Light-Dependent Effects of Prefrontal rTMS on Emotional Working Memory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Study Design
2.3. EMOBACK Task
2.4. Mood Assessment
2.5. rTMS Application
2.6. Statistical Analysis
3. Results
3.1. Emotional Working Memory
3.2. Mood Assessment
3.3. Word Rating
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vandewalle, G.; Schmidt, C.; Albouy, G.; Sterpenich, V.; Darsaud, A.; Rauchs, G.; Berken, P.-Y.; Balteau, E.; Degueldre, C.; Luxen, A.; et al. Brain responses to violet, blue, and green monochromatic light exposures in humans: Prominent role of blue light and the brainstem. PLoS ONE 2007, 2, e1247. [Google Scholar] [CrossRef]
- Vandewalle, G.; Maquet, P.; Dijk, D.-J. Light as a modulator of cognitive brain function. Trends Cogn. Sci. 2009, 13, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, G.; Schwartz, S.; Grandjean, D.; Wuillaume, C.; Balteau, E.; Degueldre, C.; Schabus, M.; Phillips, C.; Luxen, A.; Dijk, D.J.; et al. Spectral quality of light modulates emotional brain responses in humans. Proc. Natl. Acad. Sci. USA 2010, 107, 19549–19554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewalle, G.; Archer, S.N.; Wuillaume, C.; Balteau, E.; Degueldre, C.; Luxen, A.; Dijk, D.-J.; Maquet, P. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis. J. Biol. Rhythm. 2011, 26, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisk, A.S.; Tam, S.K.E.; Brown, L.A.; Vyazovskiy, V.V.; Bannerman, D.M.; Peirson, S.N. Light and cognition: Roles for circadian rhythms, sleep, and arousal. Front. Neurol. 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Shin, C.; Kim, T.; Chung, H.J.; Suk, H.-J. Awakening effects of blue-enriched morning light exposure on university students’ physiological and subjective responses. Sci. Rep. 2019, 9, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattar, S.; Liao, H.-W.; Takao, M.; Berson, D.M.; Yau, K.-W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.; Zhu, R.J. Blue or Red? Exploring the Effect of color on cognitive task performances. Science 2009, 323, 1226–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaven, C.M.; Ekström, J. A Comparison of blue light and caffeine effects on cognitive function and alertness in humans. PLoS ONE 2013, 8, e76707. [Google Scholar] [CrossRef] [Green Version]
- Motamedzadeh, M.; Golmohammadi, R.; Kazemi, R.; Heidarimoghadam, R. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study. Physiol. Behav. 2017, 177, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Alkozei, A.; Smith, R.; Pisner, D.A.; Vanuk, J.R.; Berryhill, S.M.; Fridman, A.; Shane, B.R.; Knight, S.A.; Killgore, W.D. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. Sleep 2016, 39, 1671–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkozei, A.; Smith, R.; Dailey, N.S.; Bajaj, S.; Killgore, W.D.S. Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance. PLoS ONE 2017, 12, e0184884. [Google Scholar] [CrossRef] [Green Version]
- Vandewalle, G.; Gais, S.; Schabus, M.; Balteau, E.; Carrier, J.; Darsaud, A.; Sterpenich, V.; Albouy, G.; Dijk, D.J.; Maquet, P. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cereb. Cortex 2007, 17, 2788–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewalle, G.; Collignon, O.; Hull, J.T.; Daneault, V.; Albouy, G.; Lepore, F.; Phillips, C.; Doyon, J.; Czeisler, C.A.; Dumont, M.; et al. Blue light stimulates cognitive brain activity in visually blind individuals. J. Cogn. Neurosci. 2013, 25, 2072–2085. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.A.; Flynn-Evans, E.E.; Aeschbach, D.; Brainard, G.C.; Czeisler, C.A.; Lockley, S.W. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep 2014, 37, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Minguillon, J.; Lopez-Gordo, M.A.; Renedo-Criado, D.A.; Sanchez-Carrion, M.J.; Pelayo, F. Blue lighting accelerates post-stress relaxation: Results of a preliminary study. PLoS ONE 2017, 12, e0186399. [Google Scholar] [CrossRef] [PubMed]
