High Intellectual Potential and High Functioning Autism: Clinical and Neurophysiological Features in a Pediatric Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Clinical Assessment
2.3.1. Cognitive Abilities
2.3.2. Adaptive Skills
2.3.3. Autistic Symptoms Assessment
2.3.4. Neuropsychological Assessment
2.3.5. Behavioral Problems Evaluation
2.4. Neurophysiological Recording
2.4.1. MMN Recording
2.4.2. P300 Recording
2.4.3. ERPs Analysis
3. Statistical Analysis
4. Results
4.1. Demographic and Clinical Data
4.1.1. Cognitive and Adaptive Functioning Profiles
4.1.2. Autistic Symptoms
4.1.3. Executive Functions and Behavioral Profile
4.2. MMN Parameters
4.3. P300 Parameters
4.4. Correlation between MMN-Component Characteristics and Clinical Data
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wechsler, D. Wechsler Intelligence Scale for Children, 4th ed.; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Liu, T.; Shi, J.; Zhang, Q.; Zhao, D.; Yang, J. Neural mechanisms of auditory sensory processing in children with high intelligence. NeuroReport 2007, 18, 1571–1575. [Google Scholar] [CrossRef]
- Subotnik, R.F.; Olszewski-Kubilius, P.; Worrell, F.C. Rethinking Giftedness and Gifted Education: A Proposed Direction Forward Based on Psychological Science. Psychol. Sci. Public Interest 2011, 12, 3–54. [Google Scholar] [CrossRef] [Green Version]
- Boschi, A.; Planche, P.; Hemimou, C.; Demily, C.; Vaivre-Douret, L. From High Intellectual Potential to Asperger Syndrome: Evidence for Differences and a Fundamental Overlap—A Systematic Review. Front. Psychol. 2016, 7, 1605. [Google Scholar] [CrossRef] [PubMed]
- Bessou, A.; Montlahuc, C.; Louis, J.; Fourneret, P.; Revol, O. Profil psychométrique de 245 enfants intellectuellement précoces au WISC-III [Psychometric profile of 245 intellectually precocious children (WISC III)]. ANAE 2005, 81, 23–28. [Google Scholar]
- Pereira-Fradin, M. La variabilité intra-individuelle chez les enfants à haut potentiel intellectuel. Psychol. Française 2004, 49, 253–266. [Google Scholar] [CrossRef]
- Lohman, D.F.; Gambrell, J.L.; Lakin, J.M. The Commonality of Extreme Discrepancies in the Ability Profiles of Academically Gifted Students. Psychol. Sci. 2008, 50, 269. [Google Scholar]
- Liratni, M.; Pry, R. Profils psychométriques de 60 enfants à haut potentiel au WISC IV (WISC IV psychometric profiles of 60 gifted children). Prat. Psychol. 2012, 18, 63–74. [Google Scholar] [CrossRef]
- Schweizer, K.; Moosbrugger, H. Attention and working memory as predictors of intelligence. Intelligence 2004, 32, 329–347. [Google Scholar] [CrossRef]
- O’Boyle, M.W.; Benbow, C.P.; Alexander, J.E. Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Dev. Neuropsychol. 1995, 11, 415–443. [Google Scholar] [CrossRef]
- Singh, H.; O’Boyle, M.W. Interhemispheric Interaction During Global-Local Processing in Mathematically Gifted Adolescents, Average-Ability Youth, and College Students. Neuropsychology 2004, 18, 371–377. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, M.W. Some current findings on brain characteristics of the mathematically gifted adolescent. Int. Educ. J. 2005, 6, 247–251. [Google Scholar]
- O’Boyle, M.W. Mathematically Gifted Children: Developmental Brain Characteristics and Their Prognosis for Well-Being. Roeper Rev. 2008, 30, 181–186. [Google Scholar] [CrossRef]
