Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Differentiation of iPSC
2.2. Immunocytochemical Confirmation of iPSC Differentiation into Neurons
2.3. Western Blot
2.4. MTT Assay
2.5. Transcriptome Analysis of Neuron Culture Derived from Human iPSC after 16 h Incubation with 30 nM Ouabain
2.6. Bioinformatics Analysis
2.7. Enrichment and Gene Ontology (GO) Annotation
3. Results
3.1. Confirmation of Neuronal Differentiation of the iPSC Culture
3.2. Evaluation of the Effects of 48 h Incubation with a Range of Ouabain Concentrations on Neuron Viability
3.3. Evaluation of the Effects of 4 h Culture Incubation with Ouabain on ERK1/2 and CREB Activation
3.4. Acquisition of Differentially Expressed Genes (DEGs) Set for Further Analysis
3.5. Evaluation of DEGs Significance Based on Tissue Specificity of Expression
3.6. Description of the Main GO Groups Containing Upregulated Genes
3.7. Description of the Main GO Groups Containing Downregulated Genes
3.8. Description of the Main Gene Clusters
3.9. Predicted Transcription Factors Which Can Regulate the Expression of Identified DEGs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | RAC-Alpha Serine/Threonine-Protein Kinase, Protein Kinase B Alpha |
AMPA | A-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid |
ATP | Adenosine Triphosphate |
BSA | Bovine Serum Albumin |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
CREB | Camp Response Element-Binding Protein |
CST-3 | Calsyntenin-3 |
CTS | Cardiotonic Steroids |
DAPI | 4′,6-Diamidino-2-Phenylindole |
DARPP-32 | Dopamine and CAMP-Regulated Neuronal Phosphoprotein 32 |
DAT | Dopamine Transporter |
DAVID | Database For Annotation, Visualization And Integrated Discovery |
Degs | Differentially Expressed Genes |
Egr-1 | Early Growth Response Protein 1 |
Eif5 | Eukaryotic Translation Initiation Factor 5 |
ERK | Extracellular Signal-Regulated Kinase |
GABA | Gamma-Aminobutyric Acid |
GFAP | Glial Fibrillary Acidic Protein |
GLAST | Glutamate Aspartate Transporter |
GLT-1 | Glutamate Transporter 1 |
GO | Gene Ontology |
GSK 3 | Glycogen Synthase Kinase 3 |
GTP | Guanosine Triphosphate |
HBSS | Hanks’ Balanced Salt Solution |
HUVEC | Human Umbilical Vein Endothelial Cells |
ICV | Intracerebroventricular |
Inos | Inducible Nitric Oxide Synthase |
IP3R | Inositol Trisphosphate Receptor |
JIP-2 | JNK- Interacting Protein—2, Or MAPK8IP2—Mitogen-Activated Protein Kinase 8 Interacting Protein 2 |
JIP-3 | JNK-Interacting Protein—3, Or MAPK8IP3—Mitogen-Activated Protein Kinase 8 Interacting Protein 3 |
JNK | C-Jun N-Terminal Kinas |
KEGG | Kyoto Encyclopedia Of Genes And Genomes |
MAP2 | Microtubule Associated Protein 2 |
MAPK | Mitogen-Activated Protein Kinases |
MLK2 | Mixed Lineage Kinase 2, Or MAPKKK—Mitogen-Activated Protein Kinase Kinase Kinase |
MTT | 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl-2H-Tetrazolium Bromide |
NCX | Sodium-Calcium Exchanger, Na+/Ca2+ Exchanger |
NMDA | N-Methyl-D-Aspartate |
PBS | Phosphate-Buffered Saline |
PI3K | Phosphoinositide 3-Kinase |
PKC | Protein Kinase C |
PMCA1 | Plasma Membrane Calcium-Transporting Atpase 1 |
PMCA2 | Plasma Membrane Calcium-Transporting Atpase 2 |
PPIP5K2 | Diphosphoinositol Pentakisphosphate Kinase 2 |
PVDF | Polyvinylidene Difluoride |
RIN | RNA Integrity Number |
RIPA Buffer | Radioimmunoprecipitation Assay Buffer |
SDS-PAGE | Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis |
SLC4A3 | Solute Carrier Family 4 Member 3 |
Th | Tyrosine Hydroxylase |
VCAM-1 | Vascular Cell Adhesion Molecule 1 |
VSMC | Vascular Smooth Muscle Cells |
References
- Bagrov, A.Y.; Shapiro, J.I.; Fedorova, O.V. Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev. 2009, 61, 9–38. [Google Scholar] [CrossRef]
