Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Episodic Memory Task
2.3. Transcranial Direct-Current Stimulation
2.3.1. Determining the Target Location through Functional Connectivity Analysis
2.3.2. Current Flow Simulation
2.4. Polysomnography
2.5. Study Procedure
2.6. Data Processing and Analysis
2.6.1. Sleep Staging
2.6.2. EEG Preprocessing
2.6.3. Quantification of Slow-Wave Density
2.6.4. Quantification of Spindle Density
2.6.5. Quantification of Spindle Nesting
2.7. Significance Tests
3. Results
3.1. Effect of tDCS on Sleep Macrostructure
3.2. Effect of tDCS on Sleep Microstructure
3.2.1. tDCS Increased Slow-Wave Density and Nesting of Spindles in Slow-Wave up States
3.2.2. Controlling for Potential Confounding Variables
3.3. Effect of tDCS on Memory Performance
3.3.1. tDCS Had No Overall Effect on Memory Retention across Sleep
3.3.2. tDCS Selectively Impaired Memory Retention after Poor Learning
3.3.3. Sleep Microstructure Changes Were Not Related to Memory
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tulving, E. Episodic memory: From mind to brain. Annu. Rev. Psychol. 2002, 53, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, L.; Backman, L.; Erngrund, K.; Olofsson, U.; Nilsson, L.G. Age differences in episodic memory, semantic memory, and priming: Relationships to demographic, intellectual, and biological factors. J. Gerontol. 1996, 51, P234–P240. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.G. Memory function in normal aging. Acta Neurol. Scand. 2003, 179, 7–13. [Google Scholar] [CrossRef]
- Sperling, R.A.; Bates, J.F.; Chua, E.F.; Cocchiarella, A.J.; Rentz, D.M.; Rosen, B.R.; Schacter, D.L.; Albert, M.S. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 44–50. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Dekosky, S.T.; Barberger-Gateau, P.; Cummings, J.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Berna, F.; Potheegadoo, J.; Aouadi, I.; Ricarte, J.J.; Alle, M.C.; Coutelle, R.; Boyer, L.; Cuervo-Lombard, C.V.; Danion, J.M. A Meta-Analysis of Autobiographical Memory Studies in Schizophrenia Spectrum Disorder. Schizophr. Bull. 2016, 42, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.C.; Wang, Y.Y.; Zheng, W.; Zhang, Q.; Ungvari, G.S.; Ng, C.H.; Zhang, J.; Xiang, Y.T. Prospective memory deficits in patients with depression: A meta-analysis. J. Affect. Disord. 2017, 220, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.C.; Wang, Y.Y.; Zheng, W.; Ungvari, G.S.; Ng, C.H.; Yuan, Z.; Xiang, Y.T. Prospective memory in bipolar disorder: A meta-analysis. Psychiatry Res. 2018, 259, 184–190. [Google Scholar] [CrossRef]
- Rasch, B.; Born, J. About sleep’s role in memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef]
- Krystal, A.D. Sleep therapeutics and neuropsychiatric illness. Neuropsychopharmacology 2020, 45, 166–175. [Google Scholar] [CrossRef]
- Göder, R.; Boigs, M.; Braun, S.; Friege, L.; Fritzer, G.; Aldenhoff, J.B.; Hinze-Selch, D. Impairment of visuospatial memory is associated with decreased slow wave sleep in schizophrenia. J. Psychiatr. Res. 2004, 38, 591–599. [Google Scholar] [CrossRef]
- Göder, R.; Graf, A.; Ballhausen, F.; Weinhold, S.; Baier, P.C.; Junghanns, K.; Prehn-Kristensen, A. Impairment of sleep-related memory consolidation in schizophrenia: Relevance of sleep spindles? Sleep Med. 2015, 16, 564–569. [Google Scholar] [CrossRef]
