Corpus Callosotomy for Controlling Epileptic Spasms: A Proposal for Surgical Selection
Abstract
:1. Introduction
2. History of Corpus Callosotomy, Types of Disconnections and Complications
3. Mechanism of Efficacy and Adaptations to the Corpus Callosotomy
4. Epileptic Spasms: Characteristics of Clinical and Neurophysiological Findings, Mechanisms, and Treatment Options
5. Corpus Callosotomy for Epileptic Spasms
6. Efficacy of Corpus Callosotomy for Epileptic Spasms
6.1. Seizure Outcomes Post-Corpus Callosotomy for Epileptic Spasms
6.2. Effects on Developments in Patients with Epileptic Spasms
7. Prognostic Factors for Seizure Outcomes Post-Corpus Callosotomy
8. Surgical Treatment Selection: Resection Surgery or Corpus Callosotomy First?
8.1. Resection Surgeries and Adaptations for Epileptic Spasms
8.2. Characteristics of Patients Who Undergo Corpus Callosotomy
8.3. Types of Epileptic Spasms in Terms of Cortical Excitations and the Role of Corpus Callosum
8.4. Surgical Selection Flow Proposals
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Wagenen, W.P.; Herren, R.Y. Surgical Divisions of Commissural Pathways in the Corpus Callosum. Arch. Neurol. Psychiatry 1940, 447, 740. [Google Scholar] [CrossRef]
- Pinard, J.M.; Delalande, O.; Plouin, P.; Dulac, O. Callosotomy in West Syndrome Suggests a Cortical Origin of Hyp-sarrhythmia. Epilepsia 1993, 34, 780–787. [Google Scholar] [CrossRef]
- Ono, T.; Baba, H.; Toda, K.; Ono, K. Callosotomy and Subsequent Surgery for Children with Refractory Epilepsy. Epilepsy Res. 2011, 93, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, T.; Kim, H.D.; Luan, G.; Inoue, Y.; Baba, H.; Oguni, H.; Hong, S.C.; Kameyama, S.; Kobayashi, K.; Hirose, S.; et al. Surgical Versus Medical Treatment for Children with Epileptic Encephalopathy in Infancy and Early Childhood: Results of an International Multicenter Cohort Study in Far-East Asia (the FACE Study). Brain Dev. 2016, 38, 449–460. [Google Scholar] [CrossRef]
- Iwasaki, M.; Nakasato, N.; Kakisaka, Y.; Kanno, A.; Uematsu, M.; Haginoya, K.; Tominaga, T. Lateralization of Inter-ictal Spikes After Corpus Callosotomy. Clin. Neurophysiol. 2011, 122, 2121–2127. [Google Scholar] [CrossRef] [PubMed]
- Baba, H.; Toda, K.; Ono, T.; Honda, R.; Baba, S. Surgical and Developmental Outcomes of Corpus Callosotomy for West Syndrome in Patients Without MRI Lesions. Epilepsia 2018, 59, 2231–2239. [Google Scholar] [CrossRef] [Green Version]
- Baba, S.; Okanishi, T.; Nishimura, M.; Kanai, S.; Itamura, S.; Suzuki, T.; Masuda, Y.; Enoki, H.; Fujimoto, A. Effectiveness of Total Corpus Callosotomy for Diffuse Bilateral Polymicrogyria: Report of Three Pediatric Cases. Brain Dev. 2018, 40, 719–723. [Google Scholar] [CrossRef]
- Baba, S.; Vakorin, V.A.; Doesburg, S.M.; Nagamori, C.; Cortez, M.A.; Honda, R.; Ono, T.; Toda, K.; Nishimoto, H.; Ebihara, T.; et al. EEG Before and After Total Corpus Callosotomy for Pharmacoresistant Infantile Spasms: Fast Oscillations and Slow-Wave Connectivity in Hypsarrhythmia. Epilepsia 2019, 60, 1849–1860. [Google Scholar] [CrossRef]
- Okanishi, T.; Fujimoto, A.; Okanari, K.; Baba, S.; Ichikawa, N.; Nishimura, M.; Enoki, H. Corpus Callosotomy for Drug-Resistant Spasms Associated with Tuberous Sclerosis Complex. Epilepsy Behav. 2019, 98, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Kanai, S.; Oguri, M.; Okanishi, T.; Itamura, S.; Baba, S.; Nishimura, M.; Homma, Y.; Maegaki, Y.; Enoki, H.; Fujimoto, A. Symmetry of Ictal Slow Waves May Predict the Outcomes of Corpus Callosotomy for Epileptic Spasms. Sci. Rep. 2019, 9, 19733. [Google Scholar] [CrossRef] [PubMed]