- Lopachev, A.V.; Abaimov, D.A.; Fedorova, T.N.; Lopacheva, O.M.; Akkuratova, N.V.; Akkuratov, E.E. Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System. Neurochem. J. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- McGrail, K.M.; Phillips, J.M.; Sweadner, K.J. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: Both neurons and glia can express more than one Na,K-ATPase. J. Neurosci. 1991, 11, 381–391. [Google Scholar] [CrossRef]
- Azarias, G.; Kruusmagi, M.; Connor, S.; Akkuratov, E.E.; Liu, X.L.; Lyons, D.; Brismar, H.; Broberger, C.; Aperia, A. A specific and essential role for Na,K-ATPase alpha3 in neurons co-expressing alpha1 and alpha3. J. Biol. Chem. 2013, 288, 2734–2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkuratov, E.E.; Lopacheva, O.M.; Kruusmagi, M.; Lopachev, A.V.; Shah, Z.A.; Boldyrev, A.A.; Liu, L. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons. Mol. Neurobiol. 2015, 52, 1726–1734. [Google Scholar] [CrossRef]
- Akkuratov, E.E.; Westin, L.; Vazquez-Juarez, E.; de Marothy, M.; Melnikova, A.K.; Blom, H.; Lindskog, M.; Brismar, H.; Aperia, A. Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor. Mol. Neurobiol. 2020, 57, 4018–4030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hou, Q.; Wang, M.; Lin, A.; Jarzylo, L.; Navis, A.; Raissi, A.; Liu, F.; Man, H.Y. Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J. Neurosci. 2009, 29, 4498–4511. [Google Scholar] [CrossRef]
- Bertorello, A.M.; Hopfield, J.F.; Aperia, A.; Greengard, P. Inhibition by dopamine of (Na+ + K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 1990, 347, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Blom, H.; Ronnlund, D.; Scott, L.; Spicarova, Z.; Rantanen, V.; Widengren, J.; Aperia, A.; Brismar, H. Nearest neighbor analysis of dopamine D1 receptors and Na+-K+-ATPases in dendritic spines dissected by STED microscopy. Microsc. Res. Tech. 2012, 75, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Free, R.B.; Cabrera, D.M.; Skinbjerg, M.; Sibley, D.R. Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J. Biol. Chem. 2008, 283, 36441–36453. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.R.; Wadleigh, A.; Kumar, S.; De Schutter, E.; Valenzuela, C.F. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells. PLoS ONE 2013, 8, e55673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibarov, D.A.; Bolshakov, A.E.; Abushik, P.A.; Krivoi, I.I.; Antonov, S.M. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 2012, 343, 596–607. [Google Scholar] [CrossRef]
- De Juan-Sanz, J.; Nunez, E.; Villarejo-Lopez, L.; Perez-Hernandez, D.; Rodriguez-Fraticelli, A.E.; Lopez-Corcuera, B.; Vazquez, J.; Aragon, C. Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo. J. Neurosci. 2013, 33, 14269–14281. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.M.; Koo, J.C.; Antflick, J.E.; Ahmed, S.M.; Angers, S.; Hampson, D.R. Glutamate transporter coupling to Na,K-ATPase. J. Neurosci. 2009, 29, 8143–8155. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, F.; Mahmmoud, Y.A. Interaction between cardiotonic steroids and Na,K-ATPase. Effects of pH and ouabain-induced changes in enzyme conformation. Biochemistry 2009, 48, 10056–10065. [Google Scholar] [CrossRef]
- Kaplan, J.H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 2002, 71, 511–535. [Google Scholar] [CrossRef]
- Xie, J.X.; Li, X.; Xie, Z. Regulation of renal function and structure by the signaling Na/K-ATPase. IUBMB Life 2013, 65, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Hodes, A.; Lichtstein, D. Natriuretic hormones in brain function. Front. Endocrinol. 2014, 5, 201. [Google Scholar] [CrossRef] [Green Version]
