Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Patients and Blood Sample Collection
2.3. SNPs Selection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Single Genotypes of SOD2, CAT, GPX4, NOS1, NOS2 Polymorphisms and Stroke Risk
3.2. Association Between Combined Genotypes of SOD2, CAT, GPX4, NOS1, NOS2 Polymorphisms and Stroke Risk (Gene–Gene Interaction)
3.3. Haplotypes and Stroke Occurrence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Béjot, Y.; Bailly, H.; Durier, J.; Giroud, M. Epidemiology of stroke in Europe and trends for the 21st century. Presse Méd. 2016, 45 Pt 2, e391–e398. [Google Scholar] [CrossRef]
- Sexton, E.; Merriman, N.A.; Donnelly, N.-A.; Wren, M.-A.; Hickey, A.; Bennett, K.E. Poststroke Cognitive Impairment in Model-Based Economic Evaluation: A Systematic Review. Dement. Geriatr. Cogn. Disord. 2019, 48, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Guzik, A.; Bushnell, C. Stroke Epidemiology and Risk Factor Management. Continuum 2017, 23, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.M.; Esenwa, C. Secondary stroke prevention: Challenges and solutions. Vasc. Health Risk Manag. 2015, 11, 437–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Stroke Statistics Subcommittee. Executive Summary: Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association. Circulation 2016, 133, 447–454. [Google Scholar] [CrossRef]
- Castro, P.; Azevedo, E.; Sorond, F. Cerebral Autoregulation in Stroke. Curr. Atheroscler. Rep. 2018, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Fern, R.; Matute, C. Glutamate receptors and white matter stroke. Neurosci. Lett. 2019, 694, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016, 15, 869–881. [Google Scholar] [CrossRef]
- Gürsoy-Özdemir, Y.; Can, A.; Dalkara, T. Reperfusion-Induced Oxidative/Nitrative Injury to Neurovascular Unit After Focal Cerebral Ischemia. Stroke 2004, 35, 1449–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.-C.; Sheen, J.-M.; Hu, W.L.; Hung, Y.-C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxid. Med. Cell. Longev. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, A.; Sarmah, D.; Mounica, L.; Kaur, H.; Kesharwani, R.; Verma, G.; Veeresh, P.; Kotian, V.; Kalia, K.; Borah, A.; et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl. Stroke Res. 2020, 11, 1185–1202. [Google Scholar] [CrossRef] [PubMed]
- Faraci, F.M. Reactive oxygen species: Influence on cerebral vascular tone. J. Appl. Physiol. 2006, 100, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, A.; Ruggiero, C.; Polidori, M.C.; Mecocci, P. Potential markers of oxidative stress in stroke. Free Radic. Biol. Med. 2005, 39, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Lafon-Cazal, M.; Pietri, S.; Culcasi, M.; Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature 1993, 364, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Wigner, P.; Saluk-Bijak, J.; Synowiec, E.; Miller, E.; Sliwinski, T.; Cichon, N.; Bijak, M. Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke. J. Clin. Med. 2019, 8, 2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.S.; Niu, T.; Liu, J.S. Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am. J. Hum. Genet. 2002, 71, 1242–1247. [Google Scholar] [CrossRef] [Green Version]
- Bevan, S.; Markus, H.S. Genetic Profiles in Ischaemic Stroke. Curr. Atheroscler. Rep. 2013, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Bevan, S. Mechanisms and treatment of ischaemic stroke—Insights from genetic associations. Nat. Rev. Neurol. 2014, 10, 723–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef]
- He, T.; Wang, J.; Wang, X.L.; Deng, W.S.; Sun, P. Association between the Matrix Metalloproteinase-9 rs3918242 Polymorphism and Ischemic Stroke Susceptibility: A Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2017, 26, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Talwar, P.; Kumar, A.; Kumar, P.; Sagar, R.; Vibha, D.; Pandit, A.K.; Gulati, A.; Kushwaha, S.; Prasad, K. As-sociation between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: A systematic review and metaanalysis of 29 studies. Gene 2018, 672, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Tang, H.; Gao, L.; Tu, G.; Luo, H.; Xia, Y. CYP3A4 and CYP11A1 variants are risk factors for ischemic stroke: A case control study. BMC Neurol. 2020, 20, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Zhou, Y.; Li, S. Association of TBXA2R, P2Y12 and ADD1 genes polymorphisms with ischemic stroke susceptibility: A metaanalysis. Clin. Invest. Med. 2020, 43, E33–E43. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Zheng, Y.; Huang, J.; Ke, J.; Zhang, H. Association of Apolipoprotein E Gene Polymorphism with Ischemic Stroke in Coronary Heart Disease Patients Treated with Medium-intensity Statins. Neuropsychiatry Dis. Treat. 2020, 16, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, D.; Jankovic, M.; Petrovic, B.; Novakovic, I. Genetic Aspects of Inflammation and Immune Response in Stroke. Int. J. Mol. Sci. 2020, 21, 7409. [Google Scholar] [CrossRef]