- Shulman, G.L.; Pope, D.L.W.; Astafiev, S.; McAvoy, M.P.; Snyder, A.Z.; Corbetta, M. Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network. J. Neurosci. 2010, 30, 3640–3651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, P.; Greenstein, D.; Lerch, J.; Clasen, L.; Lenroot, R.; Gogtay, N.; Evans, A.; Rapoport, J.; Giedd, J. Intellectual ability and cortical development in children and adolescents. Nature 2006, 440, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Cross, T.L.; Adams, C.; Dixon, F.; Holland, J. Psychological Characteristics of Academically Gifted Adolescents Attending a Residential Academy: A Longitudinal Study. J. Educ. Gift. 2004, 28, 159–181. [Google Scholar] [CrossRef] [Green Version]
- Janos, P.M.; Fung, H.C.; Robinson, N.M. Self-Concept, Self-Esteem, and Peer Relations Among Gifted Children Who Feel Different. Gift. Child Q. 1985, 29, 78–82. [Google Scholar] [CrossRef]
- Guénolé, F.; Louis, J.; Creveuil, C.; Baleyte, J.-M.; Montlahuc, C.; Fourneret, P.; Revol, O. Behavioral Profiles of Clinically Referred Children with Intellectual Giftedness. BioMed Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Guignard, J.-H.; Jacquet, A.-Y.; Lubart, T.I. Perfectionism and Anxiety: A Paradox in Intellectual Giftedness? PLoS ONE 2012, 7, e41043. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, S.A.; Gallagher, J.J. Giftedness and Asperger Syndrome: A new agenda for education. Underst. Gift. 2002, 14, 7–12. [Google Scholar]
- De Giambattista, C.; Ventura, P.; Trerotoli, P.; Margari, M.; Palumbi, R.; Margari, L. Subtyping the autism spectrum disorder: Comparison of Children with High Functioning Autism and Asperger Syndrome. J. Autism Dev. Disord. 2018, 49, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Little, C. Which is it? Aspergers Syndrome or Giftedness? Defining the Differences. Gift. Child Today 2002, 25, 58–64. [Google Scholar] [CrossRef]
- American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [CrossRef]
- Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Volkmar, F.R.; McPartland, J.C. Moving beyond a categorical diagnosis of autism. Lancet Neurol. 2015, 15, 237–238. [Google Scholar] [CrossRef]
- Noterdaeme, M.; Wriedt, E.; Höhne, C. Asperger’s syndrome and high-functioning autism: Language, motor and cognitive profiles. Eur. Child Adolesc. Psychiatry 2009, 19, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Crespi, B.J. Autism As a Disorder of High Intelligence. Front. Neurosci. 2016, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, E.A.; Lampit, A.; Quintana, D.S.; Naismith, S.; Song, Y.J.C.; Pye, J.E.; Hickie, I.; Guastella, A.J. autism spectrum disorders: A meta-analysis of executive function. Mol. Psychiatry 2017, 23, 1198–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, A.; Smith, T. Emotional Understanding, Cooperation, and Social Behavior in High-Functioning Children with Autism. J. Autism Dev. Disord. 2004, 34, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C.; Bookheimer, S.Y.; Murphy, D.G.M. Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan. Lancet Neurol. 2015, 14, 1121–1134. [Google Scholar] [CrossRef] [Green Version]
- Sato, W.; Uono, S. The atypical social brain network in autism: Advances in structural and functional MRI studies. Curr. Opin. Neurol. 2019, 32, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Neihart, M. Gifted Children With Asperger’s Syndrome. Gift. Child Q. 2000, 44, 222–230. [Google Scholar] [CrossRef]
- Doobay, A.F.; Foley-Nicpon, M.; Ali, S.R.; Assouline, S.G. Cognitive, Adaptive, and Psychosocial Differences Between High Ability Youth With and Without autism spectrum disorder. J. Autism Dev. Disord. 2014, 44, 2026–2040. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Sinha, V.K. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Paavilainen, P.; Rinne, T.; Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin. Neurophysiol. 2007, 118, 2544–2590. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Kujala, T.; Escera, C.; Baldeweg, T.; Kreegipuuu, K.; Carlson, S.; Ponton, C. The mismatch negativity (MMN)—A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin. Neurophysiol. 