- Schoner, W.; Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am. J. Cardiovasc. Drugs 2007, 7, 173–189. [Google Scholar] [CrossRef]
- Boireau, A.; Meunier, M.; Imperato, A. Ouabain-induced increase in dopamine release from mouse striatal slices is antagonized by riluzole. J. Pharm. Pharmacol. 1998, 50, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Lopachev, A.; Volnova, A.; Evdokimenko, A.; Abaimov, D.; Timoshina, Y.; Kazanskaya, R.; Lopacheva, O.; Deal, A.; Budygin, E.; Fedorova, T.; et al. Intracerebroventricular injection of ouabain causes mania-like behavior in mice through D2 receptor activation. Sci. Rep. 2019, 9, 15627. [Google Scholar] [CrossRef] [PubMed]
- Valvassori, S.S.; Dal-Pont, G.C.; Resende, W.R.; Varela, R.B.; Lopes-Borges, J.; Cararo, J.H.; Quevedo, J. Validation of the animal model of bipolar disorder induced by Ouabain: Face, construct and predictive perspectives. Transl. Psychiatry 2019, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Jornada, L.K.; Valvassori, S.S.; Steckert, A.V.; Moretti, M.; Mina, F.; Ferreira, C.L.; Arent, C.O.; Dal-Pizzol, F.; Quevedo, J. Lithium and valproate modulate antioxidant enzymes and prevent ouabain-induced oxidative damage in an animal model of mania. J. Psychiatr. Res. 2011, 45, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Hodes, A.; Rosen, H.; Deutsch, J.; Lifschytz, T.; Einat, H.; Lichtstein, D. Endogenous cardiac steroids in animal models of mania. Bipolar Disord. 2016, 18, 451–459. [Google Scholar] [CrossRef]
- Svenningsson, P.; Nishi, A.; Fisone, G.; Girault, J.A.; Nairn, A.C.; Greengard, P. DARPP-32: An integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 269–296. [Google Scholar] [CrossRef]
- Tiberi, M.; Jarvie, K.R.; Silvia, C.; Falardeau, P.; Gingrich, J.A.; Godinot, N.; Bertrand, L.; Yang-Feng, T.L.; Fremeau, R.T., Jr.; Caron, M.G. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: Differential expression pattern in rat brain compared with the D1A receptor. Proc. Natl. Acad. Sci. USA 1991, 88, 7491–7495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centonze, D.; Grande, C.; Usiello, A.; Gubellini, P.; Erbs, E.; Martin, A.B.; Pisani, A.; Tognazzi, N.; Bernardi, G.; Moratalla, R.; et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J. Neurosci. 2003, 23, 6245–6254. [Google Scholar] [CrossRef] [Green Version]
- Tepper, J.M.; Lee, C.R. GABAergic control of substantia nigra dopaminergic neurons. Prog. Brain Res. 2007, 160, 189–208. [Google Scholar]
- Lopachev, A.V.; Lopacheva, O.M.; Osipova, E.A.; Vladychenskaya, E.A.; Smolyaninova, L.V.; Fedorova, T.N.; Koroleva, O.V.; Akkuratov, E.E. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem. Funct. 2016, 34, 367–377. [Google Scholar] [CrossRef]
- Fontana, J.M.; Burlaka, I.; Khodus, G.; Brismar, H.; Aperia, A. Calcium oscillations triggered by cardiotonic steroids. FEBS J. 2013, 280, 5450–5455. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, L.; Tidow, H.; Clausen, M.J.; Nissen, P. Na+,K+-ATPase as a docking station: Protein-protein complexes of the Na+,K+-ATPase. Cell. Mol. Life Sci. 2013, 70, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Akkuratov, E.E.; Bai, Y.; Gaskill, C.M.; Askari, A.; Liu, L. Cell signaling associated with Na+/K+-ATPase: Activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry 2013, 52, 9059–9067. [Google Scholar] [CrossRef]
- Pierre, S.V.; Xie, Z. The Na,K-ATPase receptor complex: Its organization and membership. Cell Biochem. Biophys. 2006, 46, 303–316. [Google Scholar] [CrossRef]