- Manoach, D.; Stickgold, R. Does abnormal sleep impair memory consolidation in schizophrenia? Front. Hum. Neurosci. 2009, 3, 21. [Google Scholar] [CrossRef]
- Squire, L.R.; Wixted, J.T. The Cognitive Neuroscience of Human Memory Since HM. Annu. Rev. Neurosci. 2011, 34, 259–288. [Google Scholar] [CrossRef]
- Klinzing, J.G.; Niethard, N.; Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 2019, 22, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Staresina, B.P.; Bergmann, T.O.; Bonnefond, M.; van der Meij, R.; Jensen, O.; Deuker, L.; Elger, C.E.; Axmacher, N.; Fell, J. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat. Neurosci. 2015, 18, 1679–1686. [Google Scholar] [CrossRef]
- Barham, M.P.; Enticott, P.G.; Conduit, R.; Lum, J.A.G. Transcranial electrical stimulation during sleep enhances declarative (but not procedural) memory consolidation: Evidence from a meta-analysis. Neurosci. Biobehav. Rev. 2016, 63, 65–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Gruber, R. Can Slow-Wave Sleep Enhancement Improve Memory? A Review of Current Approaches and Cognitive Outcomes. Yale J. Biol. Med. 2019, 92, 63–80. [Google Scholar]
- Oudiette, D.; Paller, K.A. Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn. Sci. 2013, 17, 142–149. [Google Scholar] [CrossRef]
- Greenberg, A.; Whitten, T.A.; Dickson, C.T. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states. Neuroimage 2016, 133, 189–206. [Google Scholar] [CrossRef]
- Marshall, L.; Helgadottir, H.; Molle, M.; Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 2006, 444, 610–613. [Google Scholar] [CrossRef]
- Ngo, H.V.; Martinetz, T.; Born, J.; Molle, M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef]
- Bueno-Lopez, A.; Eggert, T.; Dorn, H.; Danker-Hopfe, H. Slow oscillatory transcranial direct current stimulation (so-tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects. Brain Stimul. 2019, 12, 948–958. [Google Scholar] [CrossRef]
- Henin, S.; Borges, H.; Shankar, A.; Sarac, C.; Melloni, L.; Friedman, D.; Flinker, A.; Parra, L.C.; Buzsaki, G.; Devinsky, O.; et al. Closed-loop acoustic stimulation enhances sleep oscillations but not memory performance. Eneuro 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Grimaldi, D.; Papalambros, N.A.; Zee, P.C.; Malkani, R.G. Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol. Dis. 2020, 141, 104865. [Google Scholar] [CrossRef]
- Kim, J.; Gulati, T.; Ganguly, K. Competing Roles of Slow Oscillations and Delta Waves in Memory Consolidation versus Forgetting. Cell 2019, 179, 514–526.e513. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and synaptic homeostasis: A hypothesis. Brain Res. Bull. 2003, 62, 143–150. [Google Scholar] [CrossRef]
- Bolzoni, F.; Pettersson, L.-G.; Jankowska, E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J. Physiol. 2013, 591, 3381–3399. [Google Scholar] [CrossRef] [PubMed]
- Andrade, K.C.; Spoormaker, V.I.; Dresler, M.; Wehrle, R.; Holsboer, F.; Samann, P.G.; Czisch, M. Sleep spindles and hippocampal functional connectivity in human NREM sleep. J. Neurosci. 2011, 31, 10331–10339. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Antonenko, D.; Hayek, D.; Netzband, J.; Grittner, U.; Flöel, A. tDCS-induced episodic memory enhancement and its association with functional network coupling in older adults. Sci. Rep. 2019, 9, 2273. [Google Scholar] [CrossRef]
