Prepulse Inhibition in Cocaine Addiction and Dual Pathologies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Monitoring Centre for Drugs and Drug Addiction and Europol. In EU Drug Markets Report 2019; Publications Office of the European Union: Luxembourg, 2019.
- Araos, P.; Vergara-Moragues, E.; Pedraz, M.; Pavón, F.J.; Campos Cloute, R.; Calado, M.; Ruiz, J.J.; García-Marchena, N.; Gornemann, I.; Torrens, M.; et al. Psychopathological comorbidity in cocaine users in outpatient treatment. Adicciones 2014, 26, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, F.; Szerman, N.; Vega, P.; Mesias, B.; Basurte, I.; Morant, C.; Ochoa, E.; Poyo, F.; Babin, F. Cocaine abuse or dependency and other pyschiatric disorders. Madrid study on dual pathology. Rev. Psiquiatr. Salud Ment. 2013, 6, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, A.; Roy, É.; Jutras-Aswad, D.; Zang, G.; Artenie, A.A.; Bruneau, J. Examining the link between psychological distress, mental health disorders and sharing behaviors among cocaine users. Addict. Behav. 2016, 62, 54–59. [Google Scholar] [CrossRef]
- Barnaby, L.; Gibson, R.C. Factors affecting completion of a 28-day inpatient substance abuse treatment programme at the University Hospital of the West Indies. West. Indian Med. J. 2008, 57, 364–368. [Google Scholar]
- Kim, J.H.; Lawrence, A.J. Drugs currently in Phase II clinical trials for cocaine addiction. Expert Opin. Investig. Drugs 2014, 23, 1105–1122. [Google Scholar] [CrossRef]
- Ligabue, K.P.; Schuch, J.B.; Scherer, J.N.; Ornell, F.; Roglio, V.S.; Assunção, V.; Rebelatto, F.P.; Hildalgo, M.P.; Pechansky, F.; Kessler, F.; et al. Increased cortisol levels are associated with low treatment retention in crack cocaine users. Addict. Behav. 2020, 103, 106260. [Google Scholar] [CrossRef]
- Arenas, M.C.; Daza-Losada, M.; Vidal-Infer, A.; Aguilar, M.A.; Miñarro, J.; Rodríguez-Arias, M. Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaine. Physiol. Behav. 2014, 133, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M.C.; Navarro-Francés, C.I.; Montagud-Romero, S.; Miñarro, J.; Manzanedo, C. Baseline prepulse inhibition of the startle reflex predicts the sensitivity to the conditioned rewarding effects of cocaine in male and female mice. Psychopharmacology 2018, 235, 2651–2663. [Google Scholar] [CrossRef] [PubMed]
- Mateos-García, A.; Roger-Sánchez, C.; Rodriguez-Arias, M.; Miñarro, J.; Aguilar, M.A.; Manzanedo, C.; Arenas, M.C. Higher sensitivity to the conditioned rewarding effects of cocaine and MDMA in High-Novelty-Seekers mice exposed to a cocaine binge during adolescence. Psychopharmacology 2015, 232, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Infer, A.; Arenas, M.C.; Daza-Losada, M.; Aguilar, M.A.; Miñarro, J.; Rodríguez-Arias, M. High novelty-seeking predicts greater sensitivity to the conditioned rewarding effects of cocaine. Pharmacol. Biochem. Behav. 2012, 102, 124–132. [Google Scholar] [CrossRef]
- Braff, D.L.; Geyer, M.A.; Swerdlow, N.R. Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001, 156, 234–258. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Weber, M.; Qu, Y.; Light, G.A.; Braff, D.L. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 2008, 199, 331–388. [Google Scholar] [CrossRef] [Green Version]
- Graham, F.K. The more or less startling effects of weak prestimulation. Psychophysiology 1975, 12, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Graham, F.K.; Murray, G.M. Discordant effects of weak prestimulation on magnitude and latency of the reflex blink. Physiol. Psychol. 1977, 5, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Schell, A.M.; Wynn, J.K.; Dawson, M.E.; Sinaii, N.; Niebala, C.B. Automatic and controlled attentional processes in startle eyeblink modification: Effects of habituation of the prepulse. Psychophysiology 2000, 37, 409–417. [Google Scholar] [CrossRef]
