B.; Aguilar, M.; Desai, R.H. Toward a brain-based componential semantic representation. Cogn. Neuropsychol. 2016, 33, 130–174. [Google Scholar] [CrossRef]
- Mahon, B.Z.; Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. J. Physiol. 2008, 102, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Schwanenflugel, P.J. Why are Abstract Concepts Hard to Understand? In The Psychology of Word Meanings; Schwanenflugel, P.J., Ed.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 1991; pp. 223–250. [Google Scholar]
- Paivio, A. Mental Representations: A Dual Coding Approach; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Borghi, A.M.; Binkofski, F.; Castelfranchi, C.; Cimatti, F.; Scorolli, C.; Tummolini, L. The challenge of abstract concepts. Psychol. Bull. 2017, 143, 263–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, J.W. Cortical networks related to human use of tools. Neuroscientist 2006, 12, 211–231. [Google Scholar] [CrossRef]
- Hauk, O.; Johnsrude, I.; Pulvermüller, F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 2004, 41, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Tettamanti, M.; Buccino, G.; Saccuman, M.C.; Gallese, V.; Danna, M.; Scifo, P.; Fazio, F.; Rizzolatti, G.; Cappa, S.F.; Perani, D. Listening to action-related sentences activates fronto-parietal motorcircuits. J. Cogn. Neurosci. 2005, 17, 273–281. [Google Scholar] [CrossRef]
- Pulvermüller, F.; Hauk, O.; Nikulin, V.V.; Ilmoniemi, R.J. Functional links between motor and language systems. Eur. J. Neurosci. 2005, 21, 793–797. [Google Scholar] [CrossRef]
- Fernandino, L.; Binder, J.R.; Desai, R.H.; Pendl, S.L.; Humphries, C.J.; Gross, W.L.; Connant, L.L.; Seidenberg, M.S. Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics. Cereb. Cortex 2015, 26, 2018–2034. [Google Scholar] [CrossRef] [Green Version]
- Meteyard, L.; Cuadrado, S.R.; Bahrami, B.; Vigliocco, G. Coming of age: A review of embodiment and the neuroscience of semantics. Cortex 2012, 48, 788–804. [Google Scholar] [CrossRef] [Green Version]
- Paivio, A. Dual coding theory: Retrospect and current status. Can. J. Psychol. 1991, 45, 255–287. [Google Scholar] [CrossRef]
- Barsalou, L. Perceptual symbol system. Behav. Brain Sci. 1999, 22, 577–660. [Google Scholar] [CrossRef]
- Brysbaert, M.; Warriner, A.B.; Kuperman, V. Concreteness ratings for 40 thousand generally known English word lemmas. Behav. Res. 2014, 46, 904–911. [Google Scholar] [CrossRef] [Green Version]
- Bergelson, E.; Swingley, D. The acquisition of abstract words by young infants. Cognition 2013, 127, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Bellagamba, F.; Borghi, A.M.; Mazzuca, C.; Pecora, G.; Vogel, A. From ‘mommy’ to ‘like’: Tackling the emergence of abstractness during the second year of life using an ecological approach. 2021. PsyArXiv Preprints. [Google Scholar] [CrossRef]
- Lewis, M.; Colunga, E.; Lupyan, G. Superordinate Word Knowledge Predicts Longitudinal Vocabulary Growth. 2021. PsyArXiv Preprints. [Google Scholar] [CrossRef]
- Borghi, A.M.; Setti, A. Abstract concepts and aging: An embodied and grounded perspective. Front. Psychol. 2017, 8, 430. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S. The Number Sense; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Tschentscher, N.; Hauk, O.; Fischer, M.H.; Pulvermüller, F. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage 2012, 59, 3139–3148. [Google Scholar] [CrossRef] [Green Version]
- Lakoff, G.; Núñez, R.E. Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being; Basic Books: New York, NY, USA, 2000. [Google Scholar]
- Shaki, S.; Fischer, M.H. Deconstructing spatial-numerical associations. Cognition 2018, 175, 109–113. [Google Scholar] [CrossRef]
- Amalric, M.; Denghien, I.; Dehaene, S. On the role of visual experience in mathematical development: Evidence from blind mathematicians. Dev. Cogn. Neurosci. 2018, 30, 314–323. [Google Scholar] [CrossRef]