- Antonenko, D.; Külzow, N.; Sousa, A.; Prehn, K.; Grittner, U.; Flöel, A. Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiol. Aging 2018, 61, 245–254. [Google Scholar] [CrossRef]
- Fiori, V.; Nitsche, M.; Iasevoli, L.; Cucuzza, G.; Caltagirone, C.; Marangolo, P. Differential effects of bihemispheric and unihemispheric transcranial direct current stimulation in young and elderly adults in verbal learning. Behav. Brain Res. 2017, 321, 170–175. [Google Scholar] [CrossRef]
- Perceval, G.; Martin, A.K.; Copland, D.A.; Laine, M.; Meinzer, M. High-definition tDCS of the temporo-parietal cortex enhances access to newly learned words. Sci. Rep. 2017, 7, 17023. [Google Scholar] [CrossRef]
- Massimini, M.; Huber, R.; Ferrarelli, F.; Hill, S.; Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 2004, 24, 6862–6870. [Google Scholar] [CrossRef]
- Massimini, M.; Ferrarelli, F.; Esser, S.K.; Riedner, B.A.; Huber, R.; Murphy, M.; Peterson, M.J.; Tononi, G. Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. USA 2007, 104, 8496–8501. [Google Scholar] [CrossRef]
- Muehlroth, B.E.; Sander, M.C.; Fandakova, Y.; Grandy, T.H.; Rasch, B.; Shing, Y.L.; Werkle-Bergner, M. Precise Slow Oscillation-Spindle Coupling Promotes Memory Consolidation in Younger and Older Adults. Sci. Rep. 2019, 9, 1940. [Google Scholar] [CrossRef]
- Furuya, S.; Klaus, M.; Nitsche, M.A.; Paulus, W.; Altenmuller, E. Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J. Neurosci. 2014, 34, 13834–13839. [Google Scholar] [CrossRef]
- Habich, A.; Klöppel, S.; Abdulkadir, A.; Scheller, E.; Nissen, C.; Peter, J. Anodal tDCS Enhances Verbal Episodic Memory in Initially Low Performers. Front. Hum. Neurosci. 2017, 11, 542. [Google Scholar] [CrossRef] [PubMed]
- Turkeltaub, P.E.; Benson, J.; Hamilton, R.H.; Datta, A.; Bikson, M.; Coslett, H.B. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012, 5, 201–207. [Google Scholar] [CrossRef]
- Rosen, D.S.; Erickson, B.; Kim, Y.E.; Mirman, D.; Hamilton, R.H.; Kounios, J. Anodal tDCS to Right Dorsolateral Prefrontal Cortex Facilitates Performance for Novice Jazz Improvisers but Hinders Experts. Front. Hum. Neurosci. 2016, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Wang, N.; Du, J.; Kong, L.; Liu, S.; Xu, M.; An, X.; Ming, D. The Effects of Transcranial Direct Current Stimulation (tDCS) on Working Memory Training in Healthy Young Adults. Front. Hum. Neurosci. 2019, 13, 19. [Google Scholar] [CrossRef]
- Genzel, L.; Kiefer, T.; Renner, L.; Wehrle, R.; Kluge, M.; Grozinger, M.; Steiger, A.; Dresler, M. Sex and modulatory menstrual cycle effects on sleep related memory consolidation. Psychoneuroendocrinology 2012, 37, 987–998. [Google Scholar] [CrossRef]
- Stiasny-Kolster, K.; Möller, J.C.; Heinzel-Gutenbrunner, M.; Baum, E.; Ries, V.; Oertel, W.H. Validation of the restless legs syndrome screening questionnaire (RLSSQ). Somnologie—Schlafforschung Schlafmed. 2009, 13, 37–42. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The Fatigue Severity Scale: Application to Patients With Multiple Sclerosis and Systemic Lupus Erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.J.; Wechsler, H.; Huang, J.; Rauss, P.J. The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 1998, 16, 295–306. [Google Scholar] [CrossRef]
- Phillips, P.J.; Moon, H.; Rizvi, S.A.; Rauss, P.J. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1090–1104. [Google Scholar] [CrossRef]
