Cognitive Issues in Pediatric Multiple Sclerosis
Abstract
:1. Introduction
2. Cognitive Impairment in Pediatric MS—Clinical Perspective
2.1. Assessment
2.2. Prevalence and Neuropsychological Profile
2.3. Evolution
2.4. Clinical Correlates and Functional Impact
2.5. Mood Disorders
3. Cognitive Impairment in Pediatric MS—The MRI Perspective
3.1. MRI Role in Pediatric MS
3.2. White Matter Lesion Features and Distribution
3.3. Normal Appearing White Matter Damage
3.4. Gray Matter Lesions
3.5. Gray Matter Damage
3.6. Functional MRI
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Renoux, C. Natural history of multiple sclerosis with childhood onset. N. Engl. J. Med. 2007, 356, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Boiko, A.; Vorobeychik, G.; Paty, D.; Devonshire, V.; Sadovnick, D. Early onset multiple sclerosis. Neurology 2002, 59, 1006. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.P.; Healy, B.C.; Polgar-Turcsanyi, M.; Chitnis, T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch. Neurol. 2009, 66, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Chitnis, T.; Aaen, G.; Belman, A.; Benson, L.; Gorman, M.; Goyal, M.S.; Graves, J.S.; Harris, Y.; Krupp, L.; Lotze, T.; et al. Improved relapse recovery in paediatric compared to adult multiple sclerosis. Brain 2020, 143, 2733–2741. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, R.; Brown, R.; Banwell, B.; Narayanan, S.; Arnold, D.L.; Canadian Pediatric Demyelinating Disease Study Group. Quantitative Measurement of tissue damage and recovery within new T2w lesions in pediatric- and adult-onset multiple sclerosis. Mult. Scler. 2015, 21, 718–725. [Google Scholar] [CrossRef]
- McKay, K.A.; Hillert, J.; Manouchehrinia, A. Long-term disability progression of pediatric-onset multiple sclerosis. Neurology 2019, 92, e2764–e2773. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.P.; Krupp, L.B.; Charvet, L.E.; Penner, I.; Till, C. Pediatric multiple sclerosis: Cognition and mood. Neurology 2016, 87, S82–S87. [Google Scholar] [CrossRef] [Green Version]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef]
- Portaccio, E.; Goretti, B.; Lori, S.; Zipoli, V.; Centorrino, S.; Ghezzi, A.; Patti, F.; Bianchi, V.; Comi, G.; Trojano, M.; et al. The brief neuropsychological battery for children: A screening tool for cognitive impairment in childhood and juvenile multiple sclerosis. Mult. Scler. J. 2009, 15, 620–626. [Google Scholar] [CrossRef]
- Gravesande, K.S.V.; Calabrese, P.; Blaschek, A.; Rostásy, K.; Huppke, P.; Rothe, L.; Mall, V.; Kessler, J.; Kalbe, E.; Kraus, V.; et al. The Multiple Sclerosis Inventory of Cognition for Adolescents (MUSICADO): A brief screening instrument to assess cognitive dysfunction, fatigue and loss of health-related quality of life in pediatric-onset multiple sclerosis. Eur. J. Paediatr. Neurol. 2019, 23, 792–800. [Google Scholar] [CrossRef]
- Kalb, R.; Beier, M.; Benedict, R.H.; Charvet, L.; Costello, K.; Feinstein, A.; Gingold, J.; Goverover, Y.; Halper, J.; Harris, C.; et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. 2018, 24, 1665–1680. [Google Scholar] [CrossRef] [Green Version]
- Charvet, L.E.; Beekman, R.; Amadiume, N.; Belman, A.L.; Krupp, L.B. The Symbol Digit Modalities Test is an effective cognitive screen in pediatric onset multiple sclerosis (MS). J. Neurol. Sci. 2014. [Google Scholar] [CrossRef]
- Wallach, A.I.; Waltz, M.; Casper, T.C.; Aaen, G.; Belman, A.; Benson, L.; Chitnis, T.; Gorman, M.; Graves, J.; Harris, Y.; et al. Cognitive processing speed in pediatric-onset multiple sclerosis: Baseline characteristics of impairment and prediction of decline. Mult. Scler. 2020, 26, 1938–1947. [Google Scholar] [CrossRef]
- Langdon, D.; Amato, M.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hämäläinen, P.; Hartung, H.P.; Krupp, L.; Penner, I.K.; et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 2012, 18. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.M.; Leo, G.J.; Bernardin, L.; Unverzagt, F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991, 41, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.E.; Shaw, M.; Frontario, A.; Langdon, D.; Krupp, L.B. Cognitive impairment in pediatric-onset multiple sclerosis is detected by the Brief International Cognitive Assessment for Multiple Sclerosis and computerized cognitive testing. Mult. Scler. J. 2018. [Google Scholar] [CrossRef]