- Yu, H.S.; Kim, S.H.; Park, H.G.; Kim, Y.S.; Ahn, Y.M. Activation of Akt signaling in rat brain by intracerebroventricular injection of ouabain: A rat model for mania. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Kim, S.H.; Park, H.G.; Kim, Y.S.; Ahn, Y.M. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates tyrosine hydroxylase through extracellular signal-regulated kinase in rat striatum. Neurochem. Int. 2011, 59, 779–786. [Google Scholar] [CrossRef]
- Peng, M.; Huang, L.; Xie, Z.; Huang, W.H.; Askari, A. Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes. J. Biol. Chem. 1996, 271, 10372–10378. [Google Scholar] [CrossRef] [Green Version]
- Klimanova, E.A.; Tverskoi, A.M.; Koltsova, S.V.; Sidorenko, S.V.; Lopina, O.D.; Tremblay, J.; Hamet, P.; Kapilevich, L.V.; Orlov, S.N. Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: A comparative analysis. Sci. Rep. 2017, 7, 45403. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, E.D.; Vigont, V.A.; Klyushnikov, S.A.; Lebedeva, O.S.; Vassina, E.M.; Bogomazova, A.N.; Chestkov, I.V.; Semashko, T.A.; Kiseleva, E.; Suldina, L.A.; et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 2016, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Toffaletti, D.L.; Tenor, J.L.; Litvintseva, A.P.; Fang, C.; Mitchell, T.G.; McDonald, T.R.; Nielsen, K.; Boulware, D.R.; Bicanic, T.; et al. The Cryptococcus neoformans transcriptome at the site of human meningitis. mBio 2014, 5, e01087-13. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.D.; Brenner, S.E.; Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 2010, 38, e131. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8, R183. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, I.; Lugmayr, A.; Siira, S.J.; Rackham, O.; Filipovska, A. CirGO: An alternative circular way of visualising gene ontology terms. BMC Bioinform. 2019, 20, 84. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Jia, C.; Chu, M.; Fu, D.; Lei, Q.; Ding, X.; Wu, X.; Guo, X.; Pei, J.; Bao, P.; et al. Transcriptome and DNA Methylation Analyses of the Molecular Mechanisms Underlying with Longissimus dorsi Muscles at Different Stages of Development in the Polled Yak. Genes 2019, 10, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, T.F.; Canovas, A.; Canela-Xandri, O.; Gonzalez-Prendes, R.; Amills, M.; Quintanilla, R. RNA-seq based detection of differentially expressed genes in the skeletal muscle of Duroc pigs with distinct lipid profiles. Sci. Rep. 2017, 7, 40005. [Google Scholar] [CrossRef] [PubMed]
- Roopra, A. MAGIC: A tool for predicting transcription factors and cofactors driving gene sets using ENCODE data. PLoS Comput. Biol. 2020, 16, e1007800. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, J.; Sander, B.; Golas, M.M. In Vitro Differentiation of Human Neural Progenitor Cells Into Striatal GABAergic Neurons. Stem Cells Transl. Med. 2015, 4, 775–788. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, N.; Jeon, I.; Lee, H.J.; Do, J.T.; Lee, D.R.; Oh, S.H.; Shin, D.A.; Kim, A.; Song, J. Neuronal Differentiation of a Human Induced Pluripotent Stem Cell Line (FS-1) Derived from Newborn Foreskin Fibroblasts. Int. J. Stem Cells 2012, 5, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRock, D.L.; Sands, J.S.; Ettouati, E.; Richard, M.; Bushway, P.J.; Adler, E.D.; Nizet, V.; LaRock, C.N. Inflammasome inhibition blocks cardiac glycoside cell toxicity. J. Biol. Chem. 2019, 294, 12846–12854. [Google Scholar] [CrossRef] [Green Version]