- Beynel, L.; Appelbaum, L.G.; Luber, B.; Crowell, C.A.; Hilbig, S.A.; Lim, W.; Nguyen, D.; Chrapliwy, N.A.; Davis, S.W.; Cabeza, R.; et al. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci. Biobehav. Rev. 2019, 107, 47–58. [Google Scholar] [CrossRef]
- Patel, R.; Silla, F.; Pierce, S.; Theule, J.; Girard, T.A. Cognitive functioning before and after repetitive transcranial magnetic stim-ulation (rTMS): A quantitative meta-analysis in healthy adults. Neuropsychologia 2020, 141, 107395. [Google Scholar] [CrossRef] [PubMed]
- Leyman, L.; De Raedt, R.; Vanderhasselt, M.-A.; Baeken, C. Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychol. Med. 2009, 39, 1019. [Google Scholar] [CrossRef]
- Mannarelli, D.; Pauletti, C.; Grippo, A.; Amantini, A.; Augugliaro, V.; Currà, A.; Missori, P.; Locuratolo, N.; De Lucia, M.C.; Rinalduzzi, S.; et al. The role of the right dorsolateral prefrontal cortex in phasic alertness: Evidence from a contingent negative variation and repetitive transcranial magnetic stimulation study. Neural Plast. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Jia, M.; Guo, J.; Wang, H.; Wang, M. The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS ONE 2017, 12, e0179430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balconi, M.; Ferrari, C. Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories. Brain Imaging Behav. 2012, 6, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Vanderhasselt, M.-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cogn. 2014, 86, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigand, A.; Grimm, S.; Astalosch, A.; Guo, J.S.; Briesemeister, B.B.; Lisanby, S.H.; Luber, B.; Bajbouj, M. Lateralized effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory. Exp. Brain Res. 2013, 227, 43–52. [Google Scholar] [CrossRef]
- Weigand, A.; Richtermeier, A.; Feeser, M.; Guo, J.S.; Briesemeister, B.B.; Grimm, S.; Bajbouj, M. State-dependent effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory. Brain Stimul. 2013, 6, 905–912. [Google Scholar] [CrossRef]
- Grimm, S.; Weigand, A.; Kazzer, P.; Jacobs, A.M.; Bajbouj, M. Neural mechanisms underlying the integration of emotion and working memory. NeuroImage 2012, 61, 1188–1194. [Google Scholar] [CrossRef]
- Silvanto, J.; Bona, S.; Cattaneo, Z. Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Neuroscience 2017, 363, 134–141. [Google Scholar] [CrossRef]
- Silvanto, J.; Bona, S.; Marelli, M.; Cattaneo, Z. On the Mechanisms of Transcranial Magnetic Stimulation (TMS): How brain state and baseline performance level determine behavioral effects of TMS. Front. Psychol. 2018, 9, 741. [Google Scholar] [CrossRef] [Green Version]
- Siebner, H.R.; Lang, N.; Rizzo, V.; Nitsche, M.A.; Paulus, W.; Lemon, R.N.; Rothwell, J.C. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: Evidence for homeostatic plasticity in the human motor cortex. J. Neurosci. 2004, 24, 3379–3385. [Google Scholar] [CrossRef]
- Lehrl, S. Mehrfachwahl-Wortschatz-Intelligenztest MWT-B; Spitta: Balingen, Germany, 2005. (In German) [Google Scholar]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyer, R.; Schwenkmezger, P.; Notz, P.; Eid, M. Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF). Handanweisung; Hogrefe: Göttingen, Germany, 1997. [Google Scholar]