- Rao, S.M.; The Cognitive Function Study Group of the National Multiple Sclerosis Society. A Manual for Brief Repeatable Battery of the Neuropsychological Tests in Multiple Sclerosis; Medical College of Wisconsin: Milwaukee, WI, USA, 1990. [Google Scholar]
- Wuerfel, E.; Weddige, A.; Hagmayer, Y.; Jacob, R.; Wedekind, L.; Stark, W.; Gärtner, J. Cognitive deficits including executive functioning in relation to clinical parameters in paediatric MS patients. PLoS ONE 2018, 13, e0194873. [Google Scholar] [CrossRef] [PubMed]
- Darby, D.; Maruff, P.; Collie, A.; McStephen, M. Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology 2002. [Google Scholar] [CrossRef] [PubMed]
- Bigi, S.; Marrie, R.A.; Till, C.; Yeh, E.A.; Akbar, N.; Feinstein, A.; Banwell, B.L. The computer-based Symbol Digit Modalities Test: Establishing age-expected performance in healthy controls and evaluation of pediatric MS patients. Neurol. Sci. 2017, 38, 635–642. [Google Scholar] [CrossRef]
- De Meo, E.; Portaccio, E.; Giorgio, A.; Ruano, L.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.G.; Gallo, P.; Grossi, P.; et al. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol. 2021. [Google Scholar] [CrossRef]
- MacAllister, W.S.; Belman, A.L.; Milazzo, M.; Weisbrot, D.M.; Christodoulou, C.; Scherl, W.F.; Preston, T.E.; Cianciulli, C.; Krupp, L.B. Cognitive functioning in children and adolescents with multiple sclerosis. Neurology 2005, 64, 1422–1425. [Google Scholar] [CrossRef]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Lori, S.; Zipoli, V.; Portaccio, E.; Moiola, L.; Falautano, M.; De Caro, M.F.; Lopez, M.; et al. Cognitive and psychosocial features of childhood and juvenile MS. Neurology 2008, 70, 1891–1897. [Google Scholar] [CrossRef]
- Till, C.; Ghassemi, R.; Aubert-Broche, B.; Kerbrat, A.; Collins, D.L.; Narayanan, S.; Arnold, D.L.; Desrocher, M.; Sled, J.G.; Banwell, B.L. MRI correlates of cognitive impairment in childhood-onset multiple sclerosis. Neuropsychology 2011, 25, 319–332. [Google Scholar] [CrossRef]
- Julian, L.; Serafin, D.; Charvet, L.; Ackerson, J.; Benedict, R.; Braaten, E.; Brown, T.; O’Donnell, E.; Parrish, J.; Preston, T.; et al. Cognitive Impairment Occurs in Children and Adolescents With Multiple Sclerosis. J. Child Neurol. 2012, 28, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.E.; Banwell, B.B.; Till, C. Cognitive trajectories in 4 patients with pediatric-onset multiple sclerosis: Serial evaluation over a decade. J. Child Neurol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Goretti, B.; Ghezzi, A.; Portaccio, E.; Lori, S.; Zipoli, V.; Razzolini, L.; Moiola, L.; Falautano, M.; De Caro, M.F.; Viterbo, R.; et al. Psychosocial issue in children and adolescents with multiple sclerosis. Neurol. Sci. 2010, 31, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Lori, S.; Zipoli, V.; Moiola, L.; Falautano, M.; De Caro, M.F.; Viterbo, R.; Patti, F.; et al. Cognitive and psychosocial features in childhood and juvenile MS: Two-year follow-up. Neurology 2010, 75, 1134–1140. [Google Scholar] [CrossRef]
- Amato, M.P.; Goretti, B.; Ghezzi, A.; Hakiki, B.; Niccolai, C.; Lori, S.; Moiola, L.; Falautano, M.; Viterbo, R.G.; Patti, F.; et al. Neuropsychological features in childhood and juvenile multiple sclerosis: Five-year follow-up. Neurology 2014, 83, 1432–1438. [Google Scholar] [CrossRef]
- Till, C.; Racine, N.; Araujo, D.; Narayanan, S.; Collins, D.L.; Aubert-Broche, B.; Arnold, D.L.; Banwell, B. Changes in cognitive performance over a 1-year period in children and adolescents with multiple sclerosis. Neuropsychology 2013, 27, 210–219. [Google Scholar] [CrossRef]
- Charvet, L.E.; O’Donnell, E.H.; Belman, A.L.; Chitnis, T.; Ness, J.M.; Parrish, J.; Patterson, M.; Rodriguez, M.; Waubant, E.; Weinstock-Guttman, B.; et al. Longitudinal evaluation of cognitive functioning in pediatric multiple sclerosis: Report from the US Pediatric Multiple Sclerosis Network. Mult. Scler. J. 2014, 20, 1502–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruano, L.; Branco, M.; Portaccio, E.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.; Gallo, P.; Grossi, P.; Ghezzi, A.; et al. Patients with paediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: An Italian collaborative study. Mult. Scler. J. 2017, 24, 1234–1242. [Google Scholar] [CrossRef] [Green Version]