- Winter, B.; Perlman, M.; Matlock, T. Using space to talk and gesture about numbers: Evidence from the TV News Archive. Gesture 2013, 13, 377–408. [Google Scholar] [CrossRef] [Green Version]
- Woodin, G.; Winter, B.; Perlman, M.; Littlemore, J.; Matlock, T. ‘Tiny numbers’ are actually tiny: Evidence from gestures in the TV News Archive. PLoS ONE 2020, 15, e0242142. [Google Scholar] [CrossRef] [PubMed]
- Lugli, L.; Baroni, G.; Anelli, F.; Borghi, A.M.; Nicoletti, R. Counting is easier while experiencing a congruent motion. PLoS ONE 2013, 8, e64500. [Google Scholar] [CrossRef] [PubMed]
- Lugli, L.; D’Ascenzo, S.; Borghi, A.M.; Nicoletti, R. Clock walking and gender: How circular movements influence arithmetic calculations. Front. Psychol. 2018, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Anelli, F.; Lugli, L.; Baroni, G.; Borghi, A.M.; Nicoletti, R. Walking boosts your performance in making additions and subtractions. Front. Psychol. 2014, 5, 1459. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Bossini, S.; Giraux, P. The mental representation of parity and number magnitude. J. Exp. Psychol. Gen. 1993, 122, 371. [Google Scholar] [CrossRef]
- Ranzini, M.; Lugli, L.; Anelli, F.; Carbone, R.; Nicoletti, R.; Borghi, A.M. Graspable Objects Shaped Number processing. Front. Hum. Neurosci. 2011, 5, 147. [Google Scholar] [CrossRef] [Green Version]
- Gianelli, C.; Ranzini, M.; Marzocchi, M.; Micheli, L.R.; Borghi, A.M. Influence of numerical magnitudes on the free choice of an object position. Cogn. Process. 2012, 13, 185–188. [Google Scholar] [CrossRef]
- Dreyer, F.R.; Pulvermüller, F. Abstract semantics in the motor system? An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex 2018, 100, 52–70. [Google Scholar] [CrossRef]
- Moseley, G.L.; Gallace, A.; Spence, C. Bodily illusions in health and disease: Physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci. Biobehav. Rev. 2012, 36, 34–46. [Google Scholar] [CrossRef]
- Desai, R.H.; Reilly, M.; van Dam, W. The multifaceted abstract brain. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170122. [Google Scholar] [CrossRef]
- Harpaintner, M.; Trumpp, N.M.; Kiefer, M. Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task dependency. Psychol. Res. 2020, 1–23. [Google Scholar] [CrossRef]
- Arbib, M.A.; Gasser, B.; Barrès, V. Language is handy but is it embodied? Neuropsychologia 2014, 55, 57–70. [Google Scholar] [CrossRef]
- Coventry, K.R.; Griffiths, D.; Hamilton, C.J. Spatial demonstratives and perceptual space: Describing and remembering object location. Cogn. Psychol. 2014, 69, 46–70. [Google Scholar] [CrossRef] [Green Version]
- Patané, I.; Brozzoli, C.; Koun, E.; Frassinetti, F.; Farnè, A. Me, you, and our object: Peripersonal space recruitment during executed and observed actions depends on object ownership. J. Exp. Psychol. Gen. 2020. [Google Scholar] [CrossRef]
- Aglioti, S.; Smania, N.; Manfredi, M.; Berlucchi, G. Disownership of left hand and objects related to it in a patient with right brain damage. NeuroReport 1996, 8, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Connell, L.; Lynott, D. Strength of perceptual experience predicts word processing performance better than concreteness or imageability. Cognition 2012, 125, 452–465. [Google Scholar] [CrossRef] [Green Version]
- Troche, J.; Crutch, S.; Reilly, J. Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Front. Psychol. 2014, 5, 360. [Google Scholar] [CrossRef] [Green Version]
- Troche, J.; Crutch, S.J.; Reilly, J. Defining a Conceptual Topography of Word Concreteness: Clustering Properties of Emotion, Sensation, and Magnitude among 750 English Words. Front. Psychol. 2017, 8, 1787. [Google Scholar] [CrossRef] [Green Version]