- Ta, S.; Rong, X.; Guo, Z.; Jin, H.; Zhang, P.; Li, F.; Li, Z.; Lin, L.; Zheng, C.; Gu, Q.; et al. Variants of WNT7A and GPR124 are associated with hemorrhagic transformation following intravenous thrombolysis in ischemic stroke. CNS Neurosci. Ther. 2021, 27, 71–81. [Google Scholar] [CrossRef]
- Musuka, T.D.; Wilton, S.B.; Traboulsi, M.; Hill, M.D. Diagnosis and management of acute ischemic stroke: Speed is critical. CMAJ 2015, 187, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, K.; Hernandez, W.; Ansari, R.A.; Ferder, L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J. Biol. Chem. 2015, 6, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Burtenshaw, D.; Kitching, M.; Redmond, E.M.; Megson, I.L.; Cahill, P.A. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front. Cardiovasc. Med. 2019, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.; El Ayed, M.; Limam, F.; Aouani, E.; Mokni, M. Protective effect of (Xenical+GSF) against I/R-induced blood brain barrier disruption, ionic edema, lipid deregulation and neuroinflammation. Microvasc. Res. 2020, 132, 104054. [Google Scholar] [CrossRef]
- Ling, L.; Alattar, A.; Tan, Z.; Shah, F.A.; Ali, T.; Alshaman, R.; Koh, P.O.; Li, S. A Potent Antioxidant Endogenous Neurohormone Melatonin, Rescued MCAO by Attenuating Oxidative Stress-Associated Neuroinflammation. Front. Pharmacol. 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.L.; Bayraktutan, U. Oxidative Stress and Its Role in the Pathogenesis of Ischaemic Stroke. Int. J. Stroke 2009, 4, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Stone, C.R.; Du, X.; Li, W.A.; Huber, M.; Bremer, R.; Geng, X.; Ding, Y. The cerebral circulation and cerebrovascular disease III: Stroke. Brain Circ. 2017, 3, 66–77. [Google Scholar] [PubMed]
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal Cell Death. Physiol. Rev. 2018, 98, 813–880. [Google Scholar] [CrossRef] [PubMed]
- Puig, B.; Brenna, S.; Magnus, T. Molecular Communication of a Dying Neuron in Stroke. Int. J. Mol. Sci. 2018, 19, 2834. [Google Scholar] [CrossRef] [Green Version]
- Behl, C.; Moosmann, B. Oxidative nerve cell death in Alzheimer’s disease and stroke: Antioxidants as neuroprotective compounds. Biol. Chem. 2002, 383, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Karimi Galougahi, K.; Liu, C.C.; Bhindi, R.; Figtree, G.A. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013, 1, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 2001, 21, 2–14. [Google Scholar] [CrossRef]
- Van Remmen, H.; Qi, W.; Sabia, M.; Freeman, G.; Estlack, L.; Yang, H.; Guo, Z.M.; Huang, T.-T.; Strong, R.; Lee, S.; et al. Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radic. Biol. Med. 2004, 36, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ikeno, Y.; Qi, W.; Chaudhuri, A.; Li, Y.; Bokov, A.; Thorpe, S.R.; Baynes, J.W.; Epstein, C.; Richardson, A.; et al. Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1212–1220. [Google Scholar] [CrossRef]
- Dichgans, M.; Malik, R.; König, I.R.; Rosand, J.; Clarke, R.; Gretarsdottir, S.; Thorleifsson, G.; Mitchell, B.D.; Assimes, T.L.; Levi, C.; et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants. Stroke 2014, 45, 24–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalani, R.; Krishnamoorthy, S.; Deepa, D.; Gopala, S.; Prabhakaran, D.; Tirschwell, D.; Sylaja, P. Apolipoproteins B and A1 in Ischemic Stroke Subtypes. J. Stroke Cerebrovasc. Dis. 2020, 29, 104670. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, A.; Nasri, H.; Rafieian-Kopaei, M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J. Res. Med. Sci. 2014, 19, 358–367. [Google Scholar] [PubMed]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutritients 2019, 11, 2090. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, L.; De Faire, U.; Morgenstern, R. Oxidative Stress, Human Genetic Variation, and Disease. Arch. Biochem. Biophys. 