2012, 123, 424–458. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Sussman, E.S.; Salisbury, D.; Shafer, V.L. Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction. Brain Topogr. 2014, 27, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Yamamuro, K.; Ota, T.; Iida, J.; Nakanishi, Y.; Kishimoto, N.; Kishimoto, T. Associations between the mismatch-negativity component and symptom severity in children and adolescents with attention deficit/hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2016, 12, 3183–3190. [Google Scholar] [CrossRef] [Green Version]
- Moavero, R.; Marciano, S.; Pro, S.; De Stefano, D.; Vigevano, F.; Curatolo, P.; Valeriani, M. Event-Related Potentials in ADHD Associated With Tuberous Sclerosis Complex: A Possible Biomarker of Symptoms Severity? Front. Neurol. 2020, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- Gomot, M.; Blanc, R.; Clery, H.; Roux, S.; Barthelemy, C.; Bruneau, N. Candidate Electrophysiological Endophenotypes of Hyper-Reactivity to Change in Autism. J. Autism Dev. Disord. 2010, 41, 705–714. [Google Scholar] [CrossRef]
- Chen, T.-C.; Hsieh, M.H.; Lin, Y.-T.; Chan, P.-Y.S.; Cheng, C.-H. Mismatch negativity to different deviant changes in autism spectrum disorders: A meta-analysis. Clin. Neurophysiol. 2020, 131, 766–777. [Google Scholar] [CrossRef]
- Ruiz-Martínez, F.J.; Rodríguez-Martínez, E.I.; Wilson, C.E.; Yau, S.; Saldaña, D.; Gómez, C. Impaired P1 Habituation and Mismatch Negativity in Children with autism spectrum disorder. J. Autism Dev. Disord. 2019, 50, 603–616. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Riccioni, A.; Ribolsi, M.; Siracusano, M.; Curatolo, P.; Mazzone, L. Auditory Mismatch Negativity in Youth Affected by autism spectrum disorder With and Without Attenuated Psychosis Syndrome. Front. Psychiatry 2020, 11, 1250. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.I.; Kilner, J.; Stephan, K.E.; Friston, K. The mismatch negativity: A review of underlying mechanisms. Clin. Neurophysiol. 2009, 120, 453–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, K.; Todd, J. Making Sense of Mismatch Negativity. Front. Psychiatry 2020, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Astikainen, P.; Ruusuvirta, T.; Huotilainen, M. Automatic auditory intelligence: An expression of the sensory–cognitive core of cognitive processes. Brain Res. Rev. 2010, 64, 123–136. [Google Scholar] [CrossRef]
- Naatanen, R.; Jacobsen, T.; Winkler, I. Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology 2005, 42, 25–32. [Google Scholar] [CrossRef]
- Jacobsen, T.; Schröger, E. Is there pre-attentive memory-based comparison of pitch? Psychophysiology 2001, 38, 723. [Google Scholar] [CrossRef]
- Maess, B.; Jacobsen, T.; Schröger, E.; Friederici, A.D. Localizing pre-attentive auditory memory-based comparison: Magnetic mismatch negativity to pitch change. NeuroImage 2007, 37, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Qu, C.; Wang, F.; Liu, Y.; Qiao, Z.; Qiu, X.; Yang, X.; Yang, Y. Using event-related potential P300 as an electrophysiological marker for differential diagnosis and to predict the progression of mild cognitive impairment: A meta-analysis. Neurol. Sci. 2015, 36, 1105–1112. [Google Scholar] [CrossRef]
- Pavarini, S.C.I.; Brigola, A.G.; Luchesi, B.M.; Souza, N.; Rossetti, E.S.; Fraga, F.J.; Guarisco, L.P.C.; Terassi, M.; Oliveira, N.A.; Hortense, P.; et al. On the use of the P300 as a tool for cognitive processing assessment in healthy aging: A review. Dement. Neuropsychol. 2018, 12, 1–11. [Google Scholar] [CrossRef]