- Francis, D.D.; Szegda, K.; Campbell, G.; Martin, W.D.; Insel, T.R. Epigenetic sources of behavioral differences in mice. Nat. Neurosci. 2003, 6, 445–446. [Google Scholar] [CrossRef]
- Greenwood, T.A.; Light, G.A.; Swerdlow, N.R.; Calkins, M.E.; Green, M.F.; Gur, R.E.; Gur, R.C.; Lazzeroni, L.C.; Nuechterlein, K.H.; Olincy, A.; et al. Gating deficit heritability and correlation with increased clinical severity in schizophrenia patients with positive family history. Am. J. Psychiatry 2016, 173, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quednow, B.B.; Ejebe, K.; Wagner, M.; Giakoumaki, S.G.; Bitsios, P.; Kumari, V.; Roussos, P. Meta-analysis on the association between genetic polymorphisms and prepulse inhibition of the acoustic startle response. Schizophr. Res. 2018, 198, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, N.R.; Bhakta, S.G.; Rana, B.K.; Kei, J.; Chou, H.H.; Talledo, J.A. Sensorimotor gating in healthy adults tested over a 15 year period. Biol. Psychol. 2017, 123, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arenas, M.C.; Caballero-Reinaldo, C.; Navarro-Francés, C.I.; Manzanedo, C. Efecto de la cocaína sobre la inhibición por prepulso de la respuesta de sobresalto. Rev. Neurol. 2017, 65, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Braff, D.L. Prepulse inhibition of the startle reflex: A window on the brain in schizophrenia. Curr. Top. Behav. Neurosci. 2010, 4, 349–371. [Google Scholar] [CrossRef]
- Haß, K.; Bak, N.; Szycik, G.R.; Glenthøj, B.Y.; Oranje, B. Deficient prepulse inhibition of the startle reflex in schizophrenia using a cross-modal paradigm. Biol. Psychol. 2017, 128, 112–116. [Google Scholar] [CrossRef]
- Siegel, S.J.; Talpos, J.C.; Geyer, M.A. Animal models and measures of perceptual processing in schizophrenia. Neurosci. Biobehav. Rev. 2013, 37, 2092–2098. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, N.R.; Light, G.A.; Sprock, J.; Calkins, M.E.; Green, M.F.; Greenwood, T.A.; Gur, R.E.; Gur, R.C.; Lazzeroni, L.C.; Nuechterlein, K.H.; et al. Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophr. Res. 2014, 152, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, N.R.; Light, G.A.; Thomas, M.L.; Sprock, J.; Calkins, M.E.; Green, M.F.; Greenwood, T.A.; Gur, R.E.; Gur, R.C.; Lazzeroni, L.C.; et al. Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophr. Res. 2018, 198, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, V.; Das, M.; Hodgins, S.; Zachariah, E.; Barkataki, I.; Howlett, M.; Sharma, T. Association between violent behaviour and impaired prepulse inhibition of the startle response in antisocial personality disorder and schizophrenia. Behav. Brain Res. 2005, 158, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, O.; Young, S.; Greer, B.; Arnold, J.; Parsons, A.; Puzzo, I.; Terracciano, M.; Das, M.; Kumari, V. Sensorimotor gating characteristics of violent men with comorbid psychosis and dissocial personality disorder: Relationship with antisocial traits and psychosocial deprivation. Schizophr. Res. 2018, 198, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Loomans, M.M.; Tulen, J.H.M.; Van Marle, H.J.C. The startle paradigm in a forensic psychiatric setting: Elucidating psychopathy. Crim. Behav. Ment Heal. 2015, 25, 42–53. [Google Scholar] [CrossRef]
