Association between Functional Brain Network Metrics and Surgeon Performance and Distraction in the Operating Room
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Performance Evaluation
3.2. Distraction Evaluation
4. Discussion
- The “cognitive” stage: Trainees initially learn a skill and thoughtfully perform it.
- The “the associative” stage: With practice, trainees become less thoughtful about the steps required for a skill and can operate with fewer disruptions.
- The “autonomous” stage: The trainee can perform automatically without much thought, meanwhile paying more attention towards other aspects of surgery.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holzhey, D.M.; Seeburger, J.; Misfeld, M.; Borger, M.A.; Mohr, F.W. Learning minimally invasive mitral valve surgery: A cumulative sum sequential probability analysis of 3895 operations from a single high-volume center. Circulation 2013, 128, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Yun, J.H.; Nam, K.H.; Soh, E.-Y.; Chung, W.Y. The Learning Curve for Robotic Thyroidectomy: A Multicenter Study. Ann. Surg. Oncol. 2010, 18, 226–232. [Google Scholar] [CrossRef]
- Reza, M.; Maeso, S.; Blasco, J.A.; Andradas, E. Meta-analysis of observational studies on the safety and effectiveness of robotic gynaecological surgery. BJS 2010, 97, 1772–1783. [Google Scholar] [CrossRef]
- Finkelstein, J.; Eckersberger, E.; Sadri, H.; Taneja, S.S.; Lepor, H.; Djavan, B. Open Versus Laparoscopic Versus Robot-Assisted Laparoscopic Prostatectomy: The European and US Experience. Rev. Urol. 2010, 12, 35–43. [Google Scholar]
- Shafiei, S.B.; Lone, Z.; Elsayed, A.S.; Aldhaam, N.A.; Jing, Z.; Ibrahim, I.; Guru, K.A. PD27-04 do Brain Function and Eye Gaze Features Behave Differently Based on Catastrophic Surgical Events? J. Urol. 2019, 201, e482. [Google Scholar] [CrossRef] [Green Version]
- Christian, C.K.; Gustafson, M.L.; Roth, E.M.; Sheridan, T.B.; Gandhi, T.K.; Dwyer, K.; Zinner, M.J.; Dierks, M.M. A prospective study of patient safety in the operating room. Surgery 2006, 139, 159–173. [Google Scholar] [CrossRef]
- Catchpole, K.R.; Giddings, A.E.; Wilkinson, M.; Hirst, G.; Dale, T.; De Leval, M.R. Improving patient safety by identifying latent failures in successful operations. Surgery 2007, 142, 102–110. [Google Scholar] [CrossRef]
- Hanna, G.B.; Shimi, S.M.; Cuschieri, A. Task Performance in Endoscopic Surgery Is Influenced by Location of the Image Display. Ann. Surg. 1998, 227, 481–484. [Google Scholar] [CrossRef]
- Wiggins-Dohlvik, K.; Stewart, R.M.; Babbitt, R.J.; Gelfond, J.; Zarzabal, L.A.; Willis, R.E. Surgeons’ performance during critical situations: Competence, confidence, and composure. Am. J. Surg. 2009, 198, 817–823. [Google Scholar] [CrossRef]
- Goodell, K.H.; Cao, C.G.; Schwaitzberg, S.D. Effects of Cognitive Distraction on Performance of Laparoscopic Surgical Tasks. J. Laparoendosc. Adv. Surg. Tech. 2006, 16, 94–98. [Google Scholar] [CrossRef]
- Van Der Meijden, O.A.J.; Schijven, M.P. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review. Surg. Endosc. 2009, 23, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- Delaney, C.P.; Lynch, C.A.; Senagore, A.J.; Fazio, V.W. Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis. Colon Rectum 2003, 46, 1633–1639. [Google Scholar] [CrossRef]
- Morino, M.; Pellegrino, L.; Giaccone, C.; Garrone, C.; Rebecchi, F. Randomized clinical trial of robot-assisted versus laparoscopic Nissen fundoplication. Br. J. Surg. 2006, 93, 553–558. [Google Scholar] [CrossRef] [PubMed]