- Akimova, O.A.; Tverskoi, A.M.; Smolyaninova, L.V.; Mongin, A.A.; Lopina, O.D.; La, J.; Dulin, N.O.; Orlov, S.N. Critical role of the α1-Na+, K+-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis 2015, 20, 1200–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlov, S.N.; Hamet, P. Salt and gene expression: Evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Arch. Eur. J. Physiol. 2015, 467, 489–498. [Google Scholar] [CrossRef]
- Smolyaninova, L.V.; Shiyan, A.A.; Kapilevich, L.V.; Lopachev, A.V.; Fedorova, T.N.; Klementieva, T.S.; Moskovtsev, A.A.; Kubatiev, A.A.; Orlov, S.N. Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- and α1-Na+,K+-ATPase-mediated signaling. PLoS ONE 2019, 14, e0222767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolyaninova, L.V.; Koltsova, S.V.; Sidorenko, S.V.; Orlov, S.N. Augmented gene expression triggered by Na+,K+-ATPase inhibition: Role of Ca2+i-mediated and -independent excitation-transcription coupling. Cell Calcium 2017, 68, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Ng, K.M.; Lai, W.H.; Man, C.; Lieu, D.K.; Lau, C.P.; Tse, H.F.; Siu, C.W. Ouabain facilitates cardiac differentiation of mouse embryonic stem cells through ERK1/2 pathway. Acta Pharmacol. Sin. 2011, 32, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlov, S.N.; Klimanova, E.A.; Tverskoi, A.M.; Vladychenskaya, E.A.; Smolyaninova, L.V.; Lopina, O.D. Na+i,K+i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 2017, 22, 635. [Google Scholar] [CrossRef]
- Slomnicki, L.P.; Pietrzak, M.; Vashishta, A.; Jones, J.; Lynch, N.; Elliot, S.; Poulos, E.; Malicote, D.; Morris, B.E.; Hallgren, J.; et al. Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree. J. Biol. Chem. 2016, 291, 5721–5739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapur, M.; Monaghan, C.E.; Ackerman, S.L. Regulation of mRNA Translation in Neurons—A Matter of Life and Death. Neuron 2017, 96, 616–637. [Google Scholar] [CrossRef] [Green Version]
- Akimova, O.A.; Kapilevich, L.V.; Orlov, S.N.; Lopina, O.D. Identification of Proteins Whose Interaction with Na+,K+-ATPase Is Triggered by Ouabain. Biochemistry (Mosc.) 2016, 81, 1013–1022. [Google Scholar] [CrossRef]
- Dent, E.W.; Baas, P.W. Microtubules in neurons as information carriers. J. Neurochem. 2014, 129, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Yu, N.; Zhai, L.K.; Li, N.; Zhang, C.; Zhou, L.; Huang, Z.; Jiang, X.Y.; Shen, Y.; Chen, Z.Y. c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- and JNK-dependent manner. J. Biol. Chem. 2013, 288, 14531–14543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, J.; Whitmarsh, A.J.; Cavanagh, J.; Sharma, M.; Davis, R.J. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 1999, 19, 7245–7254. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, N.J.; Martin, G.; Ehrhardt, A.G.; Cavanagh-Kyros, J.; Kuan, C.Y.; Rakic, P.; Flavell, R.A.; Treistman, S.N.; Davis, R.J. Requirement of JIP scaffold proteins for NMDA-mediated signal transduction. Genes Dev. 2007, 21, 2336–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilchis-Nestor, C.A.; Roldan, M.L.; Leonardi, A.; Navea, J.G.; Padilla-Benavides, T.; Shoshani, L. Ouabain Enhances Cell-Cell Adhesion Mediated by β1 Subunits of the Na+,K+-ATPase in CHO Fibroblasts. Int. J. Mol. Sci. 2019, 20, 2111. [Google Scholar] [CrossRef] [Green Version]