- Bermpohl, F.; Fregni, F.; Boggio, P.S.; Thut, G.; Northoff, G.; Otachi, P.T.; Rigonatti, S.P.; Marcolin, M.A.; Pascual-Leone, A. Effect of low-frequency transcranial magnetic stimulation on an affective go/no-go task in patients with major depression: Role of stimulation site and depression severity. Psychiatry Res. 2006, 141, 1–13. [Google Scholar] [CrossRef]
- Thut, G.; Pascual-Leone, A. A review of combined TMS-EEG Studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr. 2009, 22, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Võ, M.L.H.; Conrad, M.; Kuchinke, L.; Urton, K.; Hofmann, M.J.; Jacobs, A.M. The Berlin Affective Word List Reloaded (BAWL-R). Behav. Res. Methods 2009, 41, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Steyer, R.; Schwenkmezger, P.; Notz, P.; Eid, M. Development of the Multidimensional Mood State Questionnaire (MDBF). Primary Data; Leibniz Institute for Psychology Information ZPID: Leibniz, Germany, 2004. [Google Scholar]
- Peleman, K.; Van Schuerbeek, P.; Luypaert, R.; Stadnik, T.; De Raedt, R.; De Mey, J.; Bossuyt, A.; Baeken, C. Using 3D-MRI to localize the dorsolateral prefrontal cortex in TMS research. World J. Biol. Psychiatry 2010, 11, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kensinger, E.A.; Corkin, S. Effect of negative emotional content on working memory and long-term memory. Emotion 2003, 3, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Lindström, B.R.; Bohlin, G. Threat-relevance impairs executive functions: Negative impact on working memory and response inhibition. Emotion 2012, 12, 384–393. [Google Scholar] [CrossRef]
- Perlstein, W.M.; Elbert, T.; Stenger, V.A. Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proc. Natl. Acad. Sci. USA 2002, 99, 1736–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, S.; Satpute, A.B.; Atzil, S.; Field, A.P.; Hitchcock, C.; Black, M.; Barrett, L.F.; Dalgleish, T. The impact of affective information on working memory: A pair of meta-analytic reviews of behavioral and neuroimaging evidence. Psychol. Bull. 2019, 145, 566–609. [Google Scholar] [CrossRef]
- Davidson, R.J.; Irwin, W. The functional neuroanatomy of emotion and affective style. Trends Cogn. Sci. 1999, 3, 11–21. [Google Scholar] [CrossRef]
- Van Honk, J.; Schutter, D.J.L.G.; D’Alfonso, A.A.L.; Kessels, R.P.C.; De Haan, E.H.F. 1 hz rTMS over the right prefrontal cortex reduces vigilant attention to unmasked but not to masked fearful faces. Biol. Psychiatry 2002, 52, 312–317. [Google Scholar] [CrossRef]
- Hoy, K.E.; Bailey, N.; Michael, M.; Fitzgibbon, B.; Rogasch, N.C.; Saeki, T.; Fitzgerald, P.B. Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls. Cereb. Cortex 2016, 26, 4563–4573. [Google Scholar] [CrossRef] [Green Version]
- Grisaru, N.; Bruno, R.; Pridmore, S. Effect on the emotions of healthy individuals of slow repetitive transcranial magnetic stimulation applied to the prefrontal cortex. J. ECT 2001, 17, 184–189. [Google Scholar] [CrossRef]
- Jenkins, J.; Shajahan, P.M.; Lappin, J.M.; Ebmeier, K.P. Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry 2002, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Golden, R.N.; Gaynes, B.N.; Ekstrom, R.D.; Hamer, R.M.; Jacobsen, F.M.; Suppes, T.; Wisner, K.L.; Nemeroff, C.B. The efficacy of light therapy in the treatment of mood disorders: A review and meta-analysis of the evidence. Am. J. Psychiatry 2005, 162, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Mania, I.; Kaur, J. Bright Light Therapy and rTMS; novel combination approach for the treatment of depression. Brain Stimul. 2019, 12, 1338–1339. [Google Scholar] [CrossRef]