- El Nakadi, I.; Mélot, C.; Closset, J.; De Moor, V.; Bétroune, K.; Feron, P.; Lingier, P.; Gelin, M. Evaluation of da Vinci Nissen Fundoplication Clinical Results and Cost Minimization. World J. Surg. 2006, 30, 1050–1054. [Google Scholar] [CrossRef]
- Kornprat, P.; Werkgartner, G.; Cerwenka, H.; Bacher, H.; El-Shabrawi, A.; Rehak, P.; Mischinger, H.J. Prospective study comparing standard and robotically assisted laparoscopic cholecystectomy. Langenbecks Archiv Chir. 2006, 391, 216–221. [Google Scholar] [CrossRef]
- Wagner, C.; Stylopoulos, N.; Howe, R. The role of force feedback in surgery: Analysis of blunt dissection. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS 2002), Orlando, FL, USA, 24–25 March 2002; pp. 68–74. [Google Scholar]
- Arora, S.; Hull, L.; Sevdalis, N.; Tierney, T.; Nestel, D.; Woloshynowych, M.; Darzi, A.; Kneebone, R. Factors compromising safety in surgery: Stressful events in the operating room. Am. J. Surg. 2010, 199, 60–65. [Google Scholar] [CrossRef]
- Elhage, O.; Challacombe, B.; Shortland, A.; Dasgupta, P. An assessment of the physical impact of complex surgical tasks on surgeon errors and discomfort: A comparison between robot-assisted, laparoscopic and open approaches. BJU Int. 2014, 115, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Porter, G.A.; Soskolne, C.L.; Yakimets, W.W.; Newman, S.C. Surgeon-Related Factors and Outcome in Rectal Cancer. Ann. Surg. 1998, 227, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Hodges, N.J. Practice, instruction and skill acquisition in soccer: Challenging tradition. J. Sports Sci. 2005, 23, 637–650. [Google Scholar] [CrossRef]
- Sosnik, R.; Hauptmann, B.; Karni, A.; Flash, T. When practice leads to co-articulation: The evolution of geometrically defined movement primitives. Exp. Brain Res. 2004, 156, 422–438. [Google Scholar] [CrossRef]
- Schaal, S.; Ijspeert, A.; Billard, A. Computational approaches to motor learning by imitation. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Boone, B.A.; Zenati, M.; Hogg, M.E.; Steve, J.; Moser, A.J.; Bartlett, D.L.; Zeh, H.J.; Zureikat, A.H. Assessment of quality outcomes for robotic pancreaticoduodenectomy: Identification of the learning curve. JAMA Surg. 2015, 150, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Healey, A.N.; Sevdalis, N.; Vincent, C.A. Measuring intra-operative interference from distraction and interruption observedin the operating theatre. Ergonomics 2006, 49, 589–604. [Google Scholar] [CrossRef]
- Shapiro, R.A.; Berland, T. Noise in the Operating Room. N. Engl. J. Med. 1972, 287, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Hodge, B.; Thompson, J. Noise pollution in the operating theatre. Lancet 1990, 335, 891–894. [Google Scholar] [CrossRef]
- Wilson, M.R.; Poolton, J.M.; Malhotra, N.; Ngo, K.; Bright, E.; Masters, R.S.W. Development and Validation of a Surgical Workload Measure: The Surgery Task Load Index (SURG-TLX). World J. Surg. 2011, 35, 1961–1969. [Google Scholar] [CrossRef] [Green Version]
- Lowndes, B.R.; Forsyth, K.L.; Blocker, R.C.; Dean, P.G.; Truty, M.J.; Heller, S.F.; Blackmon, S.; Hallbeck, M.S.; Nelson, H. NASA-TLX Assessment of Surgeon Workload Variation Across Specialties. Ann. Surg. 2020, 271, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y. Queuing Network Modeling of Driver Workload and Performance. IEEE Trans. Intell. Transp. Syst. 2007, 8, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA; London, UK, 2014. [Google Scholar]