- McKay, K.A.; Manouchehrinia, A.; Berrigan, L.; Fisk, J.D.; Olsson, T.; Hillert, J. Long-term Cognitive Outcomes in Patients With Pediatric-Onset vs Adult-Onset Multiple Sclerosis. JAMA Neurol. 2019, 76, 1028–1034. [Google Scholar] [CrossRef]
- Hosseini, B.; Flora, D.B.; Banwell, B.L.; Till, C. Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis. J. Int. Neuropsychol. Soc. 2014, 20, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Pastò, L.; Portaccio, E.; Goretti, B.; Ghezzi, A.; Lori, S.; Hakiki, B.; Giannini, M.; Righini, I.; Razzolini, L.; Niccolai, C.; et al. The cognitive reserve theory in the setting of pediatric-onset multiple sclerosis. Mult. Scler. J. 2016, 22, 1741–1749. [Google Scholar] [CrossRef]
- Portaccio, E.; Simone, M.; Prestipino, E.; Bellinvia, A.; Pastò, L.; Niccolai, M.; Razzolini, L.; Fratangelo, R.; Tudisco, L.; Fonderico, M.; et al. Cognitive reserve is a determinant of social and occupational attainment in patients with pediatric and adult onset multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 42, 102145. [Google Scholar] [CrossRef]
- Bellinvia, A.; Fratangelo, R.; Portaccio, E.; Fonderico, M.; Tudisco, L.; Razzolini, L.; Pastò, L.; Goretti, B.; Niccolai, C.; on Behalf of the Italian Multiple Sclerosis Register; et al. Cognition and socio-professional attainment in paediatric onset multiple sclerosis: A reappraisal after 10 years [Conference Presentation Abstract] MSVirtual 2020—Platform Presentations. Mult. Scler. J. 2020, 26, 41–42. [Google Scholar] [CrossRef]
- Boesen, M.S.; Blinkenberg, M.; Thygesen, L.C.; Eriksson, F.; Magyari, M. School performance, psychiatric comorbidity, and healthcare utilization in pediatric multiple sclerosis: A nationwide population-based observational study. Mult. Scler. 2021, 27, 259–267. [Google Scholar] [CrossRef]
- McKay, K.A.; Friberg, E.; Razaz, N.; Alexanderson, K.; Hillert, J. Long-term Socioeconomic Outcomes Associated With Pediatric-Onset Multiple Sclerosis. JAMA Neurol. 2021. [Google Scholar] [CrossRef]
- Feinstein, A.; Magalhaes, S.; Richard, J.F.; Audet, B.; Moore, C. The link between multiple sclerosis and depression. Nat. Rev. Neurol. 2014, 10, 507. [Google Scholar] [CrossRef]
- Weisbrot, D.; Charvet, L.; Serafin, D.; Milazzo, M.; Preston, T.; Cleary, R.; Moadel, T.; Seibert, M.; Belman, A.; Krupp, L. Psychiatric diagnoses and cognitive impairment in pediatric multiple sclerosis. Mult. Scler. J. 2013, 20, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Pakpoor, J.; Goldacre, R.; Schmierer, K.; Giovannoni, G.; Waubant, E.; Goldacre, M.J. Psychiatric disorders in children with demyelinating diseases of the central nervous system. Mult. Scler. J. 2017, 24, 1243–1250. [Google Scholar] [CrossRef]
- MacAllister, W.S.; Christodoulou, C.; Milazzo, M.; Krupp, L.B. Longitudinal neuropsychological assessment in pediatric multiple sclerosis. Dev. Neuropsychol. 2007, 32, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Parrish, J.B.; Weinstock-Guttman, B.; Smerbeck, A.; Benedict, R.H.B.; Yeh, E.A. Fatigue and depression in children with demyelinating disorders. J. Child Neurol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Florea, A.; Maurey, H.; Le Sauter, M.; Bellesme, C.; Sevin, C.; Deiva, K. Fatigue, depression, and quality of life in children with multiple sclerosis: A comparative study with other demyelinating diseases. Dev. Med. Child Neurol. 2020, 62, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Gravesande, K.S.V.; Blaschek, A.; Calabrese, P.; Rostásy, K.; Huppke, P.; Kessler, J.K.; Kalbe, E.; Mall, V.; MUSICADO Study Group. Fatigue and depression predict health-related quality of life in patients with pediatric-onset multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 36, 101368. [Google Scholar] [CrossRef]