- Oguri, M.; Okanishi, T.; Kanai, S.; Baba, S.; Nishimura, M.; Ogo, K.; Himoto, T.; Okanari, K.; Maegaki, Y.; Enoki, H.; et al. Phase Lag Analyses on Ictal Scalp Electroencephalography May Predict Outcomes of Corpus Callosotomy for Epileptic Spasms. Front. Neurol. 2020, 11, 576087. [Google Scholar] [CrossRef] [PubMed]
- Uda, T.; Kuki, I.; Inoue, T.; Kunihiro, N.; Suzuki, H.; Uda, H.; Kawashima, T.; Nakajo, K.; Nakanishi, Y.; Maruyama, S.; et al. Phase-Amplitude Coupling of Interictal Fast Activities Modulated by Slow Waves on Scalp EEG and Its Correlation with Seizure Outcomes of Disconnection Surgery in Children with Intractable Nonlesional Epileptic Spasms. J. Neurosurg. Pediatr. 2021, 26, 1–9. [Google Scholar] [CrossRef]
- Fusco, L.; Vigevano, F. Ictal Clinical Electroencephalographic Findings of Spasms in West Syndrome. Epilepsia 1993, 34, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Vigevano, F.; Fusco, L.; Pachatz, C. Neurophysiology of Spasms. Brain Dev. 2001, 23, 467–472. [Google Scholar] [CrossRef]
- Chugani, H.T. Pathophysiology of Infantile Spasms. Adv. Exp. Med. Biol. 2002, 497, 111–121. [Google Scholar]
- Chugani, H.T.; Ilyas, M.; Kumar, A.; Juhász, C.; Kupsky, W.J.; Sood, S.; Asano, E. Surgical Treatment for Refractory Epileptic Spasms: The Detroit Series. Epilepsia 2015, 56, 1941–1949. [Google Scholar] [CrossRef]
- Barba, C.; Mai, R.; Grisotto, L.; Gozzo, F.; Pellacani, S.; Tassi, L.; Francione, S.; Giordano, F.; Cardinale, F.; Guerrini, R. Unilobar Surgery for Symptomatic Epileptic Spasms. Ann. Clin. Transl. Neurol. 2017, 4, 36–45. [Google Scholar] [CrossRef]
- Chipaux, M.; Dorfmüller, G.; Fohlen, M.; Dorison, N.; Metten, M.A.; Delalande, O.; Ferrand-Sorbets, S.; Taussig, D. Refractory Spasms of Focal Onset-A Potentially Curable Disease That Should Lead to Rapid Surgical Evaluation. Seizure 2017, 51, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Erdemir, G.; Pestana-Knight, E.; Honomichl, R.; Thompson, N.R.; Lachhwani, D.; Kotagal, P.; Wyllie, E.; Gupta, A.; Bingaman, W.E.; Moosa, A.N.V. Surgical Candidates in Children with Epileptic Spasms Can Be Selected Without Invasive Monitoring: A Report of 70 Cases. Epilepsy Res. 2021, 176, 106731. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Hong, B.; Wang, H.; Lin, J.; Sun, Z.; Wang, S. Analysis of Surgical Strategies for Children with Epileptic Spasms. Epileptic Disord. 2021, 23, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Bogen, J.; Vogel, P. Cerebral commissurotomy in man: Preliminary case report. Neuro Soc. 1962, 27, 169–172. [Google Scholar]
- Vaddiparti, A.; Huang, R.; Blihar, D.; Du Plessis, M.; Montalbano, M.J.; Tubbs, R.S.; Loukas, M. The Evolution of Corpus Callosotomy for Epilepsy Management. World Neurosurg. 2021, 145, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.W.; Bogen, J.E.; Sperry, R.W. Absence of Deconnexion Syndrome in Two Patients with Partial Section of the Neocommissures. Brain 1971, 94, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Sharan, A.; Nei, M.; Sperling, M.R. Corpus Callosotomy. Epilepsy Behav. 2008, 13, 271–278. [Google Scholar] [CrossRef]
- Snead, O.C., 3rd. Surgical Treatment of Medically Refractory Epilepsy in Childhood. Brain Dev. 2001, 23, 199–207. [Google Scholar] [CrossRef]