- Cui, T.; Wang, P.P.; Liu, S.; Zhang, X. P300 amplitude and latency in autism spectrum disorder: A meta-analysis. Eur. Child Adolesc. Psychiatry 2016, 26, 177–190. [Google Scholar] [CrossRef]
- Jaušovec, N.; Jaušovec, K. Correlations between ERP parameters and intelligence: A reconsideration. Biol. Psychol. 2000, 55, 137–154. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; DiLavore, P.; Risi, S.; Gotham, K.; Bishop, S. Autism Diagnostic Observation Schedule, 2nd ed.; (ADOS-2); Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Raven, J.C.; Court, J.H. Raven: Matrices Progresivas: CPM, SPM, APM; TEA: Madrid, Spain, 1996. [Google Scholar]
- Conners’ Parent Rating Scale: Revised. In Encyclopedia of Child Behavior and Development; Goldstein, S.; Naglieri, J.A. (Eds.) Springer: Boston, MA, USA, 2011. [Google Scholar]
- Constantino, J.N.; Gruber, C.P. Social Responsiveness Scale: Manual; Western Psychological Services: Los Angeles, CA, USA, 2005. [Google Scholar]
- Oakland, T. Adaptive Behavior Assessment System–Second Edition. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S., DeLuca, J., Caplan, B., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Davis, J.L.; Matthews, R.N. NEPSY-II Review: Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY—Second Edition (NEPSY-II). San Antonio, TX: Harcourt Assessment. J. Psychoeduc. Assess. 2010, 28, 175–182. [Google Scholar] [CrossRef]
- Vatansever, D.; Manktelow, A.E.; Sahakian, B.J.; Menon, D.K.; Stamatakis, E.A. Cognitive Flexibility: A Default Network and Basal Ganglia Connectivity Perspective. Brain Connect. 2016, 6, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.H.; Ma, K.K.; Kalia, V. Cognitive reappraisal moderates the relationship between perfectionism and cognitive flexibility. J. Clin. Psychol. 2021, 77, 1685–1699. [Google Scholar] [CrossRef]
- Kujala, T.; Tervaniemi, M.; Schröger, E. The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biol. Psychol. 2007, 74, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Walhovd, K.B.; Fjell, A.M.; Reinvang, I.; Lundervold, A.; Fischl, B.; Salat, D.; Quinn, B.T.; Makris, N.; Dale, A.M. Cortical volume and speed-of-processing are complementary in prediction of performance intelligence. Neuropsychologia 2005, 43, 704. [Google Scholar] [CrossRef] [PubMed]
HIP (n: 16) | HFA (n: 17) | NTD (n: 10) | HIP vs. HFA | HFA vs. NTD | HIP vs. NTD | ||||
---|---|---|---|---|---|---|---|---|---|
MEAN | SD | MEAN | SD | MEAN | SD | p Value Cohen’s d | p Value Cohen’s d | p Value Cohen’s d | |
WISC–IV | |||||||||
IQ | 131.1 | 8.5 | 107.1 | 15.1 | - | - | <0.001 1.96 | - | - |
VCI | 133.2 | 13.2 | 114.9 | 17.8 | - | - | 0.002 1.17 | - | - |
PRI | 131.5 | 10.6 | 110.1 | 19.9 | - | - | <0.001 1.34 | - | - |
WMI | 111.9 | 15.9 | 91.1 | 11.8 | - | - | <0.001 1.48 | - | - |
PSI | 106.4 | 15.7 | 93.6 | 15.1 | - | - | 0.023 0.83 | - | - |
ABAS–II | |||||||||
ABAS_GAC | 96.06 | 14.48 | 77.47 | 18.87 | 110.7 | 8.47 | <0.001 1.10 | <0.001 2.27 | 0.010 1.23 |
ABAS_CAD | 100.1 | 11.44 | 83.82 | 13.66 | 108.2 | 12.53 | <0.001 1.29 | 0.003 1.86 | 0.205 0.67 |
ABAS_SAD | 96.63 | 17.47 | 81.06 | 16.69 | 111.3 | 9.28 | 0.014 0.91 | <0.001 2.24 | 0.020 1.05 |
ABAS_PAD | 92.81 | 12.67 | 76.24 | 20.4 | 113.3 | 11.2 | 0.008 0.97 | <0.001 2.25 | 0.004 1.71 |
ADOS–2 | |||||||||
ADOS_SA | 2.62 | 2.27 | 8.29 | 2.69 | 0.8 | 1.30 | <0.001 2.28 | <0.001 3.54 | 0.044 0.98 |
ADOS_RRB | 0.75 | 1.06 | 1.94 | 1.29 | 0 | 0 | 0.007 −1.01 | <0.001 2.13 | 0.013 1 |
ADOS_CSS | 1.94 | 1.44 | 6.17 | 1.70 | 0.8 | 0.83 | <0.001 2.69 | <0.001 4.01 | 0.048 0.97 |
SRS | |||||||||
SRS_T | 58.38 | 18.34 | 75.82 | 16.65 | 49 | 14.91 | 0.007 0.99 | 0.004 1.69 | 0.244 0.56 |
SRS_SA | 50.56 | 20.72 | 63.88 | 11.94 | 51.33 | 19.47 | 0.034 −0.78 | 0.185 0.77 | 0.937 −0.04 |