- Charvet, L.; Cersosimo, B.; Schwarz, C.; Belman, A.; Krupp, L.B. Behavioral Symptoms in Pediatric Multiple Sclerosis: Relation to Fatigue and Cognitive Impairment. J. Child Neurol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Poser, C.M.; Paty, D.W.; Scheinberg, L. New diagnostic criteria for multiple sclerosis: Guidelines for research protocols. Ann. Neurol. 1983, 13, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Edan, G.; Filippi, M.; Hartung, H.-P.; Kappos, L.; Lublin, F.D.; Metz, L.M.; McFarland, H.F.; O’Connor, P.W.; et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 2005, 58, 840–846. [Google Scholar] [CrossRef] [Green Version]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.H.; Weinshenker, B.G.; Filippi, M.; Banwell, B.L.; Cohen, J.A.; Freedman, M.S.; Galetta, S.L.; Hutchinson, M.; Johnson, R.T.; Kappos, L.; et al. Differential diagnosis of suspected multiple sclerosis: A consensus approach. Mult. Scler. J. 2008, 14, 1157–1174. [Google Scholar] [CrossRef]
- Rocca, M.A.; Absinta, M.; Amato, M.P.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Portaccio, E.; Fiorino, A.; Pippolo, L.; et al. Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology 2014, 82, 1314–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weier, K.; Till, C.; Fonov, V.; Yeh, E.A.; Arnold, D.L.; Banwell, B.; Collins, D.L. Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult. Scler. J. 2015, 22, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Till, C.; Deotto, A.; Tipu, V.; Sled, J.G.; Bethune, A.; Narayanan, S.; Arnold, D.L.; Banwell, B.L. White matter integrity and math performance in pediatric multiple sclerosis. NeuroReport 2011, 22, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.S. Woodcock-Johnson III Tests of Achievement. In Encyclopedia of Child Behavior and Development; Goldstein, S., Naglieri, J.A., Eds.; Springer: Boston, MA, USA, 2011. [Google Scholar]
- Rocca, M.A.; De Meo, E.; Amato, M.P.; Copetti, M.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Fiorino, A.; Pippolo, L.; et al. Cognitive impairment in paediatric multiple sclerosis patients is not related to cortical lesions. Mult. Scler. J. 2014, 21, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Maranzano, J.; Till, C.; Assemlal, H.-E.; Fonov, V.; Brown, R.; Araújo, D.; O’Mahony, J.; Yeh, E.A.; Bar-Or, A.; Marrie, R.A.; et al. Detection and clinical correlation of leukocortical lesions in pediatric-onset multiple sclerosis on multi-contrast MRI. Mult. Scler. J. 2018, 25, 980–986. [Google Scholar] [CrossRef]
- Till, C.; Ho, C.; Dudani, A.; García-Lorenzo, D.; Collins, D.L.; Banwell, B.L. Magnetic Resonance Imaging Predictors of Executive Functioning in Patients with Pediatric-Onset Multiple Sclerosis. Arch. Clin. Neuropsychol. 2012, 27, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Green, R.; Adler, A.; Banwell, B.L.; Fabri, T.L.; Yeh, E.A.; Collins, D.L.; Sled, J.G.; Narayanan, S.; Till, C. Involvement of the Amygdala in Memory and Psychosocial Functioning in Pediatric-Onset Multiple Sclerosis. Dev. Neuropsychol. 2018, 43, 524–534. [Google Scholar] [CrossRef]
- Fuentes, A.; Collins, D.L.; García-Lorenzo, D.; Sled, J.G.; Narayanan, S.; Arnold, D.L.; Banwell, B.L.; Till, C. Memory Performance and Normalized Regional Brain Volumes in Patients with Pediatric-Onset Multiple Sclerosis. J. Int. Neuropsychol. Soc. 2012, 18, 471–480. [Google Scholar] [CrossRef]
- Rocca, M.A.; E Morelli, M.; Amato, M.P.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Pagani, E.; Portaccio, E.; Fiorino, A.; et al. Regional hippocampal involvement and cognitive impairment in pediatric multiple sclerosis. Mult. Scler. J. 2015, 22, 628–640. [Google Scholar] [CrossRef]
- De Meo, E.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Capra, R.; Amato, M.P.; Pagani, E.; Fiorino, A.; Pippolo, L.; Pera, M.C.; et al. MRI substrates of sustained attention system and cognitive impairment in pediatric MS patients. Neurology 2017, 89, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Barlow-Krelina, E.; Turner, G.R.; Akbar, N.; Banwell, B.; Lysenko, M.; Yeh, E.A.; Narayanan, S.; Collins, D.L.; Aubert-Broche, B.; Till, C. Enhanced Recruitment During Executive Control Processing in Cognitively Preserved Patients With Pediatric-Onset MS. J. Int. Neuropsychol. Soc. 2019, 25, 432–442. [Google Scholar] [CrossRef]