- Cross, J.H.; Jayakar, P.; Nordli, D.; Delalande, O.; Duchowny, M.; Wieser, H.G.; Guerrini, R.; Mathern, G.W.; International League against Epilepsy, Subcommission for Paediatric Epilepsy Surgery; Commissions of Neurosurgery and Paediatrics. Proposed criteria for referral and evaluation of children for epilepsy surgery: Recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 2006, 47, 952–959. [Google Scholar] [CrossRef]
- Paglioli, E.; Martins, W.A.; Azambuja, N.; Portuguez, M.; Frigeri, T.M.; Pinos, L.; Saute, R.; Salles, C.; Hoefel, J.R.; Soder, R.B.; et al. Selective Posterior Callosotomy for Drop Attacks: A New Approach Sparing Prefrontal Connectivity. Neurology 2016, 87, 1968–1974. [Google Scholar] [CrossRef]
- Frigeri, T.; Paglioli, E.; Soder, R.B.; Martins, W.A.; Paglioli, R.; Mattiello, R.; Paganin, R.; Palmini, A. Control of Drop Attacks with Selective Posterior Callosotomy: Anatomical and Prognostic Data. Epilepsy Res. 2021, 171, 106544. [Google Scholar] [CrossRef] [PubMed]
- Bjellvi, J.; Flink, R.; Rydenhag, B.; Malmgren, K. Complications of epilepsy surgery in Sweden 1996–2010: A prospective, population-based study. J. Neurosurg. 2015, 122, 519–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaas, J.H. The Organization of Callosal Connections in Primates. In Epilepsy and the Corpus Callosum 2. Advances in Behavioral Biology; Reeves, A.G., Roberts, D.W., Eds.; Plenum Press: New York, NY, USA, 1995; Volume 45, pp. 15–27. [Google Scholar]
- Ono, T.; Matsuo, A.; Baba, H.; Ono, K. Is a Cortical Spike Discharge “Transferred” to the Contralateral Cortex via the Corpus Callosum? An Intraoperative Observation of Electrocorticogram and Callosal Compound Action Potentials. Epilepsia 2002, 43, 1536–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.; Tisdall, M.M.; Gill, D. Corpus Callosotomy Outcomes in Pediatric Patients: A Systematic Review. Epilepsia 2016, 57, 1053–1068. [Google Scholar] [CrossRef]
- Rougier, A.; Claverie, B.; Pedespan, J.M.; Marchal, C.; Loiseau, P. Callosotomy for Intractable Epilepsy: Overall Outcome. J. Neurosurg. Sci. 1997, 41, 51–57. [Google Scholar] [PubMed]
- Go, C.; Snead, O.C., 3rd. Pharmacologically Intractable Epilepsy in Children: Diagnosis and Preoperative Evaluation. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consales, A.; Casciato, S.; Asioli, S.; Barba, C.; Caulo, M.; Colicchio, G.; Cossu, M.; de Palma, L.; Morano, A.; Vatti, G.; et al. The Surgical Treatment of Epilepsy. Neurol. Sci. 2021, 42, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Rolston, J.D.; Englot, D.J.; Wang, D.D.; Garcia, P.A.; Chang, E.F. Corpus Callosotomy Versus Vagus Nerve Stimulation for Atonic Seizures and Drop Attacks: A Systematic Review. Epilepsy Behav. 2015, 51, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Spencer, S.S. Corpus Callosum Section and Other Disconnection Procedures for Medically Intractable Epilepsy. Epilepsia 1988, 29, S85–S99. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Malekmohamadi, Z.; Kamgarpour, A.; Rakei, S.M.; Taghipour, M.; Ashjazadeh, N.; Inaloo, S.; Razmkon, A.; Zare, Z. Corpus Callosotomy Is a Valuable Therapeutic Option for Patients with Lennox–Gastaut Syndrome and Medically Refractory Seizures. Epilepsy Behav. 2013, 29, 285–288. [Google Scholar] [CrossRef]
- Maehara, T.; Shimizu, H. Surgical Outcome of Corpus Callosotomy in Patients with Drop Attacks. Epilepsia 2001, 42, 67–71. [Google Scholar] [CrossRef]
- Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for Revised Classification of Epilepsies and Epileptic Syndromes. Epilepsia 1989, 30, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational Classification of Seizure Types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Ikeno, T.; Shigematsu, H.; Miyakoshi, M.; Ohba, A.; Yagi, K.; Seino, M. An Analytic Study of Epileptic Falls. Epilepsia 1985, 26, 612–621. [Google Scholar] [CrossRef]
- Fukushima, K.; Fujiwara, T.; Yagi, K.; Seino, M. Drop Attacks and Epileptic Syndromes. Jpn. J. Psychiatry Neurol. 1993, 47, 211–216. [Google Scholar] [CrossRef]
- You, S.J.; Kang, H.C.; Ko, T.S.; Kim, H.D.; Yum, M.S.; Hwang, Y.S.; Lee, J.K.; Kim, D.S.; Park, S.K. Comparison of Corpus Callosotomy and Vagus Nerve Stimulation in Children with Lennox—Gastaut Syndrome. Brain Dev. 2008, 30, 195–199. [Google Scholar] [CrossRef]
- Watanabe, K.; Negoro, T.; Okumura, A. Symptomatology of Infantile Spasms. Brain Dev. 2001, 23, 453–466. [Google Scholar] [CrossRef]
- Oguni, H.; Funatsuka, M.; Sasaki, K.; Nakajima, T.; Yoshii, K.; Nishimura, T.; Osawa, M. Effect of ACTH Therapy for Epileptic Spasms Without Hypsarrhythmia. Epilepsia 2005, 46, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Auvin, S.; Lamblin, M.D.; Pandit, F.; Vallée, L.; Bouvet-Mourcia, A. Infantile Epileptic Encephalopathy with Late-Onset Spasms: Report of 19 Patients. Epilepsia 2010, 51, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, R.H.; Fortini, S.; Reyes, G.; Carpio Ruiz, A.; Sanchez Fuentes, S.V.; Ramos, B. Epileptic Spasms in Clusters and Associated Syndromes Other Than West Syndrome: A Study of 48 Patients. Epilepsy Res. 2016, 123, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kanai, S.; Okanishi, T.; Nishimura, M.; Iijima, K.; Yokota, T.; Yamazoe, T.; Fujimoto, A.; Enoki, H.; Yamamoto, T. Successful Corpus Callosotomy for Doose Syndrome. Brain Dev. 2017, 39, 882–885. [Google Scholar] [CrossRef]
- Avanzini, G.; Panzica, F.; Franceschetti, S. Brain Maturational Aspects Relevant to Pathophysiology of Infantile Spasms. Int. Rev. Neurobiol. 2002, 49, 353–365. [Google Scholar]
- Iimura, Y.; Jones, K.; Hattori, K.; Okazawa, Y.; Noda, A.; Hoashi, K.; Nonoda, Y.; Asano, E.; Akiyama, T.; Go, C.; et al. Epileptogenic high-frequency oscillations skip the motor area in children with multilobar drug-resistant epilepsy. Clin. Neurophysiol. 2017, 128, 1197–1205. [Google Scholar] [CrossRef]
- Sakuma, S.; Halliday, W.C.; Nomura, R.; Baba, S.; Sato, Y.; Okanari, K.; Nakajima, M.; Widjaja, E.; Boelman, C.; Ochi, A.; et al. Increased subcortical oligodendroglia-like cells in pharmacoresistant focal epilepsy in children correlate with extensive epileptogenic zones. Epilepsia 2016, 57, 2031–2038. [Google Scholar] [CrossRef]
- Akiyama, T.; Akiyama, M.; Kobayashi, K.; Okanishi, T.; Boelman, C.G.; Nita, D.A.; Ochi, A.; Go, C.Y.; Snead, O.C., 3rd; Rutka, J.T.; et al. Spatial relationship between fast and slow components of ictal activities and interictal epileptiform discharges in epileptic spasms. Clin. Neurophysiol. 2015, 126, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Bureau, M.; Genton, P.; Delgado-Escueta, A.; Dravet, C.; Guerrini, R.; Tassinari, C.A.; Thomas, P.; Wolf, P. Epileptic Syndromes in Infancy, Childhood and Adolescence, 6th ed.; John Libbey Eurotext: Montrouge, France, 2019. [Google Scholar]
- Okanishi, T.; Fujimoto, A.; Nishimura, M.; Kanai, S.; Motoi, H.; Homma, Y.; Enoki, H. Insufficient Efficacy of Vagus Nerve Stimulation for Epileptic Spasms and Tonic Spasms in Children with Refractory Epilepsy. Epilepsy Res. 2018, 140, 66–71. [Google Scholar] [CrossRef]
- Bednarek, N.; Motte, J.; Soufflet, C.; Plouin, P.; Dulac, O. Evidence of Late-Onset Infantile Spasms. Epilepsia 1998, 39, 55–60. [Google Scholar] [CrossRef]