- Ruch, S.; Zust, M.A.; Henke, K. Subliminal messages exert long-term effects on decision-making. Neurosci. Conscious. 2016, 2016, niw013. [Google Scholar] [CrossRef]
- Svoboda, E.; McKinnon, M.C.; Levine, B. The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia 2006, 44, 2189–2208. [Google Scholar] [CrossRef]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.J.; Yacoub, E.; Ugurbil, K.; Consortium, W.-M.H. The WU-Minn Human Connectome Project: An overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef]
- Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.Q.; Jbabdi, S.; Webster, M.; Polimeni, J.R.; et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 2013, 80, 105–124. [Google Scholar] [CrossRef]
- Eickhoff, S.B.; Stephan, K.E.; Mohlberg, H.; Grefkes, C.; Fink, G.R.; Amunts, K.; Zilles, K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005, 25, 1325–1335. [Google Scholar] [CrossRef]
- Huang, Y.; Parra, L.C. Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul. 2019, 12, 30–40. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Nitsche, M.; Bermpohl, F.; Antal, A.; Feredoes, E.; Marcolin, M.A.; Rigonatti, S.P.; Silva, M.T.A.; Paulus, W.; et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 2005, 166, 23–30. [Google Scholar] [CrossRef]
- Hoy, K.E.; Arnold, S.L.; Emonson, M.R.L.; Daskalakis, Z.J.; Fitzgerald, P.B. An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophr. Res. 2014, 155, 96–100. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.I.; Foerster, A.; Nitsche, M.A. Transcranial direct current stimulation (tDCS)—Application in neuropsychology. Neuropsychologia 2015, 69, 154–175. [Google Scholar] [CrossRef]
- Iber, C. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. [Google Scholar]
- Dickey, C.W.; Sargsyan, A.; Madsen, J.R.; Eskandar, E.N.; Cash, S.S.; Halgren, E. Travelling spindles create necessary conditions for spike-timing-dependent plasticity in humans. Nat. Commun. 2021, 12, 1027. [Google Scholar] [CrossRef]
- Jiang, X.; Shamie, I.; Doyle, W.; Friedman, D.; Dugan, P.; Devinsky, O.; Eskandar, E.; Cash, S.S.; Thesen, T.; Halgren, E. Replay of large-scale spatio-temporal patterns from waking during subsequent NREM sleep in human cortex. Sci. Rep. 2017, 7, 17380. [Google Scholar] [CrossRef]
- Zust, M.A.; Ruch, S.; Wiest, R.; Henke, K. Implicit vocabulary learning during sleep is bound to slow-wave peaks. Curr. Biol. 2019, 29, 541–553. [Google Scholar] [CrossRef]
- Campbell, I.G. EEG Recording and Analysis for Sleep Research. Curr. Protoc. Neurosci. 2009, 49, 10.2.1–10.2.19. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Fertonani, A.; Ferrari, C.; Miniussi, C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin. Neurophysiol. 2015, 126, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Tyler, W.J.; Boasso, A.M.; Mortimore, H.M.; Silva, R.S.; Charlesworth, J.D.; Marlin, M.A.; Aebersold, K.; Aven, L.; Wetmore, D.Z.; Pal, S.K. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans. Sci. Rep. 2015, 5, 13865. [Google Scholar] [CrossRef]
- Asamoah, B.; Khatoun, A.; Mc Laughlin, M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat. Commun. 2019, 10, 266. [Google Scholar] [CrossRef]
- Guleyupoglu, B.; Febles, N.; Minhas, P.; Hahn, C.; Bikson, M. Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine. Front. Neuroeng. 2014, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.; Tucker, M.A.; Fishbein, W. Daytime napping: Effects on human direct associative and relational memory. Neurobiol. Learn. Mem. 2010, 93, 554–560. [Google Scholar] [CrossRef]