- Rocca, M.A.; Valsasina, P.; Absinta, M.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Amato, M.P.; Horsfield, M.A.; Falini, A.; Comi, G.; et al. Intranetwork and internetwork functional connectivity abnormalities in pediatric multiple sclerosis. Hum. Brain Mapp. 2014, 35, 4180–4192. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, S.; A Rocca, M.; Ghezzi, A.; Valsasina, P.; Moiola, L.; Veggiotti, P.; Amato, M.P.; Comi, G.; Falini, A.; Filippi, M. Abnormal cerebellar functional MRI connectivity in patients with paediatric multiple sclerosis. Mult. Scler. J. 2016, 22, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Ormerod, I.E.; Miller, D.H.; I McDonald, W.; Du Boulay, E.P.; Rudge, P.; E Kendall, B.; Moseley, I.F.; Johnson, G.; Tofts, P.S.; Halliday, A.M. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 1987, 110, 1579–1616. [Google Scholar] [CrossRef] [PubMed]
- McAdam, L.C.; Blaser, S.I.; Banwell, B.L. Pediatric tumefactive demyelination: Case series and review of the literature. Pediatr. Neurol. 2002, 26, 18–25. [Google Scholar] [CrossRef]
- Yeh, E.A.; Weinstock-Guttman, B.; Ramanathan, M.; Ramasamy, D.P.; Willis, L.; Cox, J.L.; Zivadinov, R. Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain 2009, 132, 3392–3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waubant, E.; Chabas, D.; Okuda, D.T.; Glenn, O.; Mowry, E.; Henry, R.G.; Strober, J.B.; Soares, B.; Wintermark, M.; Pelletier, D. Difference in Disease Burden and Activity in Pediatric Patients on Brain Magnetic Resonance Imaging at Time of Multiple Sclerosis Onset vs Adults. Arch. Neurol. 2009, 66, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, R.; Antel, S.B.; Narayanan, S.; Francis, S.J.; Bar-Or, A.; Sadovnick, A.D.; Banwell, B.; Arnold, D.L.; Canadian Pediatric Demyelinating Disease Study Group. Lesion distribution in children with clinically isolated syndromes. Ann. Neurol. 2008, 63, 401–405. [Google Scholar] [CrossRef]
- Paus, T. Mapping brain maturation and cognitive development during adolescence. Trends Cogn. Sci. 2005, 9, 60–68. [Google Scholar] [CrossRef]
- De Bellis, M.D.; Keshavan, M.S.; Beers, S.R.; Hall, J.; Frustaci, K.; Masalehdan, A.; Noll, J.; Boring, A.M. Sex differences in brain maturation during childhood and adolescence. Cereb. Cortex 2001, 11, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Moll, N.M.; Bs, A.M.R.; Thomas, S.; Ransohoff, A.J.; Lee, J.-C.; Fox, R.; Chang, A.; Ransohoff, R.M.; Fisher, E. Multiple sclerosis normal-appearing white matter: Pathology-imaging correlations. Ann. Neurol. 2011, 70, 764–773. [Google Scholar] [CrossRef]
- Filippi, M. MRI measures of neurodegeneration in multiple sclerosis: Implications for disability, disease monitoring, and treatment. J. Neurol. 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Longoni, G.; Brown, R.A.; MomayyezSiahkal, P.; Elliott, C.; Narayanan, S.; Bar-Or, A.; Marrie, R.A.; Yeh, E.A.; Filippi, M.; Banwell, B.; et al. White matter changes in paediatric multiple sclerosis and monophasic demyelinating disorders. Brain 2017, 140, 1300–1315. [Google Scholar] [CrossRef] [Green Version]
- Geurts, J.J.; Pouwels, P.J.; Uitdehaag, B.M.; Polman, C.H.; Barkhof, F.; Castelijns, J.A. Intracortical lesions in multiple sclerosis: Improved detection with 3D double inversion-recovery MR imaging. Radiology 2005, 236, 254–260. [Google Scholar] [CrossRef]
- Seewann, A.; Kooi, E.-J.; Roosendaal, S.D.; Pouwels, P.J.W.; Wattjes, M.P.; Van Der Valk, P.; Barkhof, F.; Polman, C.H.; Geurts, J.J.G. Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 2012, 78, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Absinta, M.; Rocca, M.A.; Moiola, L.; Copetti, M.; Milani, N.; Falini, A.; Comi, G.; Filippi, M. Cortical lesions in children with multiple sclerosis. Neurology 2011, 76, 910–913. [Google Scholar] [CrossRef]
- Calabrese, M.; Seppi, D.; Romualdi, C.; Rinaldi, F.; Alessio, S.; Perini, P.; Gallo, P. Gray Matter Pathology in MS: A 3-Year Longitudinal Study in a Pediatric Population. Am. J. Neuroradiol. 2012, 33, 1507–1511. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.; Sethi, V.; Ly, S.; Waldman, A.T.; Narula, S.; Dewey, B.E.; Sati, P.; Reich, D.; Banwell, B. 7T MRI Visualization of Cortical Lesions in Adolescents and Young Adults with Pediatric-Onset Multiple Sclerosis. J. Neuroimag. 2017, 27, 447–452. [Google Scholar] [CrossRef]