- Hamano, S.; Yoshinari, S.; Higurashi, N.; Tanaka, M.; Minamitani, M.; Eto, Y. Developmental outcomes of cryptogenic West syndrome. J. Pediatr. 2007, 150, 295–299. [Google Scholar] [CrossRef]
- Lombroso, C.T. A prospective study of infantile spasms: Clinical and therapeutic correlations. Epilepsia 1983, 24, 135–158. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.S. Favourable prognostic factors with infantile spasms. Eur. J. Pediatr. Neurol. 2010, 14, 13–18. [Google Scholar] [CrossRef]
- Talwar, D.; Baldwin, M.A.; Hutzler, R.; Griesemer, D.A. Epileptic Spasms in Older Children: Persistence Beyond Infancy. Epilepsia 1995, 36, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Pinard, J.M.; Delalande, O.; Chiron, C.; Soufflet, C.; Plouin, P.; Kim, Y.; Dulac, O. Callosotomy for epilepsy after West syndrome. Epilepsia 1999, 40, 1727–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.T.; Kwan, S.Y.; Chang, K.P.; Hsiu-Mei, W.; Yang, T.F.; Chen, Y.S.; Yi-Yen, L. Corpus Callosotomy in Children. Childs Nerv. Syst. 2006, 22, 999–1011. [Google Scholar] [CrossRef]
- Kwan, S.Y.; Lin, J.H.; Wong, T.T.; Chang, K.P.; You, C.H. A comparison of seizure outcome after callosotomy in patients with Lennox-Gastaut syndrome and a positive or negative history for West syndrome. Seizure 2006, 15, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Lee, J.S.; Kang, H.C.; Kim, D.S.; Shim, K.W.; Eom, S.; Kim, H.D. Outcomes of Epilepsy Surgery in Childhood-Onset Epileptic Encephalopathy. Brain Dev. 2014, 36, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Itamura, S.; Okanishi, T.; Nishimura, M.; Kanai, S.; Baba, S.; Masuda, Y.; Homma, Y.; Enoki, H.; Fujimoto, A. Analysis for the Association Between Corpus Callosum Thickness and Corpus Callosotomy Outcomes for Patients with Epileptic Spasms or Tonic Spasms. Pediatr. Neurol. 2019, 95, 79–83. [Google Scholar] [CrossRef]
- Honda, R.; Baba, H.; Adachi, K.; Koshimoto, R.; Ono, T.; Toda, K.; Tanaka, S.; Baba, S.; Yamasaki, K.; Yatsuhashi, H. Developmental Outcome After Corpus Callosotomy for Infants and Young Children with Drug-Resistant Epilepsy. Epilepsy Behav. 2021, 117, 107799. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Uematsu, M.; Sato, Y.; Nakayama, T.; Haginoya, K.; Osawa, S.; Itabashi, H.; Jin, K.; Nakasato, N.; Tominaga, T. Complete remission of seizures after corpus callosotomy. J. Neurosurg. Pediatr. 2012, 10, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Gill, D.; Dale, R.C.; Tisdall, M.M. Corpus Callosotomy Outcomes Study Group. Seizure outcome after corpus callosotomy in a large paediatric series. Dev. Med. Child Neurol. 2018, 60, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, Y.J.; Kang, H.C.; Kim, D.S.; Choi, S.R.; Kim, H.D.; Lee, J.S. Uncovered primary seizure foci in Lennox-Gastaut syndrome after corpus callosotomy. Brain Dev. 2011, 33, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Uematsu, M.; Hino-Fukuyo, N.; Osawa, S.; Shimoda, Y.; Jin, K.; Nakasato, N.; Tominaga, T. Clinical profiles for seizure remission and developmental gains after total corpus callosotomy. Brain Dev. 2016, 38, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Endoh, F.; Toda, Y.; Oka, M.; Baba, H.; Ohtsuka, Y.; Yoshinaga, H. Occurrence of bilaterally independent epileptic spasms after a corpus callosotomy in West syndrome. Brain Dev. 2016, 38, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Stigsdotter-Broman, L.; Olsson, I.; Flink, R.; Rydenhag, B.; Malmgren, K. Long-term follow-up after callosotomy—A prospective, population based, observational study. Epilepsia 2014, 55, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Camfield, P.; Camfield, C. Long-term prognosis for symptomatic (secondarily) generalized epilepsies: A population-based study. Epilepsia 2007, 48, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Horsley, V. British Medical Association. Br. Med. J. 1886, 2, 670–677. [Google Scholar]