2001, 389, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Della-Morte, D.; Pacifici, F.; Rundek, T. Genetic susceptibility to cerebrovascular disease. Curr. Opin. Lipidol. 2016, 27, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.B.; Chan, E.K.; Cowley, M.J.; Little, P.F. The influence of genetic variation on gene expression. Genome Res. 2007, 17, 1707–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreyev, A.Y.; Kushnareva, Y.E.; Starkov, A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry 2005, 70, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.; Conte, D.; Piperno, A.; Dongiovanni, P.; Fracanzani, A.L.; Fraquelli, M.; Vergani, A.; Gianni, C.; Carmagnola, L.; Fargion, S. The mitochondrial superoxide dismutase A16V polymorphism in the cardiomyopathy associated with hereditary haemochromatosis. J. Med. Genet. 2004, 41, 946–950. [Google Scholar] [CrossRef] [Green Version]
- Letonja, M.; Ikolajević-Starcević, J.N.; Petrovic, D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with carotid atherosclerosis in patients with diabetes mellitus type 2. Int. Angiol. 2012, 31, 33–41. [Google Scholar]
- Crawford, A.; Fassett, R.G.; Geraghty, D.P.; Kunde, D.A.; Ball, M.J.; Robertson, I.K.; Coombes, J.S. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012, 501, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Blein, S.; Berndt, S.; Joshi, A.D.; Campa, D.; Ziegler, R.G.; Riboli, E.; Cox, D.G.; Gaudet, M.M.; Stevens, V.L.; Diver, W.R.; et al. Factors associated with oxidative stress and cancer risk in the Breast and Prostate Cancer Cohort Consortium. Free Radic. Res. 2014, 48, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Jabir, F.A.; Hoidy, W.H. Pharmacogenetics as Personalized Medicine: Association Investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 Polymorphisms in a Breast Cancer Population in Iraqi Women. Clin. Breast Cancer 2018, 18, e863–e868. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, J.S.; Gilula, N.B.; Lerner, R.A. On signal sequence polymorphisms and diseases of distribution. Proc. Natl. Acad. Sci. USA 1996, 93, 4471–4473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, A.; Imbert, A.; Igoudjil, A.; Descatoire, V.; Cazanave, S.; Pessayre, D.; Degoul, F. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenetics Genom. 2005, 15, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Vialykh, E.K.; Solidolova, M.A.; Bushueva, O.I.; Bulgakova, I.V.; Polonikov, A.V. Catalase gene polymorphism is associated with increased risk of cerebral stroke in hypertensive patients. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova 2012, 112 Pt 2, 3–7. [Google Scholar]
- Foster, C.B.; Aswath, K.; Chanock, S.J.; McKay, H.F.; Peters, U. Polymorphism analysis of six selenoprotein genes: Support for a selective sweep at the glutathione peroxidase 1 locus (3p21) in Asian populations. BMC Genet. 2006, 7, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermano, G.; Pagmantidis, V.; Holloway, N.; Kadri, S.; Mowat, N.A.G.; Shiel, R.S.; Arthur, J.R.; Mathers, J.C.; Daly, A.K.; Broom, J.; et al. Evidence that a polymorphism within the 3′UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr. 2007, 2, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Polonikov, A.V.; Vialykh, E.K.; Churnosov, M.I.; Illig, T.; Freidin, M.B.; Vasil’Eva, O.V.; Bushueva, O.Y.; Ryzhaeva, V.N.; Bulgakova, I.V.; Solodilova, M.A. The C718T polymorphism in the 3′-untranslated region of glutathione peroxidase-4 gene is a predictor of cerebral stroke in patients with essential hypertension. Hypertens. Res. 2012, 35, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Udler, M.; Maia, A.-T.; Cebrian, A.; Brown, C.; Greenberg, D.; Shah, M.; Caldas, C.; Dunning, A.M.; Easton, D.; Ponder, B.; et al. Common Germline Genetic Variation in Antioxidant Defense Genes and Survival After Diagnosis of Breast Cancer. J. Clin. Oncol. 2007, 25, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 2014, 112, 24–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci. 2015, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, S. Oxidative stress in brain ischemia. Brain Pathol. 1999, 9, 119–131. [Google Scholar] [CrossRef]
- Godínez-Rubí, M.; Rojas-Mayorquin, A.E.; Ortuño-Sahagun, D. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction. Oxid. Med. Cell. Longev. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Chen, Z.-Q.; Mou, R.-T.; Feng, D.-X. The role of nitric oxide in stroke. Med. Gas Res. 2017, 7, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Haensel, C.; Araki, E.; Ross, M.; Iadecola, C. Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Res. 2000, 872, 215–218. [Google Scholar] [CrossRef]