- Connell, L.; Lynott, D.; Banks, B. Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philos. Trans. R. Soc. B Biol. Sci. 2018, 5, 373. [Google Scholar] [CrossRef] [Green Version]
- Villani, C.; Lugli, L.; Liuzza, M.T.; Borghi, A.M. Varieties of abstract concepts and their multiple dimensions. Lang. Cogn. 2019, 11, 403–430. [Google Scholar] [CrossRef]
- Ghio, M.; Vaghi, M.M.; Tettamanti, M. Fine-grained semantic categorization across the abstract and concrete domains. PLoS ONE 2013, 8, e67090. [Google Scholar] [CrossRef]
- Villani, C.; D’Ascenzo, S.; Borghi, A.M.; Roversi, C.; Benassi, M.; Lugli, L. Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychol. Res. 2021. [Google Scholar] [CrossRef]
- Conca, F.; Borsa, V.M.; Cappa, S.F.; Catricalà, E. The multidimensionality of abstract concepts: A systematic review. Neurosci. Biobehav. Rev. 2021, 127, 474–491. [Google Scholar] [CrossRef]
- Harpaintner, M.; Trumpp, N.M.; Kiefer, M. The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Front. Psychol. 2018, 9, 1748. [Google Scholar] [CrossRef] [Green Version]
- Villani, C.; Orsoni, M.; Lugli, L.; Benassi, M.; Borghi, A.M. Abstract and concrete concepts in conversation. 2021. In preparation. [Google Scholar] [CrossRef]
- Mazzuca, C.; Villani, C.; Ferrajoli, F.; Daprati, E.; Nico, D.; Borghi, A.M. Concrete and abstract concepts and social media. 2021. In preparation. [Google Scholar]
- Fini, C.; Ciaramelli, E.; Mariani, L.; Borghi, A.M. Mind wandering and abstract concepts in children and adolescents. 2021. In preparation. [Google Scholar]
- Majid, A.; Levinson, S.C. The senses in language and culture. Senses Soc. 2011, 6, 5–18. [Google Scholar] [CrossRef]
- Ghandhari, M.; Fini, C.; Da Rold, F.; Borghi, A.M. Different kinds of embodied language: A comparison between Italian and Persian languages. Brain Cogn. 2020, 142, 105581. [Google Scholar] [CrossRef]
- Borghi, A.M.; Capirci, O.; Gianfreda, G.; Volterra, V. The body and the fading away of abstract concepts and words: A sign language analysis. Front. Psychol. 2014, 5, 811. [Google Scholar] [CrossRef] [Green Version]
- Mazzuca, C.; Borghi, A.M.; van Putten, S.; Lugli, L.; Nicoletti, R.; Majid, A. Gender at the interface of culture and language: Conceptual variation between Italian, Dutch, and English. 2020. [Google Scholar] [CrossRef]
- Borghi, A.M. Linguistic relativity and abstract words. Paradigmi 2019, 37, 429–448. [Google Scholar]
- Da Rold, F.; Fini, C.; Fernandez, J.; Witkowiski, O.; Borghi, A.M. Concrete and abstract concepts across cultures: A sorting and naming study. 2021. In preparation. [Google Scholar]
- Mazzuca, C.; Falcinelli, I.; Michalland, A.H.; Tummolini, L.; Borghi, A.M. Differences and similarities in the conceptualization of COVID-19 and other diseases in the first Italian lockdown. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Furby, L. The origins and early development of possessive behavior. Polit. Psychol. 1980, 2, 30–42. [Google Scholar] [CrossRef]
- Mannella, F.; Santucci, V.G.; Somogyi, E.; Jacquey, L.; O’Regan, K.J.; Baldassarre, G. Know your body through intrinsic goals. Front. Neurorobot. 2018, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Mannella, F.; Santucci, V.G.; Tummolini, L. The origins of the sense of possession: A neurocomputational approach. 2021. In preparation. [Google Scholar]
- Wauters, L.N.; Tellings, A.E.; Van Bon, W.H.; Van Haaften, A.W. Mode of acquisition of words meanings: The viability of a theoretical construct. Appl. Psycholinguist. 2003, 24, 385–406. [Google Scholar] [CrossRef]
- Lupyan, G.; Mirman, D. Linking language and categorization: Evidence from aphasia. Cortex 2013, 49, 1187–1194. [Google Scholar] [CrossRef]
- Justice in Collins Dictionary. 2021. Available online: https://www.collinsdictionary.com/dictionary/english/justice (accessed on 20 September 2021).