- Eshaghi, A.; Prados, F.; Brownlee, W.J.; Altmann, D.R.; Tur, C.; Cardoso, M.J.; De Angelis, F.; Van De Pavert, S.H.; Cawley, N.; De Stefano, N.; et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 2018, 83, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Meo, E.; Meani, A.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Filippi, M.; Rocca, M.A. Dynamic gray matter volume changes in pediatric multiple sclerosis. Neurology 2019, 92, e1709–e1723. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.J.; Cen, S.Y.; Bs, S.K.; Liu, S.; Kornak, J.; Shi, Y.; Zheng, L.; Hauser, S.L.; Pelletier, D. Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease. Ann. Neurol. 2018, 83, 223–234. [Google Scholar] [CrossRef]
- Mesaros, S.; Rocca, M.A.; Absinta, M.; Ghezzi, A.; Milani, N.; Moiola, L.; Veggiotti, P.; Comi, G.; Filippi, M. Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 2008, 70, 1107–1112. [Google Scholar] [CrossRef]
- Aubert-Broche, B.; Fonov, V.; Narayanan, S.; Arnold, U.L.; Araujo, D.; Fetco, D.; Till, C.; Sled, J.G.; Banwell, B.; Collins, D.L.; et al. Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth. Neurology 2014, 83, 2140–2146. [Google Scholar] [CrossRef] [Green Version]
- Aubert-Broche, B.; Fonov, V.; Ghassemi, R.; Narayanan, S.; Arnold, D.; Banwell, B.; Sled, J.; Collins, D. Regional brain atrophy in children with multiple sclerosis. NeuroImage 2011, 58, 409–415. [Google Scholar] [CrossRef]
- De Meo, E.; Storelli, L.; Moiola, L.; Ghezzi, A.; Veggiotti, P.; Filippi, M.; A Rocca, M. In vivo gradients of thalamic damage in paediatric multiple sclerosis: A window into pathology. Brain 2021, 144, 186–197. [Google Scholar] [CrossRef]
- Markowitsch, H.J. Differential contribution of right and left amygdala to affective information processing. Behav. Neurol. 1998, 11, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Absinta, M.; Rocca, M.A.; Moiola, L.; Ghezzi, A.; Milani, N.; Veggiotti, P.; Comi, G.; Filippi, M. Brain macro- and microscopic damage in patients with paediatric MS. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoodley, C.J.; Schmahmann, J.D. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010, 46, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Franklin, R.J.; Ffrench-Constant, C. Remyelination in the CNS: From biology to therapy. Nat. Rev. Neurosci. 2008, 9, 839–855. [Google Scholar] [CrossRef]
- Tomassini, V.; Matthews, P.M.; Thompson, A.J.; Fuglø, D.; Geurts, J.J.; Johansen-Berg, H.; Jones, D.K.; Rocca, M.A.; Wise, R.G.; Barkhof, F.; et al. Neuroplasticity and functional recovery in multiple sclerosis. Nat. Rev. Neurol. 2012, 8, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Waxman, S.G. Demyelinating diseases—New pathological insights, new therapeutic targets. N. Engl. J. Med. 1998, 338, 323–325. [Google Scholar] [CrossRef]
- Bonavita, S.; Gallo, A.; Sacco, R.; Della Corte, M.; Bisecco, A.; Docimo, R.; Lavorgna, L.; Corbo, D.; Di Costanzo, A.; Tortora, F.; et al. Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult. Scler. J. 2011, 17, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Roosendaal, S.D.; Schoonheim, M.M.; Hulst, H.E.; Sanz-Arigita, E.J.; Smith, S.M.; Geurts, J.J.G.; Barkhof, F. Resting state networks change in clinically isolated syndrome. Brain 2010, 133, 1612–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fair, D.A.; Dosenbach, N.U.F.; Church, J.A.; Cohen, A.L.; Brahmbhatt, S.; Miezin, F.M.; Barch, D.M.; Raichle, M.E.; Petersen, S.E.; Schlaggar, B.L. Development of distinct control networks through segregation and integration. Proc. Natl. Acad. Sci. USA 2007, 104, 13507–13512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supekar, K.; Uddin, L.Q.; Prater, K.; Amin, H.; Greicius, M.D.; Menon, V. Development of functional and structural connectivity within the default mode network in young children. NeuroImage 2010, 52, 290–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Pediatric MS/HC Sample Size | Prevalence of Cognitive Impairment | Profile of Cognitive Impairment |
---|---|---|---|
McAllister et al., 2005 [22] | 37 Pediatric MS patients/- | 35% | Complex attention |
Amato et al., 2008 [23] | 63 Pediatric MS patients/57 HC | 31% | Verbal and visual memory, complexattention, executive functions, language, IQ |