- Sims, N.R.; Anderson, M.F. Mitochondrial contributions to tissue damage in stroke. Neurochem. Int. 2002, 40, 511–526. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, P.L.; Ma, J.; Meng, W.; Ayata, C.; Fishman, M.C.; Moskowitz, M.A. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J. Cereb. Blood Flow Metab. 1996, 16, 981–987. [Google Scholar] [CrossRef]
- Zhang, F.; Iadecola, C. Reduction of Focal Cerebral Ischemic Damage by Delayed Treatment with Nitric Oxide Donors. J. Cereb. Blood Flow Metab. 1994, 14, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Jatana, M.; Elango, C.; Paintlia, A.S.; Singh, A.K.; Singh, I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 2006, 15, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Amantea, D.; Blandini, F.; Nappi, G.; Bagetta, G.; Corasaniti, M.T.; Tassorelli, C. Neuroprotective Effect of Nitroglycerin in a Rodent Model of Ischemic Stroke: Evaluation of Bcl-2 Expression. Int. Rev. Neurobiol. 2007, 82, 423–435. [Google Scholar] [CrossRef]
- Samdani, A.F.; Dawson, T.M.; Dawson, V.L. Nitric oxide synthase in models of focal ischemia. Stroke 1997, 28, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Ohkubo, T.; Asano, Y.; Hattori, K.; Shimazu, T.; Yamazato, M.; Nagoya, H.; Kato, Y.; Araki, N. Nitric oxide production during cerebral ischemia and reperfusion in eNOS- and nNOS-knockout mice. Curr. Neurovasc. Res. 2010, 7, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Ignarro, L.J. Polymorphisms in endothelial nitric oxide synthase and carotid artery atherosclerosis. J. Clin. Pathol. 2007, 60, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zheng, T.; Lan, Q.; Zhang, Y.; Kilfoy, B.A.; Qin, Q.; Rothman, N.; Zahm, S.H.; Holford, T.R.; Leaderer, B.; et al. Genetic Polymorphisms in Nitric Oxide Synthase Genes Modify the Relationship between Vegetable and Fruit Intake and Risk of Non-Hodgkin Lymphoma. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1429–1438. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.; Campino, S.; Rowlands, K.; Chan, M.-S.; Copley, R.R.; Taylor, M.S.; Rockett, K.; Elvidge, G.; Keating, B.; Knight, J.; et al. Identification of Common Genetic Variation That Modulates Alternative Splicing. PLoS Genet. 2007, 3, e99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, T.; Benovoy, D.; Dias, C.; Gurd, S.; Provencher, C.; Beaulieu, P.; Hudson, T.J.; Sladek, R.; Majewski, J. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 2008, 40, 225–231. [Google Scholar] [CrossRef]
- Langaee, T.; Shin, J. The genetics basis of pharmatogenomics. In Concepts in Pharmacogenomics; Zdanowicz, M.M., Ed.; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2010; p. 29. [Google Scholar]
- Wigner, P.; Czarny, P.; Synowiec, E.; Białek, K.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Variation of genes involved in oxidative and nitrosative stresses in depression. Eur. Psychiatry 2018, 48, 38–48. [Google Scholar] [CrossRef]
- Montesanto, A.; Crocco, P.; Tallaro, F.; Pisani, F.; Mazzei, B.; Mari, V.; Corsonello, A.; Lattanzio, F.; Passarino, G.; Rose, G. Common polymorphisms in nitric oxide synthase (NOS) genes influence quality of aging and longevity in humans. Biogerontology 2013, 14, 177–186. [Google Scholar] [CrossRef]
- Dhillon, S.S.; A Mastropaolo, L.; Murchie, R.; Griffiths, C.; Thöni, C.; Elkadri, A.; Xu, W.; Mack, A.; Walters, T.J.; Guo, C.; et al. Higher Activity of the Inducible Nitric Oxide Synthase Contributes to Very Early Onset Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2014, 5, e46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, H.; Chen, Z.; Lu, B.; Li, J.; Peng, Y.; Shen, X. The genetic association between iNOS and eNOS polymorphisms and gastric cancer risk: A meta-analysis. Onco Targets Ther. 2018, 11, 2497–2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, X.; Zhu, L.; Sui, G.; Li, J.; Luo, H.; Yu, M.; Wang, C.; Chen, X.; Wei, W.; Bao, S. Inflammation and Endothelial Function Relevant Genetic Polymorphisms and Carotid Plaque in Chinese Population. J. Atheroscler. Thromb. 2020, 27, 978–994. [Google Scholar] [CrossRef] [Green Version]