- Borghi, A.M.; Barca, L.; Binkofski, F.; Castelfranchi, C.; Pezzulo, G.; Tummolini, L. Words as social tools: Language, sociality and inner grounding in abstract concepts. Phys. Life Rev. 2019, 29, 120–153. [Google Scholar] [CrossRef] [PubMed]
- Dove, G. Thinking in words: Language as an embodied medium of thought. Top. Cogn. Sci. 2014, 6, 371–389. [Google Scholar] [CrossRef]
- Dove, G. Language as a disruptive technology: Abstract concepts, embodiment and the flexible mind. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170135. [Google Scholar] [CrossRef]
- Dove, G.; Barca, L.; Tummolini, L.; Borghi, A.M. Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychol. Res. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Borghi, A.M.; Flumini, A.; Cimatti, F.; Marocco, D.; Scorolli, C. Manipulating objects and telling words: A study on concrete and abstract words acquisition. Front. Psychol. 2011, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granito, C.; Scorolli, C.; Borghi, A.M. Naming a Lego world. The role of language in the acquisition of abstract concepts. PLoS ONE 2015, 10, e0114615. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.M.; Zarcone, E. Grounding Abstractness: Abstract Concepts and the Activation of the Mouth. Front. Psychol. 2016, 7, 1498. [Google Scholar] [CrossRef] [Green Version]
- Mazzuca, C.; Lugli, L.; Benassi, M.; Nicoletti, R.; Borghi, A.M. Abstract, emotional and concrete concepts and the activation of mouth-hand effectors. PeerJ 2018, 6, e5987. [Google Scholar] [CrossRef]
- Villani, C.; Lugli, L.; Liuzza, M.T.; Nicoletti, R.; Borghi, A.M. Sensorimotor and interoceptive dimensions in concrete and abstract concepts. J. Mem. Lang. 2021, 116, 104173. [Google Scholar] [CrossRef]
- Scorolli, C.; Jacquet, P.O.; Binkofski, F.; Nicoletti, R.; Tessari, A.; Borghi, A.M. Abstract and concrete phrases processing differentially modulates cortico-spinal excitability. Brain Res. 2012, 1488, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Sakreida, K.; Scorolli, C.; Menz, M.M.; Heim, S.; Borghi, A.M.; Binkofski, F. Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Front. Hum. Neurosci. 2013, 7, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyer, F.R.; Frey, D.; Arana, S.; von Saldern, S.; Picht, T.; Vajkoczy, P.; Pulvermüller, F. Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Front. Psychol. 2015, 6, 1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseley, R.; Carota, F.; Hauk, O.; Mohr, B.; Pulvermüller, F. A Role for the Motor System in Binding Abstract Emotional Meaning. Cereb. Cortex 2012, 22, 1634–1647. [Google Scholar] [CrossRef] [PubMed]
- Loevenbruck, H.; Grandchamp, R.; Rapin, L.; Nalborczyk, L.; Dohen, M.; Perrier, P.; Baciu, M.; Perrone-Bertolotti, M. A Cognitive Neuroscience View of Inner Language: To Predict and to Hear, See, Feel. In Inner Speech: New Voices; Langland-Hassan, P., Vicente, A., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 131–167. [Google Scholar]
- Oppenheim, G.M.; Dell, G.S. Motor movement matters: The flexible abstractness of inner speech. Mem. Cogn. 2010, 38, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Fernyhough, C. The Voices Within: The History and Science of How We Talk to Ourselves; Basic Books: New York, NY, USA, 2016. [Google Scholar]
