18F–THK–5351, Fluorodeoxyglucose, and Florbetaben PET Images in Atypical Alzheimer’s Disease: A Pictorial Insight into Disease Pathophysiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI Acquisition
2.3. 18F–THK–5351 PET Imaging Acquisition
2.4. 18F–Fluorodeoxyglucose PET Imaging Acquisition
2.5. 18F–Florbetaben PET Imaging Acquisition
3. Results
3.1. Case 1 (PCA)
3.2. Case 2 (PCA)
3.3. Case 3 (lpvPPA)
3.4. Case 4 (lpvPPA)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Leuzy, A.; Chiotis, K.; Lemoine, L.; Gillberg, P.G.; Almkvist, O.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol. Psychiatry 2019, 24, 1112–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, E.; Chalkidou, A.; Hammers, A.; Peacock, J.; Summers, J.; Keevil, S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Polanco, J.C.; Li, C.; Bodea, L.G.; Martinez-Marmol, R.; Meunier, F.A.; Gotz, J. Amyloid-beta and tau complexity—Towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 2018, 14, 22–39. [Google Scholar] [CrossRef]
- Crary, J.F.; Trojanowski, J.Q.; Schneider, J.A.; Abisambra, J.F.; Abner, E.L.; Alafuzoff, I.; Arnold, S.E.; Attems, J.; Beach, T.G.; Bigio, E.H.; et al. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol. 2014, 128, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Crutch, S.J.; Schott, J.M.; Rabinovici, G.D.; Murray, M.; Snowden, J.S.; van der Flier, W.M.; Dickerson, B.C.; Vandenberghe, R.; Ahmed, S.; Bak, T.H.; et al. Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017, 13, 870–884. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Harada, R.; Okamura, N.; Furumoto, S.; Furukawa, K.; Ishiki, A.; Tomita, N.; Tago, T.; Hiraoka, K.; Watanuki, S.; Shidahara, M.; et al. 18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease. J. Nucl. Med. 2016, 57, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.P.; Pascoal, T.A.; Mathotaarachchi, S.; Therriault, J.; Kang, M.S.; Shin, M.; Guiot, M.C.; Guo, Q.; Harada, R.; Comley, R.A.; et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res. Ther. 2017, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Okamura, N.; Harada, R.; Ishiki, A.; Kikuchi, A.; Nakamura, T.; Kudo, Y. The development and validation of tau PET tracers: Current status and future directions. Clin. Transl. Imaging 2018, 6, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Son, H.J.; Oh, J.S.; Oh, M.; Kim, S.J.; Lee, J.H.; Roh, J.H.; Kim, J.S. The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 332–341. [Google Scholar] [CrossRef]
- Ahn, H.J.; Chin, J.; Park, A.; Lee, B.H.; Suh, M.K.; Seo, S.W.; Na, D.L. Seoul Neuropsychological Screening Battery-dementia version (SNSB-D): A useful tool for assessing and monitoring cognitive impairments in dementia patients. J. Korean Med. Sci. 2010, 25, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Ossenkoppele, R.; Schonhaut, D.R.; Baker, S.L.; O’Neil, J.P.; Janabi, M.; Ghosh, P.M.; Santos, M.; Miller, Z.A.; Bettcher, B.M.; Gorno-Tempini, M.L.; et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann. Neurol. 2015, 77, 338–342. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Schonhaut, D.R.; Scholl, M.; Lockhart, S.N.; Ayakta, N.; Baker, S.L.; O’Neil, J.P.; Janabi, M.; Lazaris, A.; Cantwell, A.; et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 2016, 139, 1551–1567. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, M.; Ghosh, P.M.; Madison, C.; Laforce, R., Jr.; Corbetta-Rastelli, C.; Weiner, M.W.; Greicius, M.D.; Seeley, W.W.; Gorno-Tempini, M.L.; Rosen, H.J.; et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain 2013, 136, 844–858. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Graff-Radford, J.; Tosakulwong, N.; Weigand, S.D.; Machulda, M.M.; Senjem, M.L.; Spychalla, A.J.; Vemuri, P.; Jones, D.T.; Drubach, D.A.; et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement. 2018, 14, 1005–1014. [Google Scholar] [CrossRef]
- Sintini, I.; Schwarz, C.G.; Martin, P.R.; Graff-Radford, J.; Machulda, M.M.; Senjem, M.L.; Reid, R.I.; Spychalla, A.J.; Drubach, D.A.; Lowe, V.J.; et al. Regional multimodal relationships between tau, hypometabolism, atrophy, and fractional anisotropy in atypical Alzheimer’s disease. Hum. Brain Mapp. 2019, 40, 1618–1631. [Google Scholar] [CrossRef] [Green Version]