- Eissa, N.T.; Yuan, J.W.; Haggerty, C.M.; Choo, E.K.; Palmer, C.D.; Moss, J. Cloning and characterization of human inducible nitric oxide synthase splice variants: A domain, encoded by exons 8 and 9, is critical for dimerization. Proc. Natl. Acad. Sci. USA 1998, 95, 7625–7630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karasneh, J.A.; Darwazeh, A.M.G.; Hassan, A.F.; Thornhill, M. Association between recurrent aphthous stomatitis and inheritance of a single-nucleotide polymorphism of the NOS2 gene encoding inducible nitric oxide synthase. J. Oral Pathol. Med. 2011, 40, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.H.; Kim, S.K.; Chung, J.-H.; Chang, S.-G. Nitric oxide synthase 2 gene polymorphisms are associated with prostatic volume in Korean men with benign prostatic hyperplasia. Asian J. Androl. 2010, 12, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Li, Y.M.; Yang, L.Q.; Zhong, C.G.; Zhuang, Z.X. Association of NOS2 and NOS3 gene polymorphisms with susceptibility to type 2 diabetes mellitus and diabetic nephropathy in the Chinese Han population. IUBMB Life 2016, 68, 516–525. [Google Scholar] [CrossRef] [Green Version]
Gene | Region | NCBI db SNP ID (rs Number) | Position in g.DNA or c.DNA | Base Change | Amino Acid Change | Methods of Genotyping | MAF * |
---|---|---|---|---|---|---|---|
SOD2 | exon | rs4880 | c.47 | T > C | p.Val16Ala | TaqMan® SNP Genotyping Assays | C: 0.466 |
CAT | UTR-5 | rs7943316 | c.-89 | A > T | - | A: 0.331 | |
GPX4 | exon | rs713041 | c.660 | T > C | p.Leu220= | T: 0.449 | |
NOS1 | intron | rs1879417 | g.117803515 | C > T | - | C: 0.449 | |
NOS2 | exon | rs2297518 | c.1823 | C > T | p.Ser608Leu | T: 0.232 | |
UTR-5 | rs10459953 | c.-227 | G > C | - | C: 0.360 |
Polymorphism | Assay ID | Location | PCR Conditions | |||
---|---|---|---|---|---|---|
Time | Temperature | |||||
rs4880 | C___8709053_10 | Chr.6: 159692840 | AmpliTaq Gold Enzyme Activation | 10 min | 95 °C | |
rs7943316 | C___1883210_10 | Chr.11: 34438925 | ||||
rs713041 | C___2561693_20 | Chr.19: 1106616 | Denature | 15 s | 92 °C | 40 cycles |
rs1879417 | C__11754652_10 | Chr.12: 117365710 | ||||
rs2297518 | C__11889257_10 | Chr.17: 27769571 | Anneal/ Extend | 60 s | 60 °C | |
rs10459953 | C___2593687_10 | Chr.17: 27800492 |
Genotype/Allele | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
T/T | 2 | 0.019 | 23 | 0.215 | 14.38 (3.30–62.72) * B 10.00 (0.07–1377.03)0.144 Cv 14.38 (3.30–62.72) | <0.001 0.359 <0.001 |
T/C | 71 | 0.664 | 57 | 0.533 | 0.58 (0.33–1.00) | 0.052 |
C/C | 34 | 0.318 | 27 | 0.252 | 0.73 (0.40–1.32) | 0.290 |
χ2 = 19.975; p < 0.0001 | ||||||
T | 75 | 0.350 | 103 | 0.481 | 1.72 (1.17–2.54) * 1.31 (1.07–1.59)0.490 1.72 (1.17–2.54) | 0.006 0.009 0.006 |
C | 139 | 0.650 | 111 | 0.519 | 0.58 (0.39–0.86) * 0.76 (0.62–0.93)0.582 0.58 (0.39–0.86) | 0.006 0.006 0.006 |
Genotype/Allele | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
T/T | 2 | 0.019 | 22 | 0.206 | 13.59 (3.11–59.43) * B 9.43 (0.07–1247.38)0.141 Cv 13.59 (3.11–59.43) | 0.001 0.368 0.001 |
T/C | 64 | 0.598 | 55 | 0.514 | 0.71 (0.41–1.22) | 0.216 |
C/C | 41 | 0.383 | 30 | 0.280 | 0.63 (0.35–1.11) | 0.111 |
χ2 = 19.052; p < 0.0001 | ||||||
T | 68 | 0.318 | 99 | 0.463 | 1.85 (1.25–2.74) * B 1.36 (1.12–1.67)0.486 Cv 1.85 (1.25–2.74) | 0.002 0.003 0.002 |
C | 146 | 0.682 | 115 | 0.537 | 0.54 (0.37–0.80) * B 0.74 (0.60–0.90)0.685 Cv 0.54 (0.37–0.80) | 0.002 0.003 0.002 |
Genotype/Allele | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
C/C | 1 | 0.009 | 28 | 0.262 | 37.57 (5.01–282.03) * B 76.21 (0.08–71181.91)0.070 Cv 37.57 (5.01–282.04) | <0.001 0.214 <0.001 |
C/T | 74 | 0.692 | 49 | 0.458 | 0.38 (0.22–0.66) * B 0.61 (0.46–0.81)0.949 Cv 0.38 (0.22–0.66) | 0.001 0.001 0.001 |
T/T | 32 | 0.299 | 30 | 0.280 | 0.91 (0.51–1.65) * | 0.763 |
χ2 = 30.284; p < 0.0001 | ||||||
C | 76 | 0.355 | 105 | 0.491 | 1.75 (1.19–2.58) * B 1.32 (1.09–1.61)0.436 Cv 1.75 (1.19–2.58) | 0.005 0.005 0.005 |
T | 138 | 0.645 | 109 | 0.509 | 0.57 (0.39–0.84) * B 0.76 (0.62–0.92)0.602 Cv 0.57 (0.39–0.84) | 0.005 0.005 0.005 |
Genotype/Allele | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
C/C | 7 | 0.065 | 81 | 0.757 | 44.51 (18.38–107.78) * B7.00 (4.34–11.29)0.472 Cv44.51 (18.38–107.79) | <0.001 <0.001 <0.001 |
C/T | 32 | 0.299 | 24 | 0.224 | 0.68 (0.37–1.25) * | 0.215 |
T/T | 68 | 0.636 | 2 | 0.019 | 0.01 (0.003–0.05) * B0.04 (0.001–7.17)0.999 Cv0.01 (0.003–0.05) | <0.001 0.219 <0.001 |
χ2 = 125.599; p < 0.0001 | ||||||
C | 46 | 0.215 | 186 | 0.869 | 24.26 (14.51–40.57) * B4.96 (3.88–6.34)0.902 Cv24.26 (14.51–40.57) | <0.001 <0.001 <0.001 |