- Panizza, E.; Zhang, L.; Fontana, J.M.; Hamada, K.; Svensson, D.; Akkuratov, E.E.; Scott, L.; Mikoshiba, K.; Brismar, H.; Lehtio, J.; et al. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival. FASEB J. 2019, 33, 10193–10206. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, S.; Thangavel, R.; Sahu, S.K.; Zaheer, A. Augmented expression of glia maturation factor in Alzheimer’s disease. Neuroscience 2011, 194, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Kapitein, L.C.; Hoogenraad, C.C. Building the Neuronal Microtubule Cytoskeleton. Neuron 2015, 87, 492–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, M.P. The role of agrin in synaptic development, plasticity and signaling in the central nervous system. Neurochem. Int. 2012, 61, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Um, J.W.; Pramanik, G.; Ko, J.S.; Song, M.Y.; Lee, D.; Kim, H.; Park, K.S.; Sudhof, T.C.; Tabuchi, K.; Ko, J. Calsyntenins function as synaptogenic adhesion molecules in concert with neurexins. Cell Rep. 2014, 6, 1096–1109. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fehlhaber, K.E.; Sarria, I.; Cao, Y.; Ingram, N.T.; Guerrero-Given, D.; Throesch, B.; Baldwin, K.; Kamasawa, N.; Ohtsuka, T.; et al. The Auxiliary Calcium Channel Subunit α2δ4 Is Required for Axonal Elaboration, Synaptic Transmission, and Wiring of Rod Photoreceptors. Neuron 2017, 93, 1359–1374.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonelli, R.; De Filippo, R.; Middei, S.; Stancheva, S.; Pastore, B.; Ammassari-Teule, M.; Barberis, A.; Cherubini, E.; Zacchi, P. Pin1 Modulates the Synaptic Content of NMDA Receptors via Prolyl-Isomerization of PSD-95. J. Neurosci. 2016, 36, 5437–5447. [Google Scholar] [CrossRef] [Green Version]
- Natoli, R.M.; Skaalure, S.; Bijlani, S.; Chen, K.X.; Hu, J.; Athanasiou, K.A. Intracellular Na+ and Ca2+ modulation increases the tensile properties of developing engineered articular cartilage. Arthritis Rheum. 2010, 62, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.D.; Coulson-Thomas, V.J.; Foscarin, S.; Kwok, J.C.; Fawcett, J.W. “GAG-ing with the neuron”: The role of glycosaminoglycan patterning in the central nervous system. Exp. Neurol. 2015, 274, 100–114. [Google Scholar] [CrossRef]
- Crump, J.G.; Zhen, M.; Jin, Y.; Bargmann, C.I. The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 2001, 29, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Inoue, E.; Mochida, S.; Takagi, H.; Higa, S.; Deguchi-Tawarada, M.; Takao-Rikitsu, E.; Inoue, M.; Yao, I.; Takeuchi, K.; Kitajima, I.; et al. SAD: A presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 2006, 50, 261–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bright, N.J.; Carling, D.; Thornton, C. Investigating the regulation of brain-specific kinases 1 and 2 by phosphorylation. J. Biol. Chem. 2008, 283, 14946–14954. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Kang, Y.; Cassidy, R.M.; Moon, K.M.; Lewis, R.; Wong, R.O.L.; Foster, L.J.; Craig, A.M. Clptm1 Limits Forward Trafficking of GABAA Receptors to Scale Inhibitory Synaptic Strength. Neuron 2018, 97, 596–610.e8. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.D.; Dramiga, J.; Schutz, U.; Kril, J.J.; Ittner, L.M.; Schroder, H.; Gotz, J. Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer’s and Pick’s disease. PLoS ONE 2012, 7, e35678. [Google Scholar] [CrossRef]
- Hroudova, J.; Fisar, Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen. Res. 2013, 8, 363–375. [Google Scholar]
- Law, M.E.; Corsino, P.E.; Narayan, S.; Law, B.K. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Mol. Pharmacol. 2015, 88, 846–852. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.J.; Pan, H.A.; Liou, D.Y.; Weng, C.F.; Hoffer, B.J.; Cheng, H. Adenoviral gene transfer of bone morphogenetic protein-7 enhances functional recovery after sciatic nerve injury in rats. Gene Ther. 2010, 17, 1214–1224. [Google Scholar] [CrossRef]