Till et al., 2011 [24] | 35 Pediatric MS patients/33 HC | 29% | Attention and processing speed, visuomotor integration |
Julian et al., 2013 [25] | 187 Pediatric MS patients/- | 35% | Fine motor speed, visuomotor integration, information processing speed |
Wallach et al., 2020 [13] | 616 Pediatric-onset MS patients/- | 22% | Information processing speed § |
Study | Pediatric MS/HC Sample Size | FU Duration | Rate of Cognitive Deterioration |
---|---|---|---|
McAllister et al., 2007 [27] | 12 Pediatric MS patients/- | 3 years | 42% |
Amato et al., 2010 and 2014 [28,29] | 48 Pediatric MS patients/- | 5 years | 56% |
Till et al., 2013 [30] | 28 Pediatric MS patients/26 HC | 15 months | 25% |
Charvet et al., 2014 [31] | 63 Pediatric MS patients/- | 1.6 years | 13% |
Wallach et al., 2020 [13] § | 383 Pediatric MS patients/- | 1.8 years | 14% |
Brain Compartment | Technique | Study | Number of Participants with Pediatric MS | Analysis | Neuropsychological Assessment | Findings |
---|---|---|---|---|---|---|
WM | T2-PD and T1 lesion imaging | Rocca et al., 2014 [52] | 35 pediatric MS patients (19 CP, 16 CI) | Lesion distribution on LPMs | Brief Neuropsychological Battery for Children [9] | CI MS patients had an increased probability of harboring lesions in the right thalamus, middle and posterior corpus callosum, and bilateral parieto-occipital regions |
Weier et al., 2015 [53] | 28 pediatric MS patients | Lesion volumes | WASI, TMT– Part B; SDMT-oral version; Beery Visual Motor Integration | Infratentorial lesion volume affected performance in language and information processing speed. | ||
NAWM | DTI | Till et al., 2011 [54] | 31 pediatric MS patients | FA estimation in selected region of interest | WASI, SMDT-oral version and Woodcock–Johnson III Tests of Achievement [55] | Lower FA of in the corpus callosum correlated with math ability. |
Rocca et al., 2014 [52] | 35 pediatric MS patients (19 CP, 16 CI) | Tract-based spatial statistic | Brief Neuropsychological Battery for Children [9] | Compared to CP, CI MS patients had decreased FA and increased RD of the posterior corpus callosum and cingulum as well as decreased FA of the bilateral parieto-occipital WM. | ||
GM | DIR sequences | Rocca et al., 2015 [56] | 41 pediatric MS patients (28 CP, 13 CI) | Cortical lesions identification | Brief Neuropsychological Battery for Children [9] | The number and volume of cortical lesions did not differ between CP and CI MS patients |
Multi-contrast 3T MRI | Maranzano et al., 2019 [57] | 24 pediatric-onset MS patients | Cortical lesions identification | Matrix Reasoning and Vocabulary from the WASI, SDMT oral version, Decision Speed and Auditory Working Memory [55], TMT-Part A and B, and the RAVLT | Frontal lobe cortical lesions count was associated with reduced manual dexterity. | |
NAGM | 3D T1 imaging | Till et al., 2011 [24] | 34 pediatric MS patients (24 CP, 10 CI) | Atrophy measurements | WASI, SMDT oral version and Woodcock–Johnson III Tests of Achievement [55], TMT-Part A and B, CCPT, WSR from the Test of Memory and Learning—2nd edition, Beery–Buktenica Developmental Test of Visual Motor Integration—5th edition, phonemic Verbal Fluency subtest from the D-KEFS and WCST. | Thalamic volume accounted for significant incremental variance in predicting global IQ, processing speed, and expressive vocabulary and was the most robust MRI predictor of cognition. |
3D T1 imaging | Till et al., 2012 [58] | 34 pediatric MS patients | Atrophy measurements | CCPT, Color-Word Interference Test from the D-KEFS, SMDT, Verbal Fluency test from the D-KEFS (Delis et al., 2001), WCST, TMT Part A and B. | Lower frontal lobe and thalamic volume correlated with poor performance on the TMT-B and Verbal Fluency | |
3D T1 imaging | Green et al., 2018 [59] | 32 pediatric MS patients | Atrophy measurements | WASI, TOMAL-2, MFS-D, WSR-D, FM and AVM. | Poorer memory was associated with reduced functional communication skills and reduced amygdala volume. Right amygdala volume was positively associated with visual memory; left amygdala volume was a strong predictor of parent-reported social skills. | |