T | 168 | 0.785 | 28 | 0.131 | 0.04 (0.03–0.07) * B0.20 (0.15–0.26)0.999 Cv0.04 (0.03–0.07) | <0.001 <0.001 <0.001 |
Genotype/Allele | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
G/G | 44 | 0.411 | 27 | 0.271 | 0.48 (0.27–0.87) * B 0.69 (0.51–0.94)0.710 Cv 0.48 (0.27–0.87) | 0.014 0.017 0.014 |
G/C | 45 | 0.421 | 51 | 0.477 | 1.26 (0.73–2.15) * | 0.410 |
C/C | 18 | 0.168 | 29 | 0.252 | 1.84 (0.95–3.56) * | 0.071 |
χ2 = 7.020; p = 0.0299 | ||||||
G | 133 | 0.621 | 105 | 0.491 | 0.59 (0.40–0.86) * B 0.77 (0.63–0.93)0.560 Cv 0.59 (0.40–0.86) | 0.007 0.008 0.007 |
C | 81 | 0.379 | 109 | 0.509 | 1.71 (1.16–2.51) * 1.31 (1.08–1.60)0.414 1.71 (1.16–2.51) | 0.007 0.006 0.007 |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.-89A > T (rs7943316)—CAT vs. c.47T > C (p.Val16Ala)—SOD2 (rs4880) | ||||||
A/A-T/T | 0 | 0 | 0 | 0 | - | - |
A/A-T/C | 15 | 0.140 | 6 | 0.056 | 0.36 (0.14–0.98) * | 0.088 # |
A/A-C/C | 5 | 0.047 | 9 | 0.084 | 1.87 (0.61–5.79) * | 0.474 # |
A/T-T/T | 1 | 0.009 | 14 | 0.131 | 15.96 (2.06–123.68) * B 50.46 (0.05–50,144.36)0.070 Cv 15.96 (2.06–123.68) | 0.016 # 0.265 0.016 # |
A/T-T/C | 32 | 0.299 | 36 | 0.336 | 1.189 (0.67–2.12) * | 0.804 # |
A/T-C/C | 13 | 0.121 | 9 | 0.084 | 0.66 (0.27–1.63) * | 0.603 # |
T/T-T/T | 1 | 0.009 | 9 | 0.084 | 9.74(1.21–78.25) * | 0.063 # |
T/T-T/C | 24 | 0.224 | 15 | 0.140 | 0.56 (0.28–1.15) * | 0.215 # |
T/T-C/C | 16 | 0.150 | 9 | 0.084 | 0.52 (0.22–1.24) * | 0.262 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.-89A > T (rs7943316)—CAT vs. c.660T > C—GPX4 (rs713041) | ||||||
A/A-T/T | 1 | 0.009 | 4 | 0.037 | 4.12 (0.45–37.45) * | 0.374 # |
A/A-T/C | 12 | 0.112 | 7 | 0.064 | 0.55 (0.21–1.47) * | 0.415 # |
A/A-C/C | 7 | 0.065 | 4 | 0.037 | 0.56 (0.16–1.95) * | 0.589 # |
A/T-T/T | 1 | 0.009 | 15 | 0.140 | 17.28 (2.24–133.37) * B 57.95 (0.05–62,416.10)0.070 Cv 17.28 (2.24–133.37) | 0.012 # 0.254 0.012 # |
A/T-T/C | 29 | 0.271 | 26 | 0.243 | 0.86 (0.47–1.60) * | 0.870 # |
A/T-C/C | 16 | 0149 | 18 | 0.168 | 1.15 (0.55–2.40) * | 0.915 # |
T/T-T/T | 0 | 0 | 3 | 0.028 | - | - |
T/T-C/T | 23 | 0.215 | 22 | 0.206 | 0.95 (0.49–1.83) * | 0.982 # |
T/T-C/C | 18 | 0.168 | 8 | 0.075 | 0.40 (0.17–0.96) * | 0.080 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.47T > C (p.Val16Ala)—SOD2 (rs4880) vs. c.660T > C—GPX4 (rs713041) | ||||||
T/T-T/T | 0 | 0 | 3 | 0.028 | - | - |
T/T-T/C | 1 | 0.009 | 16 | 0.150 | 18.64 (2.42–143.28) * 50.98 (0.05–50,200.29)0.070 18.64 (2.42–143.28) | 0.010 # 0.264 0.010 # |
T/T-C/C | 1 | 0.009 | 4 | 0.037 | 4.12 (0.45–37.45) * | 0.374 # |
T/C-T/T | 1 | 0.009 | 14 | 0.131 | 15.96 (2.06–123.68) * B 42.94 (0.05–39,012.16)0.070 Cv 15.96 (2.06–123.68) | 0.016 # 0.279 0.016 # |
T/C-T/C | 40 | 0.374 | 21 | 0.196 | 0.41 (0.22–0.76) * B 0.64 (0.47–0.86)0.826 Cv 0.41 (0.22–0.76) | 0.010 # 0.004 0.010 # |
T/C-C/C | 30 | 0.280 | 22 | 0.206 | 0.66 (0.35–1.25) * | 0.366 # |
C/C-T/T | 1 | 0.009 | 5 | 0.047 | 5.20 (0.60–45.24) * | 0.254 # |
C/C-T/C | 23 | 0.215 | 18 | 0.168 | 0.74 (0.37–1.47) * | 0.623 # |
C/C-C/C | 10 | 0.093 | 4 | 0.037 | 0.38 (0.11–1.24) * | 0.204 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.1823C > T (p.Ser608Leu)—NOS2 (rs2297518) vs. c.47T > C (p.Val16Ala)—SOD2 (rs4880) | ||||||
C/C-T/T | 0 | 0 | 18 | 0.168 | - | - |
C/C-T/C | 4 | 0.037 | 44 | 0.411 | 17.98 (6.17–52.46) * B 5.18 (0.59–45.77)0.278 Cv 17.98 (6.17–52.46) | <0.001 # 0.139 # <0.001 # |
C/C-C/C | 3 | 0.028 | 19 | 0.178 | 7.49 (2.14–26.13) * B 4.86 (0.11–216.99)0.210 Cv 7.49 (2.14–26.13) | 0.004 # 0.415 0.004# |
C/T-T/T | 1 | 0.009 | 5 | 0.047 | 5.05 (0.58–43.98) * | 0.266 # |
C/T-T/C | 23 | 0.215 | 12 | 0.112 | 0.47 (0.22–1.01) * | 0.103 # |
C/T-C/C | 8 | 0.075 | 7 | 0.065 | 0.84 (0.29–2.41) | 0.935 # |
T/T-T/T | 1 | 0.009 | 0 | 0 | - | - |
T/T-T/C | 44 | 0.411 | 1 | 0.009 | 0.014 (0.002–0.01) * B 0.010 (0.0001–10.45)0.998 Cv 0.014 (0.002–0.01) | <0.001 # 0.193 <0.001# |
T/T-C/C | 23 | 0.215 | 1 | 0.009 | 0.03 (0.0001–0.26) * B 0.016 (0.0001–14.32)0.989 Cv0.03 (0.0001–0.26) | 0.002 # 0.232 0.002 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
number | frequency | number | frequency | |||
c.1823C > T (p.Ser608Leu)—NOS2 (rs2297518) vs. c.660T > C—CAT (rs7943316) | ||||||
C/C-A/A | 2 | 0.019 | 12 | 0.112 | 6.63 (1.45–30.40) * B 7.20 (0.04–1166.78)0.141 Cv 6.63 (1.45–30.40) | 0.030 # 0.447 0.030 # |
C/C-A/T | 3 | 0.028 | 44 | 0.411 | 24.21 (7.22–81.25) * B 7.17 (0.31–167.13)0.210 Cv24.21 (7.22–81.25) | <0.001 # 0.220 <0.001 # |