- Fuertes-Saiz, A.; Benito, A.; Mateu, C.; Carratalá, S.; Almodóvar, I.; Baquero, A.; Haro, G. Sensorimotor Gating in Cocaine-Related Disorder with Comorbid Schizophrenia or Antisocial Personality Disorder. J. Dual. Diagn. 2019, 1–11. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Caine, S.B.; Braff, D.L.; Geyer, M.A. The neural substrates of sensorimotor gating of the startle reflex: A review of recent findings and their implications. J. Psychopharmacol. 1992, 6, 176–190. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Geyer, M.A.; Braff, D.L. Neural circuit regulation of prepulse inhibition of startle in the rat: Current knowledge and future challenges. Psychopharmacology 2001, 156, 194–215. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Light, G.A. Animal Models of Deficient Sensorimotor Gating in Schizophrenia: Are They Still Relevant? Curr. Top. Behav. Neurosci. 2016, 28, 305–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, N.R.; Geyer, M.A. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr. Bull. 1998, 24, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Forkstam, C.; Engel, J.A.; Svensson, L. Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology 2000, 149, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J.M.; Masten, V.L.; Powell, S.B.; Ralph, R.J.; Klamer, D.; Low, M.J.; Geyer, M.A. Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology 2008, 33, 2648–2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre-Pintó, J.I.; Domingo-Salvany, A.; Martín-Santos, R.; Torrens, M. Dual diagnosis screening interview to identify psychiatric comorbidity in substance users: Development and validation of a brief instrument. Eur. Addict. Res. 2013, 20, 41–48. [Google Scholar] [CrossRef]
- Torrens, M.; Serrano, D.; Astals, M.; Pérez-Domínguez, G.; Martín-Santos, R. Diagnosing comorbid psychiatric disorders in substance abusers: Validity of the Spanish versions of the psychiatric research interview for substance and mental disorders and the structured clinical interview for DSM-IV. Am. J. Psychiatry 2004, 161, 1231–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar]
- Levenson, M.R.; Kiehl, K.A.; Fitzpatrick, C.M. Assessing Psychopathic Attributes in a Noninstitutionalized Population. J. Pers. Soc. Psychol. 1995, 68, 151–158. [Google Scholar] [CrossRef]
- Cutler, B.; Hare, R.D. Hare Psychopathy Checklist–Revised (PCL–R). In Encyclopedia of Psychology and Law, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar] [CrossRef]
- Torrubia, R.; Ávila, C.; Moltó, J.; Caseras, X. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Pers. Individ. Dif. 2001, 31, 837–862. [Google Scholar] [CrossRef]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Powell, S.B.; Young, J.W.; Ong, J.C.; Caron, M.G.; Geyer, M.A. Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav. Pharmacol. 2008, 19, 562–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, N.R.; Talledo, J.; Sutherland, A.N.; Nagy, D.; Shoemaker, J.M. Antipsychotic effects on prepulse inhibition in normal “low gating” humans and rats. Neuropsychopharmacol 2006, 31, 2011–2021. [Google Scholar] [CrossRef] [PubMed]
- Fargotstein, M.; Hasenkamp, W.; Gross, R.; Cuthbert, B.; Green, A.; Swails, L.; Lewison, B.; Boshoven, W.; Keyes, M.; Duncan, E. The effect of antipsychotic medications on acoustic startle latency in schizophrenia. Schizophr. Res. 2018, 198, 28–35. [Google Scholar] [CrossRef]
- Kumari, V.; Antonova, E.; Geyer, M.A.; Ffytche, D.; Williams, S.C.; Sharma, T. A fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. Int. J. Neuropsychopharmacol. 2007, 10, 463–477. [Google Scholar] [CrossRef]