- Tucker, M.A.; Fishbein, W. Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. Sleep 2008, 31, 197–203. [Google Scholar] [CrossRef]
- Cox, R.; Fell, J. Analyzing human sleep EEG: A methodological primer with code implementation. Sleep Med. Rev. 2020, 54, 101353. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Ruch, S.; Koenig, T.; Mathis, J.; Roth, C.; Henke, K. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming. Front. Psychol. 2014, 5, 1319. [Google Scholar] [CrossRef]
- Helfrich, R.F.; Mander, B.A.; Jagust, W.J.; Knight, R.T.; Walker, M.P. Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. Neuron 2018, 97, 221–230.e224. [Google Scholar] [CrossRef]
- Cox, R.; Schapiro, A.C.; Manoach, D.S.; Stickgold, R. Individual Differences in Frequency and Topography of Slow and Fast Sleep Spindles. Front. Hum. Neurosci. 2017, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Cairney, S.A.; Guttesen, A.A.V.; El Marj, N.; Staresina, B.P. Memory Consolidation Is Linked to Spindle-Mediated Information Processing during Sleep. Curr. Biol. 2018, 28, 948–954.e944. [Google Scholar] [CrossRef]
- Czisch, M.; Wehrle, R. EEG-fMRI: Sleep; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Finelli, L.A.; Achermann, P.; Borbély, A.A. Individual ‘Fingerprints’ in Human Sleep EEG Topography. Neuropsychopharmacology 2001, 25, S57–S62. [Google Scholar] [CrossRef]
- Lustenberger, C.; Wehrle, F.; Tushaus, L.; Achermann, P.; Huber, R. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation. Sleep 2015, 38, 1093–1103. [Google Scholar] [CrossRef]
- Spano, G.; Weber, F.D.; Pizzamiglio, G.; McCormick, C.; Miller, T.D.; Rosenthal, C.R.; Edgin, J.O.; Maguire, E.A. Sleeping with Hippocampal Damage. Curr. Biol. 2020, 30, 523–529.e523. [Google Scholar] [CrossRef]
- Hu, X.Q.; Cheng, L.Y.; Chiu, M.H.; Paller, K. Promoting Memory Consolidation During Sleep: A Meta-Analysis of Targeted Memory Reactivation. Psychol. Bull. 2020, 146, 218–244. [Google Scholar] [CrossRef]
- Cellini, N.; Mednick, S.C. Stimulating the sleeping brain: Current approaches to modulating memory-related sleep physiology. J. Neurosci. Methods 2019, 316, 125–136. [Google Scholar] [CrossRef]
- Wilckens, K.A.; Ferrarelli, F.; Walker, M.P.; Buysse, D.J. Slow-Wave Activity Enhancement to Improve Cognition. Trends Neurosci. 2018, 41, 470–482. [Google Scholar] [CrossRef]
- Feld, G.B.; Wilhelm, I.; Ma, Y.; Groch, S.; Binkofski, F.; Mölle, M.; Born, J. Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation. Sleep 2013, 36, 1317–1326. [Google Scholar] [CrossRef]
- Bennion, K.A.; Payne, J.D.; Kensinger, E.A. The Impact of Napping on Memory for Future-Relevant Stimuli: Prioritization Among Multiple Salience Cues. Behav. Neurosci. 2016, 130, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Geva-Sagiv, M.; Nir, Y. Local Sleep Oscillations: Implications for Memory Consolidation. Front. Neurosci. 2019, 13, 813. [Google Scholar] [CrossRef] [PubMed]
- Gottesmann, C. GABA mechanisms and sleep. Neuroscience 2002, 111, 231–239. [Google Scholar] [CrossRef]
- Patel, H.J.; Romanzetti, S.; Pellicano, A.; Nitsche, M.A.; Reetz, K.; Binkofski, F. Proton Magnetic Resonance Spectroscopy of the motor cortex reveals long term GABA change following anodal Transcranial Direct Current Stimulation. Sci. Rep. 2019, 9, 2807. [Google Scholar] [CrossRef]