- Levkovitz, Y.; Isserles, M.; Padberg, F.; Lisanby, S.H.; Bystritsky, A.; Xia, G.; Tendler, A.; Daskalakis, Z.J.; Winston, J.L.; Dannon, P.; et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: A prospective multicenter randomized controlled trial. World Psychiatry 2015, 14, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.J.; Kuchinke, L.; Tamm, S.; Võ, M.L.; Jacobs, A.M. Affective processing within 1/10th of a second: High arousal is necessary for early facilitative processing of negative but not positive words. Cogn. Affect. Behav. Neurosci. 2009, 9, 389–397. [Google Scholar] [CrossRef]
- Gerber, A.J.; Posner, J.; Gorman, D.; Colibazzi, T.; Yu, S.; Wang, Z.; Kangarlu, A.; Zhu, H.; Russell, J.; Peterson, B.S. An affective circumplex model of neural systems subserving valence, arousal, and cognitive overlay during the appraisal of emotional faces. Neuropsychologia 2008, 46, 2129–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garavan, H.; Pendergrass, J.C.; Ross, T.J.; Stein, E.A.; Risinger, R.C. Amygdala response to both positively and negatively valenced stimuli. NeuroReport 2001, 12, 2779–2783. [Google Scholar] [CrossRef]
- Graf, R.; Nagler, M.; Jacobs, A.M. Faktorenanalyse von 57 Variablen der visuellen Worterkennung. J. Psychol. 2005, 213, 205–218. (In German) [Google Scholar] [CrossRef]
- Jou, J.-H.; Wu, M.-H.; Shen, S.-M.; Wang, H.-C.; Chen, S.-Z.; Chen, S.-H.; Lin, C.-R.; Hsieh, Y.-L. Sunlight-style color-temperature tunable organic light-emitting diode. Appl. Phys. Lett. 2009, 95, 13307. [Google Scholar] [CrossRef]
- Judd, D.B.; MacAdam, D.L.; Wyszecki, G.; Budde, H.W.; Comdit, H.R.; Hnderson, S.T.; Simonds, J.L. Spectral distribution of typical daylight as a function of correlated color temperature. Josa 1964, 54, 1031–1040. [Google Scholar] [CrossRef]
- Yasukouchi, A.; Ishibashi, K. Non-visual effects of the color temperature of fluorescent lamps on physiological aspects in humans. J. Physiol. Anthr. Appl. Hum. Sci. 2005, 24, 41–43. [Google Scholar] [CrossRef] [Green Version]
- Kulve, M.T.; Schlangen, L.; Schellen, L.; Souman, J.L.; Lichtenbelt, W.V.M. Correlated colour temperature of morning light influences alertness and body temperature. Physiol. Behav. 2018, 185, 1–13. [Google Scholar] [CrossRef]
- Robertson, E.M.; Théoret, H.; Pascual-Leone, A. Studies in Cognition: The problems solved and created by transcranial magnetic stimulation. J. Cogn. Neurosci. 2003, 15, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Adaikkan, C.; Tsai, L.-H. Gamma entrainment: Impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci. 2020, 43, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Knez, I. Affective and cognitive reactions to subliminal flicker from fluorescent lighting. Conscious. Cogn. 2014, 26, 97–104. [Google Scholar] [CrossRef]
- Ridding, M.C.; Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010, 588, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
Set 1 | Set 2 | Set 3 | Set 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Neutral | Positive | Negative | Neutral | Positive | Negative | Neutral | Positive | Negative | Neutral | |
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | |
Valence | 1.9 (0.4) | −1.7 (0.4) | 0.0 (0.1) | 1.8 (0.5) | −1.9 (0.5) | 0.0 (0.1) | 1.8 (0.5) | −1.8 (0.6) | 0.0 (0.1) | 1.9 (0.3) | −1.8 (0.5) | 0.0 (0.1) |
Arousal | 3.1 (0.5) | 3.2 (0.6) | 2.2 (0.2) | 3.2 (0.6) | 3.2 (0.6) | 2.1 (0.3) | 3.2 (0.6) | 3.3 (0.6) | 2.2 (0.3) | 3.2 (0.5) | 3.2 (0.5) | 2.2 (0.2) |