- Cutler, A.J.; Goldstein, J.M.; Tumas, J.A. Dosing and switching strategies for quetiapine fumarate. Clin. Ther. 2002, 24, 209–222. [Google Scholar] [CrossRef]
- Leumann, L.; Feldon, J.; Vollenweider, F.X.; Ludewig, K. Effects of typical and atypical antipsychotics on prepulse inhibition and latent inhibition in chronic schizophrenia. Biol. Psychiatry 2002, 52, 729–739. [Google Scholar] [CrossRef]
- Greenwood, T.A.; Shutes-david, A.; Tsuang, D.W. Endophenotypes in Schizophrenia: Digging Deeper to Identify Genetic Mechanisms. J. Psychiatry Brain Sci. 2019, 4, 1–26. [Google Scholar] [CrossRef]
- Kohl, S.; Heekeren, K.; Klosterkötter, J.; Kuhn, J. Prepulse inhibition in psychiatric disorders-Apart from schizophrenia. J. Psychiatr. Res. 2013, 47, 445–452. [Google Scholar] [CrossRef]
- Gómez-Nieto, R.; Hormigo, S.; López, D.E. Prepulse Inhibition of the Auditory Startle Reflex Assessment as a Hallmark of Brainstem Sensorimotor Gating Mechanisms. Brain Sci. 2020, 10, 639. [Google Scholar] [CrossRef]
- Mansbach, R.S.; Geyer, M.A.; Braff, D.L. Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 1998, 94, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Roussos, P.; Giakoumaki, S.G.; Bitsios, P. The Dopamine D3 Receptor Ser9Gly Polymorphism Modulates Prepulse Inhibition of the Acoustic Startle Reflex. Biol. Psychiatry 2008, 64, 235–240. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Braff, D.L.; Geyer, M.A.; Koob, G.F. Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol. Psychiatry 1986, 21, 23–33. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Risbrough, V.B.; Geyer, M.A.; Caldwell, S.; Low, M.J.; Hauger, R.L. Role of dopamine D1 and D2 receptors in CRF-induced disruption of sensorimotor gating. Pharmacol. Biochem. Behav. 2007, 86, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egerton, A.; Chaddock, C.A.; Winton-Brown, T.T.; Bloomfield, M.A.P.; Bhattacharyya, S.; Allen, P.; McGuire, P.K.; Howes, O.D. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: Findings in a second cohort. Biol. Psychiatry 2013, 74, 106–112. [Google Scholar] [CrossRef]
- Howes, O.D.; Kambeitz, J.; Kim, E.; Stahl, D.; Slifstein, M.; Abi-Dargham, A.; Kapur, S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment: Meta-analysisof imaging studies. Arch. Gen. Psychiatry 2012, 69, 776–786. [Google Scholar] [CrossRef] [Green Version]
- Van der Elst, M.C.J.; Ellenbroek, B.A.; Cools, A.R. Cocaine strongly reduces prepulse inhibition in apomorphine-susceptible rats, but not in apomorphine-unsusceptible rats: Regulation by dopamine D2 receptors. Behav. Brain Res. 2006, 175, 392–398. [Google Scholar] [CrossRef]
- Arenas, M.C.; Blanco-gandía, M.C.; Miñarro, J.; Manzanedo, C. Prepulse Inhibition of the Startle Reflex as a Predictor of Vulnerability to Develop Locomotor Sensitization to Cocaine. Front. Behav. Neurosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Tomasi, D.; Telang, F. Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci. USA 2011, 108, 15037–15042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comín, M.; Redondo, S.; Daigre, C.; Grau-López, L.; Casas, M.; Roncero, C. Clinical differences between cocaine-dependent patients with and without antisocial personality disorder. Psychiatry Res. 2016, 246, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Dumais, A.; Côté, G.; Lesage, A. Clinical and sociodemographic profiles of male inmates with severe mental illness: A comparison with voluntarily and involuntarily hospitalized patients. Can. J. Psychiatry 2010, 55, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozya, P.; Sawicka, M.; Żochowska, A.; Bronowski, P. Strengths