- González-Rueda, A.; Pedrosa, V.; Feord, R.C.; Clopath, C.; Paulsen, O. Activity-Dependent Downscaling of Subthreshold Synaptic Inputs during Slow-Wave-Sleep-like Activity In Vivo. Neuron 2018, 97, 1244–1252.e1245. [Google Scholar] [CrossRef]
- Ngo, H.-v.V.; Claussen, J.C.; Born, J.; Mölle, M. Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 2013, 22, 22–31. [Google Scholar] [CrossRef]
- Marshall, L.; Kirov, R.; Brade, J.; Molle, M.; Born, J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS ONE 2011, 6, e16905. [Google Scholar] [CrossRef]
- Brancaccio, A.; Tabarelli, D.; Bigica, M.; Baldauf, D. Cortical source localization of sleep-stage specific oscillatory activity. Sci. Rep. 2020, 10, 6976. [Google Scholar] [CrossRef]
Sham 1 | tDCS | tDCS vs. Sham | ||||
---|---|---|---|---|---|---|
Parameter | mean | sd | mean | sd | Χ2(1) | p |
Slow waves (SWs) | ||||||
SW density (SW/min) | 16.466 | 3.333 | 20.046 | 4.628 | 11.687 | <0.001 |
SW duration (s) | 1.228 | 0.067 | 1.189 | 0.041 | 7.284 | 0.007 |
Down-state amplitude (μV) | −29.528 | 15.071 | −29.372 | 12.543 | 0.003 | 0.958 |
Down-to-up state amplitude (μV) | 53.966 | 27.422 | 53.605 | 23.602 | 0.008 | 0.931 |
Spindles (SPDs) | ||||||
Spindle density (SPD/min) | 7.112 | 1.998 | 7.934 | 1.458 | 2.539 | 0.111 |
Spindle duration (s) | 0.805 | 0.103 | 0.828 | 0.073 | 0.470 | 0.493 |
Nesting: SPDs per SWs | 0.359 | 0.077 | 0.423 | 0.086 | 6.789 | 0.009 |
Nesting: SW-SPDs per Up-state | 0.514 | 0.105 | 0.574 | 0.069 | 4.500 | 0.034 |
Memory performance (N remembered) | ||||||
Pre-nap | 11.444 | 5.008 | 12.056 | 4.193 | 0.008 | 0.928 |
Post-nap | 10.167 | 3.015 | 10.722 | 4.980 | 0.048 | 0.826 |
Change (pre-post) | −1.278 | 2.986 | −1.333 | 2.679 | 0.119 | 0.730 |
Time per sleep stage (min) | ||||||
Time in bed | 93.944 | 18.555 | 97.389 | 22.442 | 0.274 | 0.601 |
Time in Wakefulness | 18.472 | 12.765 | 24.833 | 23.739 | 2.761 | 0.097 |
Time in N1 | 15.417 | 10.429 | 16.833 | 10.489 | 0.076 | 0.783 |
Time in N2 | 28.583 | 19.655 | 28.833 | 18.830 | 0.099 | 0.753 |
Time in SWS | 28.167 | 15.360 | 24.917 | 22.538 | 0.189 | 0.664 |
Time in NREM (N2/SWS) | 56.750 | 19.708 | 53.750 | 24.006 | 0.342 | 0.559 |
Stimulation | ||||||
Onset time | 25.730 | 14.008 | 25.780 | 22.515 | 0.229 | 0.632 |
Analyzed EEG data (min) | 31.550 | 21.884 | 35.644 | 20.834 | 0.558 | 0.445 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruch, S.; Fehér, K.; Homan, S.; Morishima, Y.; Mueller, S.M.; Mueller, S.V.; Dierks, T.; Grieder, M. Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation. Brain Sci. 2021, 11, 410. https://doi.org/10.3390/brainsci11040410
Ruch S, Fehér K, Homan S, Morishima Y, Mueller SM, Mueller SV, Dierks T, Grieder M. Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation. Brain Sciences. 2021; 11(4):410. https://doi.org/10.3390/brainsci11040410
Chicago/Turabian StyleRuch, Simon, Kristoffer Fehér, Stephanie Homan, Yosuke Morishima, Sarah Maria Mueller, Stefanie Verena Mueller, Thomas Dierks, and Matthias Grieder. 2021. "Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation" Brain Sciences 11, no. 4: 410. https://doi.org/10.3390/brainsci11040410
APA StyleRuch, S., Fehér, K., Homan, S., Morishima, Y., Mueller, S. M., Mueller, S. V., Dierks, T., & Grieder, M. (2021). Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation. Brain Sciences, 11(4), 410. https://doi.org/10.3390/brainsci11040410