- Barca, L.; Mazzuca, C.; Borghi, A.M. Pacifier overuse and conceptual relations of abstract and emotional concepts. Front. Psychol. 2017, 8, 2014. [Google Scholar] [CrossRef] [Green Version]
- Barca, L.; Mazzuca, C.; Borghi, A.M. Overusing the Pacifier during Infancy Sets a Footprint on Abstract Words Processing. J. Child. Lang. 2020, 47, 1084–1099. [Google Scholar] [CrossRef]
- Niedenthal, P.M.; Augustinova, M.; Rychlowska, M.; Droit-Volet, S.; Zinner, L.; Knafo, A.; Brauer, M. Negative relations between pacifier use and emotional competence. Basic Appl. Soc. Psychol. 2012, 34, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Rychlowska, M.; Korb, S.; Brauer, M.; Droit-Volet, S.; Augustinova, M.; Zinner, L.; Niedenthal, P.M. Pacifiers disrupt adults’ responses to infants’ emotions. Basic Appl. Soc. Psychol. 2014, 36, 299–308. [Google Scholar] [CrossRef]
- Langland-Hassan, P.; Vicente, A. Inner Speech: New Voices; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Vygotsky, L.S. Thought and Language; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Baddeley, A. Working memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef]
- Nalborczyk, L.; Perrone-Bertolotti, M.; Celine, B.; Grandchamp, R.; Spinelli, E.; Koster, E.H.W.; Loevenbruck, H. Articulatory suppression effects on induced rumination. 2018. PsyArXiv Preprints. [Google Scholar] [CrossRef]
- Alderson-Day, B.; Fernyhough, C. Inner Speech: Development, Cognitive Functions, Phenomenology, and Neurobiology. Psychol. Bull. 2015, 141, 931–965. [Google Scholar] [CrossRef] [Green Version]
- Perrone-Bertolotti, M.; Rapin, L.; Lachaux, J.P.; Baciu, M.; Lœvenbruck, H. What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behav. Brain Res. 2014, 261, 220–239. [Google Scholar] [CrossRef] [PubMed]
- Bergen, B.K. Louder than Words: The New Science of How the Mind Makes Meaning; Basic Books: New York, NY, USA, 2012. [Google Scholar]
- Topolinski, S.; Strack, F. Motormouth: Mere exposure depends on stimulus-specific motor simulations. J. Exp. Psychol. Learn. 2009, 35, 423. [Google Scholar] [CrossRef]
- Topolinski, S.; Maschmann, I.T.; Pecher, D.; Winkielman, P. Oral approach–avoidance: Affective consequences of muscular articulation dynamics. J. Pers. Soc. Psychol. 2014, 106, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granato, G.; Borghi, A.M.; Baldassarre, G. A computational model of language functions in flexible goal-directed behaviour. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Granato, G.; Borghi, A.M.; Mattera, G.; Baldassarre, G. Autism and inner Speech: A computational model of language functions in autistic flexible behaviour. 2021. [Google Scholar] [CrossRef]
- Shea, N. Metacognition and abstract concepts. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170133. [Google Scholar] [CrossRef] [PubMed]
- Zannino, G.; Fini, C.; Benassi, M.; Carlesimo, A.; Borghi, A.M. Articulatory Suppression Delays Processing of Abstract Words: The Role of Inner Speech. 2021. Available online: http://www.w3.org/1999/xlink (accessed on 20 September 2021).