in patients with schizophrenia and healthy people—similarities and differences. Psychiatr. Pol. 2019, 53, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A.; Gomes, F.V. The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights into Treatment and Prevention. Schizophr. Bull. 2019, 45, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Hantsoo, L.; Golden, C.; Kornfield, S.; Grillon, C.; Epperson, C.N. Startling Differences: Using the Acoustic Startle Response to Study Sex Differences and Neurosteroids in Affective Disorders. Curr. Psychiatry 2018, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, T.W. Heterogeneity in the Development of Drug Use Versatility: Risk Factors for Polydrug Use throughout the Life-Course. Subst. Use Misuse 2019, 54, 758–768. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Control | CRD | CRD+SCZ | CRD+APD | χ2 (Sig.) |
---|---|---|---|---|---|---|
Marital status | ||||||
Single | 44 (59.5%) | 8 (34.5%) | 6 (42.9%) | 18 (85.7%) | 12 (75%) | 37.672 (0.000) * |
Married | 18 (24.3%) | 14 (60.9%) | 2 (14.3%) | 1 (4.8%) | 1 (6.3%) | |
Separated | 2 (2.7%) | 0 | 2 (14.3%) | 0 | 0 | |
Divorced | 10 (13.5%) | 1 (4.3%) | 4 (28.6%) | 2 (9.5%) | 3 (18.8%) | |
Current living arrangement | ||||||
Alone | 19 (25.7%) | 5 (21.7%) | 5 (35.7%) | 5 (23.8%) | 4 (25%) | 42.290 (0.001) * |
Only with children | 1 (1.4%) | 0 | 0 | 0 | 1 (6.3%) | |
With parents | 19 (25.7%) | 1 (4.3%) | 3 (21.4%) | 10 (47.6%) | 5 (31.3%) | |
As a couple without children | 5 (6.8%) | 2 (8.7%) | 2 (14.3%) | 0 | 1 (6.3%) | |
As a couple with children | 19 (25.7%) | 14 (60.9%) | 3 (21.4%) | 1 (4.8%) | 1 (6.3%) | |
With friends | 6 (8.1%) | 1 (4.3%) | 0 | 4 (19%) | 1 (6.3%) | |
Other arrangement | 5 (6.8%) | 0 | 1 (7.1%) | 1 (4.8%) | 3 (18.8%) | |
Number of children | ||||||
0 | 38 (55.1%) | 9 (40.9%) | 5 (35.7%) | 17 (89.5%) | 7 (50%) | 16.578 (0.56) |
1 | 14 (20.3%) | 4 (18.2%) | 5 (35.7%) | 1 (5.3%) | 4 (28.6%) | |
2 | 14 (20.3%) | 7 (31.8%) | 3 (21.4%) | 1 (5.3%) | 3 (21.4%) | |
3 | 3 (4.3%) | 2 (9.1%) | 1 (7.1%) | 0 | 0 | |
Education | ||||||
Incomplete primary education | 23 (31.1%) | 1 (4.3%) | 2 (14.3%) | 11 (52.4%) | 9 (56.3%) | 48.038 (0.000) * |
Incomplete vocational training | 10 (13.5%) | 3 (13%) | 5 (35.7%) | 1 (4.8%) | 1 (6.3%) | |
Non-compulsory secondary education | 21 (28.4%) | 4 (17.4%) | 5 (35.7%) | 6 (28.6%) | 6 (37.5%) | |
Incomplete university bachelor’s degree | 7 (9.5%) | 3 (13%) | 1 (7.1%) | 3 (14.3%) | 0 | |
University bachelor’s degree | 5 (6.8%) | 4 (17.4%) | 1 (7.1%) | 0 | 0 | |
Advanced university graduate or doctorate degree | 8 (10.8%) | 8 (34.8%) | 0 | 0 | 0 | |
Employment status | ||||||
Other arrangement | 1 (1.4%) | 0 | 0 | 1 (4.8%) | 0 | 81.262 (0.000) * |
Student or studying for public servant exams | 3 (4.1%) | 3 (13%) | 0 | 0 | 0 | |
Permanent disability or pensioner | 23 (31.1%) | 0 | 2 (14.3%) | 15 (71.4%) | 6 (37.5%) | |
Unemployed, having previously worked | 18 (24.3%) | 0 | 5 (35.7%) | 5 (23.8%) | 8 (50%) | |
Unemployed, not having previously worked | 2 (2.7%) | 0 | 1 (7.1%) | 0 | 1 (6.3%) | |
Unpaid employment in a family business | 1 (1.4%) | 0 | 1 (7.1%) | 0 | 0 | |
On a temporary contract or temporary employment relationship | 6 (8.1%) | 3 (13%) | 3 (21.4%) | 0 | 0 | |
In a permanent employment relationship or contract, or self-employed | 20 (27%) | 17 (73.9%) | 2 (14.3%) | 0 | 1 (6.3%) |
Variables | CRD | CRD+SCZ | CRD+APD | F/χ2 (Sig.) |
---|---|---|---|---|
Cocaine | ||||
Addiction % (n) | 100 (14) | 100 (21) | 100 (16) | - |