- Luders, H.O. Textbook of Epilepsy Surgery, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Zentner, J. Surgical Treatment of Epilepsies: Diagnosis, Surgical Strategies, Results, 1st ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Costello, D.J.; Shields, D.C.; Cash, S.S.; Eskandar, E.N.; Cosgrove, G.R.; Cole, A.J. Consideration of epilepsy surgery in adults should be independent of age. Clin. Neurol. Neurosurg. 2009, 111, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Iimura, Y.; Jones, K.; Takada, L.; Shimizu, I.; Koyama, M.; Hattori, K.; Okazawa, Y.; Nonoda, Y.; Asano, E.; Akiyama, T.; et al. Strong Coupling Between Slow Oscillations and Wide Fast Ripples in Children with Epileptic Spasms: Investigation of Modulation Index and Occurrence Rate. Epilepsia 2018, 59, 544–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | N: CC for ES (Total N of Any Size) | Age at 1st CC | Seizure Types (ES and Others) | MRI Lesion (+/-) | Procedures of Resection | |
---|---|---|---|---|---|---|
1 | Pinard et al. 1999 [62] | 14 (17) | 1.7–14.3 years | ES only: 36% ES + generalized: 64% | Unknown | ACC only: 2 ACC→TCC: 10 PCC→TCC: 2 |
2 | Ono et al. 2011 [3] | 7 (19) | 0.4–3 years | ES only: 86% ES + focal + generalized: 14% | MRI lesion (+): 28% Bilateral: 28% | ACC→CR: 14% ACC→TCC→CR: 14% TCC→CR: 57% TCC→PQD: 14% |
3 | Otsuki et al. 2016 [4] | 10 (30) | Unknown | Unknown | Unknown | TCC only: 100% |
4 | Iwasaki et al. 2016 [71] | 8 (26) | 1–14 years | ES only: 50% ES + generalized: 50% | MRI lesion (+): 50% Unilateral: 13% Bilateral: 38% | TCC only: 100% |
5 | Baba et al. 2018 [6] | 56 | 0.4–1.9 years | ES only: 84% ES + generalized: 16% | MRI lesion (+): 0% | ACC only: 4% ACC→TCC: 5% TCC only: 91% |
6 | Baba et al. 2019 [8] | 42 | 0.6–7 years | ES only: 43% ES + focal: 7% ES + generalized: 50% | MRI lesion (+): 21% | TCC only: 79% TCC→AQD/PQD/SHR/HR: 21% |
7 | Okanishi et al. 2019 [9] | 7 | 2.1–21.5 years | ES only: 29% ES + focal: 29% ES + generalized: 43% | MRI lesion (+): 100% (bilateral tubers only) | TCC only: 71% TCC + CR/PQD: 29% |
8 | Kanai et al. 2019 [10] Oguri et al. 2020 [11] (Using the same patient data) | 17 | 1.4–19.8 years | ES only: 18% ES + others: 82% | MRI lesion (+): 65% | ACC only: 18% TCC only: 82% |
9 | Uda et al. 2021 [12] | 8 (10) | 0.8–9.1 years | Unknown | MRI lesion (+): 0% | TCC only: 63% (5/8) TCC→AQD/PQD/HR: 37% (3/8) |
ES outcomes | Good prognostic factor | Others | ||||
1 | Seizure free: 79% (after final CC) | NA | - | |||
2 | Seizure free: 71% (TCC + others) | NA | This study reported only cases involving additional resection/disconnection. | |||
3 | Seizure free: 70% | NA | Described as part of 67 surgical study cases | |||
4 | Seizure free: 38% | MRI lesion (-) | - | |||
5 | Seizure free: 43% > 80% reduction: 23% | low DQ | This study included only non-lesional cases | |||
6 | Seizure free: 26% (after TCC) Seizure free: 43% (TCC ± others) | Low gamma power and connectivity (scalp EEG) | - | |||