3D T1 imaging | Fuentes et al., 2012 [60] | 32 pediatric MS patients | Atrophy measurements | WASI, TOMAL-2, MFS-D, WSR-D, FM and AVM. | Word-list learning correlated with whole brain volume and hippocampal volume, whereas visual recognition memory correlated with thalamic. | |
3D T1 imaging | Rocca et al., 2016 [61] | 53 pediatric MS patients (41 CP, 12 CI) | Radial mapping analysis of hippocampus | Brief Neuropsychological Battery for Children [9] | Compared to CP, CI MS patients had atrophy of the subiculum and dentate gyrus subfields of the right hippocampus. | |
3D T1 imaging | Rocca et al., 2014 [52] | 35 pediatric MS patients (19 CP, 16 CI) | Voxel based morphometry | Brief Neuropsychological Battery for Children [9] | Compared to CP, CI MS patients had atrophy of the right precuneus and left middle temporal gyrus. Compared to healthy controls and CP, CI MS patients had atrophy of the R precuneus. | |
3D T1 imaging | Weier et al., 2015 [53] | 28 pediatric MS patients | Atrophy measurements | WASI, TMT– Part B; SDMT-oral version; Beery Visual Motor Integration | Cerebellar posterior lobe volume influenced information processing and language performance. | |
Task-based fMRI | De Meo et al., 2017 [62] | 57 pediatric MS patients (44 CP, 13 CI) | Activation pattern analysis during CCPT | Brief Neuropsychological Battery for Children [9], CCPT | During CCPT, with increasing task demand, compared to CP, CI MS patients had decreased recruitment of several areas located mainly in parietal and occipital lobes and cerebellum and increased deactivation of the anterior cingulate cortex, combined with more severe structural damage of WM tracts connecting these regions. | |
Task-based fMRI | Barlow-Krelina et al., 2019 [63] | 20 CP pediatric-onset MS patients | Activation pattern analysis during Alphaspan task | WASI, RAVLT, Decision Speed and Auditory Working Memory, SDMT oral version, TMT. | Compared to healthy controls, CP MS patients experienced enhanced activation in the right middle frontal, left paracingulate, right supramarginal, and left superior parietal gyri during the low executive demand condition, over and above differences in response time. CP MS patients also demonstrated heightened activation in the right supramarginal gyrus in the high executive demand condition. | |
Resting state fMRI | Rocca et al., 2014 [52] | 35 pediatric MS patients (19 CP, 16 CI) | DMN functional connectivity | Brief Neuropsychological Battery for Children [9] | CI MS patients vs. both healthy controls and CP patients had decreased RS-FC of the right precuneus. Compared to both healthy controls and CI, CP MS patients experienced an increased RS-FC of the right anterior cingulate cortex. | |
Resting state fMRI | Rocca et al., 2014 [64] | 44 pediatric MS patients (25 CP, 19 CI) | Intra-network and inter-network FC | Brief Neuropsychological Battery for Children [9] | CI MS patients had decreased RS FC of the right precuneus of the left WMN, increased FC between the sensorimotor network and the DMN, and between the left WMN and the attention network as well as a decreased FC between left WMN and the DMN. | |
Resting state fMRI | Cirillo et al., 2015 [65] | 48 pediatric MS patients (35 CP, 8 CI) | RSFC using cerebellar dentate nucleus as seed region | Brief Neuropsychological Battery for Children [9] | CI MS patients showed a widespread reduction of RSFC of the dentate nucleus with basal ganglia and bilateral regions located in the parietal, frontal and temporal lobes. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portaccio, E.; De Meo, E.; Bellinvia, A.; Amato, M.P. Cognitive Issues in Pediatric Multiple Sclerosis. Brain Sci. 2021, 11, 442. https://doi.org/10.3390/brainsci11040442
Portaccio E, De Meo E, Bellinvia A, Amato MP. Cognitive Issues in Pediatric Multiple Sclerosis. Brain Sciences. 2021; 11(4):442. https://doi.org/10.3390/brainsci11040442
Chicago/Turabian StylePortaccio, Emilio, Ermelinda De Meo, Angelo Bellinvia, and Maria Pia Amato. 2021. "Cognitive Issues in Pediatric Multiple Sclerosis" Brain Sciences 11, no. 4: 442. https://doi.org/10.3390/brainsci11040442
APA StylePortaccio, E., De Meo, E., Bellinvia, A., & Amato, M. P. (2021). Cognitive Issues in Pediatric Multiple Sclerosis. Brain Sciences, 11(4), 442. https://doi.org/10.3390/brainsci11040442