SRS_SC | 48.25 | 19.01 | 69.65 | 15.54 | 50 | 13.77 | <0.001 1.23 | 0.016 1.34 | 0.816 0.10 |
SRS_SCo | 54.13 | 19.04 | 74.35 | 14.08 | 53 | 14.6 | 0.002 1.20 | 0.013 1.49 | 0.885 0.07 |
SRS_SM | 50.19 | 20.61 | 69.06 | 14.08 | 48.67 | 12.01 | 0.005 1.07 | 0.006 1.55 | 0.833 0.09 |
SRS_AM | 52.25 | 20.68 | 74.12 | 13.2 | 46.67 | 11.43 | <0.001 −1.26 | <0.001 2.22 | 0.434 0.33 |
HIP (n: 16) | HFA (n: 17) | NTD (n: 10) | HIP vs. HFA | HFA vs. NTD | HIP vs. NTD | ||||
---|---|---|---|---|---|---|---|---|---|
MEAN | SD | MEAN | SD | MEAN | SD | p Value Cohen’s d | p Value Cohen’s d | p Value Cohen’s d | |
CPRS–R | |||||||||
Oppositional | 63.19 | 14.69 | 64.19 | 13.76 | 63.5 | 14.63 | 0.843 −0.07 | 0.923 0 | 0.965 −0.05 |
Cognitive pr | 56.25 | 11.25 | 61.25 | 13.11 | 59.33 | 10.91 | 0.256 −0.04 | 0.735 0.16 | 0.572 −0.27 |
Hyper/imp | 62.06 | 10.85 | 61.5 | 12.47 | 60.67 | 11.99 | 0.892 0.05 | 0.888 0.07 | 0.809 0.12 |
Anx/shy | 51.94 | 11.91 | 63.63 | 14.89 | 47.17 | 2.99 | 0.020 −0.87 | <0.001 1.53 | 0.154 0.55 |
Perfectionism | 59 | 13.42 | 60.13 | 16.93 | 42.83 | 5.60 | 0.836 −0.07 | 0.001 1.37 | <0.001 1.57 |
Social probl | 59.31 | 15.38 | 72.31 | 19.82 | 55.83 | 11.94 | 0.047 −0.73 | 0.031 0 | 0.585 1.00 |
Psychosomatic | 54.31 | 8.72 | 52.63 | 11.48 | 51 | 14.86 | 0.643 0.16 | 0.815 0.12 | 0.624 0.27 |
ADHD Index | 59 | 11.81 | 63.50 | 13.46 | 60.33 | 12.11 | 0.322 −0.35 | 0.608 0.25 | 0.822 −0.11 |
DSM IV_Tot | 61.38 | 11.43 | 61.94 | 12.41 | 62.50 | 12.74 | 0.894 −0.05 | 0.928 0.04 | 0.854 0.09 |
NEPSY–II | |||||||||
Design fluency | 9.12 | 2.33 | 5.64 | 3.14 | - | 0.307 1.26 | - | - | |
Visual attention | 11.81 | 3.56 | 8.06 | 3.78 | 0.006 1.02 | ||||
Inhibition | 9.87 | 2.57 | 6.30 | 3.12 | - | <0.001 1.25 | - | - | |
Auditory attention | 4.62 | 1.40 | 3.82 | 1.29 | - | 0.099 0.60 | - | - | |
Response set | 5.25 | 1.23 | 3.12 | 1.70 | - | <0.001 1.43 | - | - |
HIP | HFA | NTD | HIP vs. HFA | HFA vs. NTD | HIP vs. NTD | |
---|---|---|---|---|---|---|
p Value Cohen’s d | p Value Cohen’s d | p Value Cohen’s d | ||||
MMN amplitude Means (and SDs) | 6.39 (2.65) | 4.45 (1.13) | 6.37 (1.84) | 0.001 0.95 | <0.001 −1.26 | 0.99 0.01 |
MMN latency Means (and SDs) | 94.61(28.6) | 93.96(20.08) | 83.61(25.5) | 0.940 0.02 | 0.245 0.45 | 0.200 0.40 |
P300 (MS) | 301.88 | 311.33 | 306.53 | 0.347 | 0.616 | 0.420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccioni, A.; Pro, S.; Di Criscio, L.; Terribili, M.; Siracusano, M.; Moavero, R.; Valeriani, M.; Mazzone, L. High Intellectual Potential and High Functioning Autism: Clinical and Neurophysiological Features in a Pediatric Sample. Brain Sci. 2021, 11, 1607. https://doi.org/10.3390/brainsci11121607
Riccioni A, Pro S, Di Criscio L, Terribili M, Siracusano M, Moavero R, Valeriani M, Mazzone L. High Intellectual Potential and High Functioning Autism: Clinical and Neurophysiological Features in a Pediatric Sample. Brain Sciences. 2021; 11(12):1607. https://doi.org/10.3390/brainsci11121607
Chicago/Turabian StyleRiccioni, Assia, Stefano Pro, Lorena Di Criscio, Monica Terribili, Martina Siracusano, Romina Moavero, Massimiliano Valeriani, and Luigi Mazzone. 2021. "High Intellectual Potential and High Functioning Autism: Clinical and Neurophysiological Features in a Pediatric Sample" Brain Sciences 11, no. 12: 1607. https://doi.org/10.3390/brainsci11121607
APA StyleRiccioni, A., Pro, S., Di Criscio, L., Terribili, M., Siracusano, M., Moavero, R., Valeriani, M., & Mazzone, L. (2021). High Intellectual Potential and High Functioning Autism: Clinical and Neurophysiological Features in a Pediatric Sample. Brain Sciences, 11(12), 1607. https://doi.org/10.3390/brainsci11121607