C/C-T/T | 2 | 0.019 | 25 | 0.234 | 16.01 (3.68–69.54) * B 9.97 (0.08–12,8618)0.141 Cv 16.01 (3.68–69.54) | <0.001 # 0.354 <0.001 # |
C/T-A/A | 7 | 0.065 | 3 | 0.028 | 0.41 (0.10–1.64) * | 0.373 # |
C/T-A/T | 11 | 0.103 | 15 | 0.140 | 1.42 (0.62–3.26) * | 0.645 # |
C/T-T/T | 14 | 0.131 | 6 | 0.056 | 0.40 (0.15–1.07) * | 0.131 # |
T/T-A/A | 11 | 0.103 | 0 | 0 | - | - |
T/T-A/T | 32 | 0.299 | 0 | 0 | - | - |
T/T-T/T | 25 | 0.234 | 2 | 0.187 | 0.06 (0.01–0.27) * B 0.08 (0.0001–15.03)0.993 Cv 0.06 (0.01–0.27) | <0.001 # 0.348 <0.001 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.-227G > C—NOS2 (rs10459953) vs. c.660T > C—GPX4 (rs713041) | ||||||
C/C-T/T | 0 | 0 | 9 | 0.084 | - | - |
C/C-T/C | 14 | 0.131 | 11 | 0.103 | 0.76 (0.33–1.76) * | 0.773 # |
C/C-C/C | 4 | 0.037 | 9 | 0.084 | 2.37 (0.71–7.93) * | 0.299 # |
G/C-T/T | 2 | 0.019 | 9 | 0.084 | 4.82 (1.02–22.87) * | 0.094 # |
G/C-T/C | 23 | 0.215 | 26 | 0.243 | 1.17 (0.62–2.20) * | 0.860 # |
G/C-C/C | 20 | 0.187 | 16 | 0.150 | 0.77 (0.37–1.57) * | 0.715 # |
G/G-T/T | 0 | 0 | 4 | 0.037 | - | - |
G/G-T/C | 27 | 0.252 | 18 | 0.168 | 0.60 (0.31–1.17) * | 0.248 # |
G/G-C/C | 17 | 0.159 | 5 | 0.047 | 0.26 (0.09–0.73) * B 0.45 (0.09–2.28)0.851 Cv0.26 (0.09–0.73) | 0.022 # 0.337 0.022 |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.-227G > C—NOS2 (rs10459953) vs. c.47T > C (p.Val16Ala)—SOD2 (rs4880) | ||||||
G/G-T/T | 1 | 0.009 | 3 | 0.028 | 3.06 (0.31–29.87) * | 0.560 # |
G/G-T/C | 32 | 0.299 | 17 | 0.159 | 0.44 (0.23–0.86) * B 0.66 (0.47–0.93)0.716 Cv0.44 (0.23–0.86) | 0.032 # 0.018 0.032 # |
G/G-C/C | 11 | 0.103 | 7 | 0.065 | 0.61 (0.23–1.64) * | 0.548 # |
G/C-T/T | 1 | 0.009 | 14 | 0.131 | 15.96 (2.06–123.68) * B 41.23 (0.05–36,529.68)0.070 Cv0.44 (0.23–0.86) | 0.016 # 0.283 0.016 # |
G/C-T/C | 29 | 0.271 | 27 | 0.252 | 0.91 (0.49–1.67) * | 0.940 # |
G/C-C/C | 15 | 0.140 | 10 | 0.093 | 0.62 (0.27–1.48) * | 0.496 # |
C/C-T/T | 0 | 0 | 6 | 0.056 | - | - |
C/C-T/C | 10 | 0.093 | 13 | 0.121 | 1.34 (0.56–3.21) * | 0.759 # |
C/C-C/C | 8 | 0.075 | 10 | 0.093 | 1.28 (0.48–3.37) * | 0.858 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
c.1823C > T (p.Ser608Leu)—NOS2 (rs2297518) vs. c.660T > C—GPX4 (rs713041) | ||||||
C/C-T/T | 0 | 0 | 16 | 0.150 | - | - |
C/C-T/C | 5 | 0.047 | 46 | 0.430 | 15.38 (5.80–40.82) * B 4.30 (1.56–11.83)0.352 Cv15.38 (5.80–40.82) | <0.001 # 0.005 <0.001 # |
C/C-C/C | 2 | 0.019 | 19 | 0.178 | 11.34 (2.57–50.01) * B 8.12 (0.07–951.43)0.141 Cv11.34 (2.57–50.01) | 0.002 # 0.389 0.002 # |
C/T-T/T | 1 | 0.009 | 6 | 0.056 | 6.30 (0.75–53.23) * | 0.174 # |
C/T-T/C | 17 | 0.159 | 8 | 0.075 | 0.43 (0.18–1.04) * | 0.118 |
C/T-C/C | 14 | 0.131 | 10 | 0.093 | 0.69 (0.29–1.62) * | 0.625 |
T/T-T/T | 1 | 0.009 | 0 | 0 | - | - |
T/T-T/C | 42 | 0.393 | 1 | 0.009 | 0.02 (0.002–0.11) * B 0.01 (0.0001–10.98)0.998 Cv0.02 (0.002–0.11) | <0.001 # 0.198 <0.001 # |
T/T-C/C | 25 | 0.234 | 1 | 0.009 | 0.03 (0.004–0.23) * B 0.02 (0.0001–13.95)0.992 Cv0.03 (0.004–0.23) | 0.002 # 0.229 0.002 |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
g.117803515C > T—NOS1 (rs1879417) vs. c.47T > C (p.Val16Ala)—SOD2 (rs4880) | ||||||
C/C-T/T | 0 | 0 | 1 | 0.009 | - | - |
C/C-T/C | 1 | 0.009 | 18 | 0.168 | 21.44 (2.81–163.77) * B 50.55 (0.05–48,833.74)0.070 Cv21.44 (2.81–163.77) | 0.006 # 0.263 0.006 # |
C/C-C/C | 0 | 0 | 9 | 0.084 | - | - |
C/T-T/T | 1 | 0.009 | 15 | 0.140 | 17.28 (2.24–133.37) * B 49.37 (0.05–47,718.94)0.070 Cv17.28 (2.24–133.37) | 0.012 # 0.266 0.012 # |
C/T-T/C | 48 | 0.449 | 24 | 0.224 | 0.36 (0.20–0.64) * B 0.59 (0.44–0.79)0.925 Cv0.36 (0.20–0.64) | 0.001 # <0.01 0.001 # |
C/T-C/C | 25 | 0.234 | 10 | 0.093 | 0.34 (0.15–0.75) * B 0.56 (0.37–0.86)0.834 Cv0.34 (0.15–0.75) | 0.014 # 0.007 0.014 # |
T/T-T/T | 1 | 0.009 | 7 | 0.065 | 7.42 (0.90–61.39) * | 0.122 # |
T/T-T/C | 22 | 0.206 | 15 | 0.140 | 0.63 (0.31–1.29) * | 0.373 # |
T/T-C/C | 9 | 0.084 | 8 | 0.075 | 0.88 (0.33–2.37) * | 0.960 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
g.117803515C > T—NOS1 (rs1879417) vs. c.-89A > T—CAT (rs7943316) | ||||||
C/C-A/A | 0 | 0 | 6 | 0.056 | - | - |
C/C-A/T | 0 | 0 | 12 | 0.112 | - | - |
C/C-T/T | 1 | 0.009 | 10 | 0.093 | 10.93 (1.37–86.95) * B 37.12 (0.04–34,331.70)0.070 Cv10.93 (1.37–86.95) | 0.047 # 0.300 0.047 # |
C/T-A/A | 11 | 0.103 | 5 | 0.047 | 0.43 (0.14–1.28) * | 0.240 # |
C/T-A/T | 33 | 0.308 | 31 | 0.290 | 0.92 (0.51–1.64) * | 0.945 # |