Imageability | 4.1 (1.3) | 4.4 (1.2) | 4.1 (1.3) | 4.3 (1.3) | 3.9 (0.9) | 4.1 (1.3) | 4.5 (1.2) | 4.3 (1.3) | 4.0 (1.3) | 4.1 (1.2) | 4.3 (1.2) | 3.9 (1.3) |
Frequency | 0.8 (0.9) | 0.6 (0.8) | 0.7 (0.6) | 0.7 (0.7) | 0.6 (0.9) | 0.7 (0.8) | 0.7 (0.7) | 0.5 (0.7) | 0.7 (0.8) | 0.7 (0.7) | 0.8 (0.7) | 0.7 (0.7) |
Letters | 6.9 (1.3) | 6.4 (1.4) | 6.5 (1.3) | 6.6 (1.4) | 6.6 (1.6) | 6.5 (1.4) | 6.4 (1.5) | 6.2 (1.4) | 6.2 (1.3) | 6.6 (1.4) | 6.5 (1.5) | 6.4 (1.3) |
Syllables | 2.2 (0.6) | 2 (0.7) | 2. (0.5) | 2.4 (0.6) | 2.1 (0.7) | 2.3 (0.6) | 2.2 (0.7) | 1.8 (0.5) | 2.2 (0.6) | 2.1 (0.6) | 2.3 (0.7) | 2.3 (0.7) |
Pre | Post | |||||||
---|---|---|---|---|---|---|---|---|
Positive | Negative | Neutral | Positive | Negative | Neutral | |||
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | |||
Accuracy (%) | Blue Light | Active rTMS | 93.2 (5.5) | 95.3 (4.0) | 94.4 (3.5) | 95 (3.9) | 96.2 (3.2) | 95.6 (3.1) |
Sham rTMS | 94.8 (4.5) | 94.7 (3.4) | 95.9 (4.2) | 96.2 (2.8) | 96.3 (3) | 95.6 (3.4) | ||
Green Light | Active rTMS | 94.9 (3.8) | 94.7 (3.5) | 96.2 (2.7) | 95.6 (3.3) | 96.6 (2.9) | 96.1 (3.2) | |
Sham rTMS | 94.7 (3.5) | 95.5 (2.9) | 96.3 (2.9) | 95.6 (3.9) | 96.2 (3.2) | 95.5 (3.3) | ||
Reaction Time (ms) | Blue Light | Active rTMS | 692.0 (199.9) | 703.7 (212.3) | 651.4 (193.6) | 684.7 (207.2) | 674.2 (201.3) | 718.4 (175) |
Sham rTMS | 690.5 (179.4) | 705.6 (209.6) | 691.3 (217.1) | 707.6 (244.4) | 687.7 (231.9) | 724 (242.4) | ||
Green Light | Active rTMS | 663.3 (187.4) | 664.8 (153.5) | 664.2 (174.3) | 662.1 (208.3) | 655.9 (196.7) | 650.7 (199.8) | |
Sham rTMS | 721.6 (219.5) | 668.3 (184.8) | 672.6 (169.7) | 655.7 (181.1) | 657.4 (175.4) | 666.3 (185.2) |
Elevated—Depressed Mood | Wakefulness—Sleepiness | Calmness—Restlessness | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | ||
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | ||
Blue Light | Active rTMS | 17 (3.4) | 16 (3.1) | 15 (3.0) | 13 (3.3) | 18 (2.7) | 16 (3.7) |
Sham rTMS | 17 (2.7) | 17 (2.4) | 14 (4.0) | 13 (2.9) | 17 (2.9) | 17 (2.5) | |
Green Light | Active rTMS | 17 (2.7) | 16 (2.6) | 16 (2.5) | 12 (3.3) | 17 (2.2) | 17 (3.6) |
Sham rTMS | 17 (2.3) | 17 (2.9) | 16 (3.8) | 11 (3.7) | 17 (2.8) | 17 (2.6) |
Valence M (SD) | Arousal M (SD) | ||
---|---|---|---|
Set 1 | Positive | 1.7 (0.4) | 2.9 (0.4) |
Negative | −1.4 (0.6) | 2.7 (0.5) | |
Neutral | 0.1 (0.1) | 1.6 (0.2) | |
Set 2 | Positive | 1.9 (0.4) | 3.1 (0.4) |
Negative | −1.0 (0.4) | 2.6 (0.5) | |
Neutral | 0.3 (0.2) | 1.6 (0.2) | |
Set 3 | Positive | 1.6 (0.4) | 3.0 (0.4) |
Negative | −1.5 (0.5) | 2.7 (0.3) | |
Neutral | 0.1 (0.1) | 1.7 (0.2) | |
Set 4 | Positive | 1.5 (0.4) | 2.9 (0.4) |
Negative | −1.5 (0.5) | 2.8 (0.4) | |
Neutral | 0.1 (0.2) | 1.6 (0.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weigand, A.; Edelkraut, L.; Conrad, M.; Grimm, S.; Bajbouj, M. Light-Dependent Effects of Prefrontal rTMS on Emotional Working Memory. Brain Sci. 2021, 11, 446. https://doi.org/10.3390/brainsci11040446
Weigand A, Edelkraut L, Conrad M, Grimm S, Bajbouj M. Light-Dependent Effects of Prefrontal rTMS on Emotional Working Memory. Brain Sciences. 2021; 11(4):446. https://doi.org/10.3390/brainsci11040446
Chicago/Turabian StyleWeigand, Anne, Lisa Edelkraut, Markus Conrad, Simone Grimm, and Malek Bajbouj. 2021. "Light-Dependent Effects of Prefrontal rTMS on Emotional Working Memory" Brain Sciences 11, no. 4: 446. https://doi.org/10.3390/brainsci11040446
APA StyleWeigand, A., Edelkraut, L., Conrad, M., Grimm, S., & Bajbouj, M. (2021). Light-Dependent Effects of Prefrontal rTMS on Emotional Working Memory. Brain Sciences, 11(4), 446. https://doi.org/10.3390/brainsci11040446