Addiction severity | 7.14 (1.83) | 7.67 (2.72) | 7.75 (1.77) | 0.32 (0.724) |
Age at onset of use | 23.71 (6.62) | 18.81 (4.03) | 18.88 (6.13) | 3.97 (0.025) * |
Age at onset of addiction | 27.64 (7.92) | 20.24 (4.13) | 20.44 (7.33) | 6.64 (0.003) ** |
Weekly use | 4–6 days | Less than a day | Daily | 13.98 (0.058) |
Route of use | Intranasal | Intranasal | Smoked/Injected | 11.08 (0.022) * |
Nicotine Addiction % (n) | 92.3 (12) | 100 (20) | 93.3 (14) | 1.50 (0.470) |
Alcohol Addiction % (n) | 50 (7) | 66.7 (14) | 56.3 (9) | 1.02 (0.671) |
Cannabis Addiction % (n) | 57.1 (8) | 76.2 (16) | 75 (12) | 1.68 (0.462) |
Amphetamine Addiction % (n) | 7.1 (1) | 9.5 (2) | 25 (4) | 2.54 (0.346) |
Heroin Addiction % (n) | 42.9 (6) | 19 (4) | 87.5 (14) | 17.21 (<0.001) ** |
Other opiates Addiction % (n) | 0 | 0 | 12.5 (2) | 4.55 (0.166) |
Sedatives Addiction % (n) | 14.3 (2) | 14.3 (3) | 62.5 (10) | 12.29 (0.002) ** |
Antipsychotics | ||||
Treatment % (n) | 25 (3) | 100 (19) | 12.5 (2) | 50.48 (<0.001) ** |
Mean daily dose 1 | 0.45 (0.39) | 90.09 (52.09) | 0.11 (0.08) | 6.88 (0.006) ** |
Quetiapine | ||||
Treatment % (n) | 33.3 (4) | 73.7 (14) | 16.7 (2) | 10.77 (0.004) ** |
Mean daily dose | 381.25 (251.14) | 514.28 (292.48) | 100 (70.71) | 2.09 (0.154) |
Instrument | Variable | Group (n) | Mean (SD) | F (df; Sig.) |
---|---|---|---|---|
LSRP | Primary psychopathy | Control (23) | 25.39 (5.255) | 9.842 (3, 68; p = 0.000) * |
CRD (13) | 34.77 (7.981) | |||
CRD+SCZ (21) | 31.95 (5.527) | |||
CRD+APD (16) | 34.25 (6.202) | |||
Secondary psychopathy | Control (23) | 17.26 (3.063) | 15.474 (3, 68; p = 0.000) * | |
CRD (13) | 21.23 (7.585) | |||
CRD+SCZ (21) | 26.29 (5.100) | |||
CRD+APD (16) | 26.44 (4.953) | |||
PCL-R | Interpersonal/affective factor | Control (21) | 28.14 (2.762) | 103.019 (3, 63; p = 0.000) * |
CRD (11) | 38.09 (7.217) | |||
CRD+SCZ (19) | 33.53 (3.533) | |||
CRD+APD (16) | 57.06 (7.750) | |||
Social deviation factor | Control (21) | 20.43 (1.076) | 230.574 (3, 63; p = 0.000) * | |
CRD (11) | 31.82 (4.238) | |||
CRD+SCZ (19) | 36.74 (4.175) | |||
CRD+APD (16) | 58.81 (4.175) | |||
Total score | Control (21) | 20.52 (1.250) | 230.495 (3, 63; p = 0.000) * | |
CRD (11) | 33.64 (4.178) | |||
CRD+SCZ (19) | 32.63 (4.284) | |||
CRD+APD (16) | 59.56 (5.573) | |||
SPSRQ | Sensitivity to punishment | Control (23) | 8.26 (5.986) | 6.369 (3, 68; p = 0.001) * |
CRD (13) | 8.00 (4.583) | |||
CRD+SCZ (21) | 14.57 (5.363) | |||
CRD+APD (16) | 9.63 (5.084) | |||
Sensitivity to reward | Control (23) | 5.83 (3.950) | 15.509 (3, 68; p = 0.000) * | |
CRD (13) | 10.92 (5.634 | |||
CRD+SCZ (21) | 14.48 (4.214) | |||
CRD+APD (16) | 12.63 (4.193) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Miravet, I.; Fuertes-Saiz, A.; Benito, A.; Almodóvar, I.; Ochoa, E.; Haro, G. Prepulse Inhibition in Cocaine Addiction and Dual Pathologies. Brain Sci. 2021, 11, 269. https://doi.org/10.3390/brainsci11020269
Gil-Miravet I, Fuertes-Saiz A, Benito A, Almodóvar I, Ochoa E, Haro G. Prepulse Inhibition in Cocaine Addiction and Dual Pathologies. Brain Sciences. 2021; 11(2):269. https://doi.org/10.3390/brainsci11020269
Chicago/Turabian StyleGil-Miravet, Isis, Alejandro Fuertes-Saiz, Ana Benito, Isabel Almodóvar, Enrique Ochoa, and Gonzalo Haro. 2021. "Prepulse Inhibition in Cocaine Addiction and Dual Pathologies" Brain Sciences 11, no. 2: 269. https://doi.org/10.3390/brainsci11020269
APA StyleGil-Miravet, I., Fuertes-Saiz, A., Benito, A., Almodóvar, I., Ochoa, E., & Haro, G. (2021). Prepulse Inhibition in Cocaine Addiction and Dual Pathologies. Brain Sciences, 11(2), 269. https://doi.org/10.3390/brainsci11020269