- Desfrere, L.; Karlsson, M.; Hiyoshi, H.; Malmersjo, S.; Nanou, E.; Estrada, M.; Miyakawa, A.; Lagercrantz, H.; El Manira, A.; Lal, M.; et al. Na,K-ATPase signal transduction triggers CREB activation and dendritic growth. Proc. Natl. Acad. Sci. USA 2009, 106, 2212–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvela-Levitt, M.; Ami, H.C.; Rosen, H.; Shohami, E.; Lichtstein, D. Ouabain improves functional recovery following traumatic brain injury. J. Neurotrauma 2014, 31, 1942–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gower, A.; Tiberi, M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front. Synaptic Neurosci. 2018, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansson, K.; Venugopal, J.; Sanchez, G.; Magenheimer, B.S.; Reif, G.A.; Wallace, D.P.; Calvet, J.P.; Blanco, G. Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells. J. Membr. Biol. 2015, 248, 1145–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linde, C.I.; Antos, L.K.; Golovina, V.A.; Blaustein, M.P. Nanomolar ouabain increases NCX1 expression and enhances Ca2+ signaling in human arterial myocytes: A mechanism that links salt to increased vascular resistance? Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H784–H794. [Google Scholar] [CrossRef] [Green Version]
- Blaustein, M.P.; Chen, L.; Hamlyn, J.M.; Leenen, F.H.; Lingrel, J.B.; Wier, W.G.; Zhang, J. Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J. Physiol. 2016, 594, 6079–6103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frere, S.G.; Chang-Ileto, B.; Di Paolo, G. Role of phosphoinositides at the neuronal synapse. Sub-Cell. Biochem. 2012, 59, 131–175. [Google Scholar]
- Pivovarov, A.S.; Calahorro, F.; Walker, R.J. Na+/K+-pump and neurotransmitter membrane receptors. Invertebr. Neurosci. IN 2019, 19, 1. [Google Scholar] [CrossRef]
- Akkuratov, E.E.; Wu, J.; Sowa, D.; Shah, Z.A.; Liu, L. Ouabain-Induced Signaling and Cell Survival in SK-N-SH Neuroblastoma Cells Differentiated by Retinoic Acid. CNS Neurol. Disord. Drug Targets 2015, 14, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Coffey, E.T. Nuclear and cytosolic JNK signalling in neurons. Nat. Rev. Neurosci. 2014, 15, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Nan, G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int. J. Mol. Med. 2017, 39, 1338–1346. [Google Scholar] [CrossRef] [Green Version]
- Correa, S.A.; Eales, K.L. The Role of p38 MAPK and Its Substrates in Neuronal Plasticity and Neurodegenerative Disease. J. Signal Transduct. 2012, 2012, 649079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, B.; Bachstetter, A.D.; Van Eldik, L.J. Inhibition of neuronal p38α, but not p38β MAPK, provides neuroprotection against three different neurotoxic insults. J. Mol. Neurosci. 2015, 55, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopachev, A.V.; Lagarkova, M.A.; Lebedeva, O.S.; Ezhova, M.A.; Kazanskaya, R.B.; Timoshina, Y.A.; Khutorova, A.V.; Akkuratov, E.E.; Fedorova, T.N.; Gainetdinov, R.R. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci. 2021, 11, 203. https://doi.org/10.3390/brainsci11020203
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sciences. 2021; 11(2):203. https://doi.org/10.3390/brainsci11020203
Chicago/Turabian StyleLopachev, Alexander V., Maria A. Lagarkova, Olga S. Lebedeva, Margarita A. Ezhova, Rogneda B. Kazanskaya, Yulia A. Timoshina, Anastasiya V. Khutorova, Evgeny E. Akkuratov, Tatiana N. Fedorova, and Raul R. Gainetdinov. 2021. "Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors" Brain Sciences 11, no. 2: 203. https://doi.org/10.3390/brainsci11020203
APA StyleLopachev, A. V., Lagarkova, M. A., Lebedeva, O. S., Ezhova, M. A., Kazanskaya, R. B., Timoshina, Y. A., Khutorova, A. V., Akkuratov, E. E., Fedorova, T. N., & Gainetdinov, R. R. (2021). Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sciences, 11(2), 203. https://doi.org/10.3390/brainsci11020203