- Borghi, A.M. A Future of Words: Language and the Challenge of Abstract Concepts. J. Cogn. 2020, 3, 42. [Google Scholar] [CrossRef]
- Borghi, A.M.; Fini, C.; Tummolini, L. Abstract Concepts and Metacognition: Searching for Meaning in Self and Others. In Embodied Psychology: Thinking, Feeling, and Acting; Robinson, M.D., Roberts, L.E., Eds.; Spinger: New York, NY, USA, 2020. [Google Scholar]
- Korba, R.J. The rate of inner speech. Percept. Mot. Ski. 1990, 71, 1043–1052. [Google Scholar] [CrossRef]
- Chella, A.; Pipitone, A.; Morin, A.; Racy, F. Developing Self-Awareness in Robots via Inner Speech. Front. Robot. AI 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Baldo, J.V.; Dronkers, N.F.; Wilkins, D.; Ludy, C.; Raskin, P.; Kim, J. Is problem solving dependent on language? Brain Lang. 2005, 92, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Lidstone, J.S.; Meins, E.; Fernyhough, C. The roles of private speech and inner speech in planning during middle childhood: Evidence from a dual task paradigm. J. Exp. Child. Psychol. 2010, 107, 438–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A. Language, embodiment, and the cognitive niche. Trends Cogn. Sci. 2006, 10, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Fini, C.; Borghi, A.M. Sociality to Reach Objects and to Catch Meaning. Front. Psychol. 2019, 10, 838. [Google Scholar] [CrossRef]
- Clark, H. Using Language (“Using” Linguistic Books); Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Mazzuca, C.; Santarelli, M. Making it abstract, making it contestable: Politicization at the intersection of political and cognitive science. Revi. Philos. Psychol. 2021. [Google Scholar] [CrossRef]
- Paoletti, M.; Fini, C.; Filippini, C.; Merla, A.; Massari, G.M.; D’Abundo, E.; Bellagamba, F.; Borghi, A.M. Abstract concepts and prosocial behavior in children: A thermal imaging study. 2021. Submitted. [Google Scholar]
- Aureli, T.; Grazia, A.; Cardone, D.; Merla, A. Behavioral and facial thermal variations in 3-to 4-month-old infants during the Still-Face Paradigm. Front. Psychol. 2015, 6, 1586. [Google Scholar] [CrossRef] [Green Version]
- Fini, C.; Era, V.; Da Rold, F.; Candidi, M.; Borghi, A.M. Abstract concepts in interaction: The need of others when guessing abstract concepts, smooths dyadic motor interactions. R. Soc. Open Sci. 2021, 8, 201205. [Google Scholar] [CrossRef]
- Gandolfo, M.; Era, V.; Tieri, G.; Sacheli, L.; Candidi, M. Interactor’s body shape does not affect visuo-motor interference effects during motor coordination. Acta Psychol. 2019, 196, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Era, V.; Aglioti, S.M.; Mancusi, C.; Candidi, M. Visuo-motor interference with a virtual partner is equally present in cooperative and competitive interactions. Psychol. Res. 2020, 84, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Deacon, T. The Symbolic Species: The Co-Evolution of Language and Brain; Norton: New York, NY, USA, 1997. [Google Scholar]
- Dunbar, R.I.M. The social brain hypothesis. Evol. Anthropol. 1998, 6, 178–190. [Google Scholar] [CrossRef]
- Gilead, M.; Trope, Y.; Liberman, N. Above and beyond the concrete: The diverse representational substrates of the predictive brain. Behav. Brain Sci. 2020, 43, 1–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fini, C.; Era, V.; Cuomo, G.; Mazzuca, C.; Matteo, C.; Borghi, A.M. On-line conversations on abstract concepts increase the psychological closeness between the interlocutors. 2021. In preparation. [Google Scholar]
- Aron, A.; Aron, E.N.; Smollan, D. Inclusion of Other in the Self Scale and the structure of interpersonal closeness. J. Pers. Soc. Psychol. 1992, 63, 596–612. [Google Scholar] [CrossRef]
- Villani, C.; D’Ascenzo, S.; Ubertone, M.; Lugli, L.; Benassi, M.; Borghi, A.M.; Roversi, C. Impact of language and social situations on institutional concepts: A priming study. 2021. In preparation. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzuca, C.; Fini, C.; Michalland, A.H.; Falcinelli, I.; Da Rold, F.; Tummolini, L.; Borghi, A.M. From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sci. 2021, 11, 1304. https://doi.org/10.3390/brainsci11101304
Mazzuca C, Fini C, Michalland AH, Falcinelli I, Da Rold F, Tummolini L, Borghi AM. From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sciences. 2021; 11(10):1304. https://doi.org/10.3390/brainsci11101304
Chicago/Turabian StyleMazzuca, Claudia, Chiara Fini, Arthur Henri Michalland, Ilenia Falcinelli, Federico Da Rold, Luca Tummolini, and Anna M. Borghi. 2021. "From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding" Brain Sciences 11, no. 10: 1304. https://doi.org/10.3390/brainsci11101304
APA StyleMazzuca, C., Fini, C., Michalland, A. H., Falcinelli, I., Da Rold, F., Tummolini, L., & Borghi, A. M. (2021). From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding. Brain Sciences, 11(10), 1304. https://doi.org/10.3390/brainsci11101304