C/T-T/T | 30 | 0.280 | 13 | 0.121 | 0.36 (0.17–0.73) * B 0.59 (0.40–0.86)0.848 Cv0.36 (0.17–0.73) | 0.010 # 0.007 0.010 # |
T/T-A/A | 9 | 0.084 | 4 | 0.037 | 0.42 (0.13–1.42) * | 0.299 # |
T/T-A/T | 13 | 0.121 | 16 | 0.150 | 1.27 (0.58–2.79) * | 0.798 # |
T/T-T/T | 10 | 0.093 | 10 | 0.093 | 1.00 (0.40–2.51) * | 1.000 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
g.117803515C > T—NOS1 (rs1879417) vs. c.660T > C—GPX4 (rs713041) | ||||||
C/C-T/T | 0 | 0 | 2 | 0.019 | - | - |
C/C-T/C | 0 | 0 | 19 | 0.178 | - | - |
C/C-C/C | 1 | 0.009 | 7 | 0.065 | 7.42 (0.90–61.39) * | 0.122 # |
C/T-T/T | 2 | 0.019 | 15 | 0.140 | 8.56 (1.91–38.43) * B 6.90 (0.06–768.93)0.141 Cv8.56 (1.91–38.43) | 0.010 # 0.422 # 0.010 # |
C/T-T/C | 43 | 0.402 | 19 | 0.178 | 0.32 (0.17–0.60) * B 0.56 (0.40–0.77)0.942 Cv0.32 (0.17–0.60) | 0.001 # <0.01 0.001 # |
C/T-C/C | 29 | 0.271 | 15 | 0.140 | 0.44 (0.22–0.88) * B 0.66 (0.46–0.94)0.699 Cv0.44 (0.22–0.88) | 0.040 # 0.023 0.040 # |
T/T-T/T | 0 | 0 | 5 | 0.047 | - | - |
T/T-T/C | 21 | 0.196 | 17 | 0.159 | 0.77 (0.38–1.57) * | 0.724 # |
T/T-C/C | 11 | 0.103 | 8 | 0.075 | 0.71 (0.27–1.83) * | 0.722 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
g.117803515C > T—NOS1 (rs1879417) vs. c.-227G > C—NOS2 (rs10459953) | ||||||
C/C-C/C | 0 | 0 | 6 | 0.056 | - | - |
C/C-C/G | 1 | 0.009 | 13 | 0.121 | 14.66 (1.88–114.20) * B 43.67 (0.05–40,104.99)0.070 Cv14.66 (1.88–114.20) | 0.020 # 0.278 0.020 # |
C/C-G/G | 0 | 0 | 9 | 0.0084 | - | - |
C/T-C/C | 10 | 0.093 | 13 | 0.12 | 1.34 (0.56–3.21) * | 0.759 # |
C/T-C/G | 33 | 0.308 | 25 | 0.234 | 0.68 (0.37–1.26) | 0.392 # |
C/T-G/G | 31 | 0.290 | 11 | 0.103 | 0.28 (0.13–0.60) * B 0.53 (0.36–0.77)0.935 Cv0.28 (0.13–0.60) | 0.002 # 0.001 0.002 # |
T/T-C/C | 8 | 0.075 | 10 | 0.093 | 1.28 (0.48–3.37) * | 0.858 # |
T/T-C/G | 11 | 0.103 | 13 | 0.121 | 1.21 (0.52–2.83) * | 0.888 # |
T/T-G/G | 13 | 0.121 | 7 | 0.065 | 0.51 (0.19–1.32) * | 0.303 # |
Genotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
Number | Frequency | Number | Frequency | |||
g.117803515C > T—NOS1 (rs1879417) vs. c.1823C > T (p.Ser608Leu)—NOS2 (rs2297518) | ||||||
C/C-C/C | 0 | 0 | 19 | 0.178 | - | - |
C/C-C/T | 0 | 0 | 8 | 0.075 | - | - |
C/C-T/T | 1 | 0.009 | 1 | 0.009 | 1.00 (0.06–16.20) * | 1.000 # |
C/T-C/C | 7 | 0.065 | 34 | 0.318 | 6.65 (2.79–15.84) * B 2.66 (1.67–4.25)0.472 Cv6.65 (2.79–15.84) | <0.001 # <0.001 <0.001 # |
C/T-C/T | 21 | 0.196 | 15 | 0.140 | 0.67 (0.32–1.38) * | 0.474 # |
C/T-T/T | 46 | 0.430 | 0 | 0 | - | - |
T/T-C/C | 0 | 0 | 28 | 0.262 | - | - |
T/T-C/T | 11 | 0.103 | 1 | 0.009 | 0.08 (0.01–0.65) * B 0.03 (0.0001–22.48)0.926 Cv0.08 (0.01–0.65) | 0.036 # 0.289 0.036 # |
T/T-T/T | 21 | 0.196 | 1 | 0.009 | 0.04 (0.01–0.29) * B 0.02 (0.0001–15.69)0.987 Cv0.04 (0.01–0.29) | 0.004 # 0.238 0.004 # |
Haplotype | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p * | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
TC | 10 | 0.046 | 64 | 0.299 | 0.11 (0.06–0.23) | 0.0001 |
TG | 18 | 0.084 | 104 | 0.485 | 0.10 (0.06–0.17) | 0.0001 |
CC | 99 | 0.462 | 17 | 0.079 | 9.98 (5.68–17.53) | 0.0001 |
CG | 87 | 0.406 | 29 | 0.135 | 4.37 (2.71–7.04) | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Synowiec, E.; Wigner, P.; Cichon, N.; Watala, C.; Czarny, P.; Saluk-Bijak, J.; Miller, E.; Sliwinski, T.; Zielinska-Nowak, E.; Bijak, M. Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population—A Preliminary Study. Brain Sci. 2021, 11, 391. https://doi.org/10.3390/brainsci11030391
Synowiec E, Wigner P, Cichon N, Watala C, Czarny P, Saluk-Bijak J, Miller E, Sliwinski T, Zielinska-Nowak E, Bijak M. Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population—A Preliminary Study. Brain Sciences. 2021; 11(3):391. https://doi.org/10.3390/brainsci11030391
Chicago/Turabian StyleSynowiec, Ewelina, Paulina Wigner, Natalia Cichon, Cezary Watala, Piotr Czarny, Joanna Saluk-Bijak, Elzbieta Miller, Tomasz Sliwinski, Ewa Zielinska-Nowak, and Michal Bijak. 2021. "Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population—A Preliminary Study" Brain Sciences 11, no. 3: 391. https://doi.org/10.3390/brainsci11030391
APA StyleSynowiec, E., Wigner, P., Cichon, N., Watala, C., Czarny, P., Saluk-Bijak, J., Miller, E., Sliwinski, T., Zielinska-Nowak, E., & Bijak, M. (2021). Single-Nucleotide Polymorphisms in Oxidative Stress-Related Genes and the Risk of a Stroke in a Polish Population—A Preliminary Study. Brain Sciences, 11(3), 391. https://doi.org/10.3390/brainsci11030391