7 | Seizure free: 43% (after TCC) Seizure free: 71% (TCC ± others) | NA | Involved only patients with TSC. One patient achieved seizure freedom after taking everolimus additionally | |||
8 | Seizure free: 41% | Symmetrical ictal slow waves (scalp EEG) Low interhemispheric phase lags (scalp EEG) | Some epileptic spasms were described as tonic spasms in Kanai et al.’s study [7] | |||
9 | Seizure free: 25% (after TCC) Seizure free: 63% (TCC ± others) | NA | AQD without CC was selected for two patients based on a presurgical evaluation |
Authors | N | Age at Surgery | Seizure Types or Symmetry of ES | MRI Lesion | Procedures of Resection | |
---|---|---|---|---|---|---|
1 | Chugani et al. 2015 [16] | 65 | 5.1 ± 4.4 years (0.2–19 years) | ES only: 23% ES + focal: 58% ES + generalized: 11% | Lesion (+): 92% | Hemispherectomy: 31% Subtotal hemispherotomy: 26% Multilobar: 20% Lobar ± tuberectomy: 14% Tuberectomy: 9% |
2 | Barba et al. 2016 [17] | 80 | 5.8 ± 4.0 years | Symmetric ES: 49% Asymmetric ES: 24% Both types: 28% | Lesion (+): 96% | Lobectomy: 72.5% Multilobar/hemispherotomy: 27.5% |
3 | Chipaux et al. 2017 [18] | 59 | 4.6 ± 3.5 years (0.3–16 years) | ES only: 15% ES + others: 85% | Lesion (+): 96% | Hemispherotomy: 34% Lesionectomy: 8% Lesionectomy + cortical resection *: 46% Frontal disconnection: 8% Posterior disconnection: 3% Endoscopic HH removal: 3% |
4 | Erdemir et al. 2021 [19] | 70 | 1.9 ± 1.6 years | ES only: 46% ES + others: 54% Symmetric: 54% Asymmetric: 40% Unknown symmetry: 6% | Lesion (+): 100% Bilateral: 24% Unilateral: 76% | Hemispherectomy: 44% Lobectomy/lesionectomy: 33% Multilobar resection: 23% |
5 | Liu et al. 2021 [20] | 64 | 3.3 ± 2.7 years | ES only: 64% ES + others: 36% | Lesion (+): 83% | Hemispherotomy/subtotal hemispherotomy: 27% Multilobar: 11% Lobar: 34% Tuberectomy: 23% Unknown: 3% |
Outcomes | Good Prognostic Factor | Others | ||||
1 | Seizure free: 71% | Short epilepsy duration MRI lesion (+) | 22 patients discontinued medication after surgery | |||
2 | Seizure free: 61% | Complete resection of SOZ MRI lesion (+) Low age at surgery/short epilepsy duration | ECoG monitoring: 30% | |||
3 | Seizure free: 75% | Low age at surgery | Visible epileptogenic lesions on MRI in most cases. Eight patients were declined surgery following presurgical evaluation because of multiple foci. | |||
4 | Seizure free: 60% Improvement: 24% | Lobar/sublobar epileptogenic lesion | MRI-oriented surgery No invasive EEG (ECoG) | |||
5 | Seizure free: 83% ** | Concordances: between MRI and scalp EEG between PET and scalp EEG Frequent interictal gamma activities (scalp EEG) Intraoperative continuous discharges (ECoG) | ECoG monitoring: 95% Stereo-EEG: 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okanishi, T.; Fujimoto, A. Corpus Callosotomy for Controlling Epileptic Spasms: A Proposal for Surgical Selection. Brain Sci. 2021, 11, 1601. https://doi.org/10.3390/brainsci11121601
Okanishi T, Fujimoto A. Corpus Callosotomy for Controlling Epileptic Spasms: A Proposal for Surgical Selection. Brain Sciences. 2021; 11(12):1601. https://doi.org/10.3390/brainsci11121601
Chicago/Turabian StyleOkanishi, Tohru, and Ayataka Fujimoto. 2021. "Corpus Callosotomy for Controlling Epileptic Spasms: A Proposal for Surgical Selection" Brain Sciences 11, no. 12: 1601. https://doi.org/10.3390/brainsci11121601
APA StyleOkanishi, T., & Fujimoto, A. (2021). Corpus Callosotomy for Controlling Epileptic Spasms: A Proposal for Surgical Selection. Brain Sciences, 11(12), 1601. https://doi.org/10.3390/brainsci11121601