- Sintini, I.; Martin, P.R.; Graff-Radford, J.; Senjem, M.L.; Schwarz, C.G.; Machulda, M.M.; Spychalla, A.J.; Drubach, D.A.; Knopman, D.S.; Petersen, R.C.; et al. Longitudinal tau-PET uptake and atrophy in atypical Alzheimer’s disease. Neuroimage Clin. 2019, 23, 101823. [Google Scholar] [CrossRef]
- Cairns, N.J.; Perrin, R.J.; Franklin, E.E.; Carter, D.; Vincent, B.; Xie, M.; Bateman, R.J.; Benzinger, T.; Friedrichsen, K.; Brooks, W.S.; et al. Neuropathologic assessment of participants in two multi-center longitudinal observational studies: The Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN). Neuropathology 2015, 35, 390–400. [Google Scholar] [CrossRef] [Green Version]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.T.; Dickson, D.W.; Trojanowski, J.Q.; Jack, C.R.; Boyle, P.A.; Arfanakis, K.; Rademakers, R.; Alafuzoff, I.; Attems, J.; Brayne, C.; et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain 2019, 142, 1503–1527. [Google Scholar] [CrossRef] [Green Version]
- Graff-Radford, J.; Yong, K.X.X.; Apostolova, L.G.; Bouwman, F.H.; Carrillo, M.; Dickerson, B.C.; Rabinovici, G.D.; Schott, J.M.; Jones, D.T.; Murray, M.E. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021, 20, 222–234. [Google Scholar] [CrossRef]
- Oh, M.; Oh, S.J.; Lee, S.J.; Oh, J.S.; Roh, J.H.; Chung, S.J.; Lee, J.H.; Lee, C.S.; Kim, J.S. Clinical Evaluation of 18F-PI-2620 as a Potent PET Radiotracer Imaging Tau Protein in Alzheimer Disease and Other Neurodegenerative Diseases Compared With 18F-THK-5351. Clin. Nucl. Med. 2020, 45, 841–847. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
Age/Sex | 49/F | 47/F | 58/M | 56/F |
Onset age | 47 | 44 | 53 | 54 |
Disease duration (years) | 1.5 | 3 | 5 | 2 |
Education (years) | 9 | 16 | 14 | 8 |
Initial presentation | Losing directions, dressing apraxia | Visual agnosia | Word finding difficulty | Language disturbance |
Clinical diagnosis | PCA | PCA | lpvPPA | lpvPPA |
MMSE | 21(<0.01%ile) | 23 (<0.01%ile) | 8 (<0.01%ile) | 17 (<0.01%ile) |
SNSB subdomain (percentile (z-score)) | ||||
Stroop CR | <0.01 (−5.89) | < 0.01 (−5.15) | N.A. | <0.01 (−5.34) |
K-BNT | 1.3 (−2.23) | <0.01 (−11.75) | <0.01 (−11.77) | <0.01 (−3.98) |
DS-F | 63.89 (0.36) | 41.99 (−0.20) | 0.17 (−2.93) | 5.49 (−1.60) |
DS-B | 1.5 (−2.17) | 9.40 (−1.32) | N.A. | <0.01 (−4.00) |
SVLT-immediate | 43.64 (−0.16) | 0.08 (−3.17) | <0.01 (−5.91) | 0.73 (−2.44) |
SVLT-delayed | 1.04 (−2.31) | 1.07 (−2.30) | 0.02 (−3.61) | 0.30 (−2.75) |
SVLT-recognition | 24.39 (−0.69) | 8.97 (−1.34) | 21.94 (−0.77) | 59.73 (0.25) |
RCFT-immediate | 0.4 (−2.65) | 0.03 (−3.45) | 0.44 (−2.62) | 0.85 (−2.39) |
RCFT-delayed | 0.19 (−2.89) | 0.02 (−3.60) | 0.02 (−3.49) | 1.66 (−2.13) |
RCFT-recognition | 0.01 (−3.70) | 0.85 (−2.39) | <0.01 (−5.15) | 11.43 (−1.20) |
RCFT copy | <0.01 (−14.24) | <0.01 (−23.49) | 39.76 (−0.26) | <0.01 (−7.16) |
COWAT (Animal) | 6.63 (−1.50) | 12.85 (−1.13) | N.A. | 0.59 (−2.52) |
COWAT (Supermarket) | 3.59 (−1.80) | 13.40 (−1.11) | N.A. | 1.16 (−2.27) |
COWAT phonemic total | 3.9 (−1.76) | 40.82 (−0.23) | N.A. | N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Oh, M.; Kim, J.S.; Lee, J.-H.; Yoon, Y.W.; Roh, J.-H. 18F–THK–5351, Fluorodeoxyglucose, and Florbetaben PET Images in Atypical Alzheimer’s Disease: A Pictorial Insight into Disease Pathophysiology. Brain Sci. 2021, 11, 465. https://doi.org/10.3390/brainsci11040465
Park S, Oh M, Kim JS, Lee J-H, Yoon YW, Roh J-H. 18F–THK–5351, Fluorodeoxyglucose, and Florbetaben PET Images in Atypical Alzheimer’s Disease: A Pictorial Insight into Disease Pathophysiology. Brain Sciences. 2021; 11(4):465. https://doi.org/10.3390/brainsci11040465
Chicago/Turabian StylePark, Sohee, Minyoung Oh, Jae Seung Kim, Jae-Hong Lee, Young Wook Yoon, and Jee-Hoon Roh. 2021. "18F–THK–5351, Fluorodeoxyglucose, and Florbetaben PET Images in Atypical Alzheimer’s Disease: A Pictorial Insight into Disease Pathophysiology" Brain Sciences 11, no. 4: 465. https://doi.org/10.3390/brainsci11040465
APA StylePark, S., Oh, M., Kim, J. S., Lee, J. -H., Yoon, Y. W., & Roh, J. -H. (2021). 18F–THK–5351, Fluorodeoxyglucose, and Florbetaben PET Images in Atypical Alzheimer’s Disease: A Pictorial Insight into Disease Pathophysiology. Brain Sciences, 11(4), 465. https://doi.org/10.3390/brainsci11040465