- Kayser, J.; Tenke, C.E. On the benefits of using surface Laplacian (current source density) methodology in electrophysiology. Int. J. Psychophysiol. 2015, 97, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Goñi, J.; Heuvel, M.P.V.D.; Avena-Koenigsberger, A.; De Mendizabal, N.V.; Betzel, R.F.; Griffa, A.; Hagmann, P.; Corominas-Murtra, B.; Thiran, J.-P.; Sporns, O. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl. Acad. Sci. USA 2014, 111, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, S.B.; Hussein, A.A.; Guru, K.A. Dynamic changes of brain functional states during surgical skill acquisition. PLoS ONE 2018, 13, e0204836. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, S.B.; Hussein, A.A.; Guru, K.A. Relationship Between Surgeon’s Brain Functional Network Reconfiguration and Performance Level During Robot-Assisted Surgery. IEEE Access 2018, 6, 33472–33479. [Google Scholar] [CrossRef]
- Sporns, O.; Betzel, R.F. Modular Brain Networks. Annu. Rev. Psychol. 2016, 67, 613–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassett, D.S.; Wymbs, N.F.; Rombach, M.P.; Porter, M.A.; Mucha, P.J.; Grafton, S.T. Task-Based Core-Periphery Organization of Human Brain Dynamics. PLoS Comput. Biol. 2013, 9, e1003171. [Google Scholar] [CrossRef]
- Betzel, R.F.; Satterthwaite, T.D.; Gold, J.I.; Bassett, D.S. Positive affect, surprise, and fatigue are correlates of network flexibility. Sci. Rep. 2017, 7, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathias, B.; Tillmann, B.; Palmer, C. Sensory, Cognitive, and Sensorimotor Learning Effects in Recognition Memory for Music. J. Cogn. Neurosci. 2016, 28, 1111–1126. [Google Scholar] [CrossRef]
- Leahy, W.; Sweller, J. Cognitive load theory and the effects of transient information on the modality effect. Instr. Sci. 2016, 44, 107–123. [Google Scholar] [CrossRef]
- Conrad, C.D.; Bliemel, M. Psychophysiological measures of cognitive absorption and cognitive load in e-learning applications. In Proceedings of the Thirty Sixth International Conference on Information Systems, Dublin, Ireland, 11–14 December 2016. [Google Scholar]
- Shafiei, S.B.; Hussein, A.A.; Guru, K.A. Cognitive learning and its future in urology: Surgical skills teaching and assessment. Curr. Opin. Urol. 2017, 27, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Chen, O.; Kalyuga, S.; Sweller, J. When Instructional Guidance is Needed. Educ. Dev. Psychol. 2016, 33, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Raison, N.; Ghumman, F.; Moran, A.; Dasgupta, P.; Ahmed, K. Cognitive training: How can it be adapted for surgical education? Surgery 2017, 15, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lallee, S.; Hamann, K.; Steinwender, J.; Warneken, F.; Martienz, U.; Barron-Gonzales, H.; Pattacini, U.; Gori, I.; Petit, M.; Metta, G.; et al. Cooperative human robot interaction systems: IV. Communication of shared plans with Naïve humans using gaze and speech. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 129–136. [Google Scholar]
- Reznick, R.K.; MacRae, H. Teaching surgical skills—Changes in the wind. N. Engl. J. Med. 2006, 355, 2664–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, A.G.; Ritter, E.M.; Champion, H.; Higgins, G.; Fried, M.P.; Moses, G.; Smith, C.D.; Satava, R.M. Virtual reality simulation for the operating room: Proficiency-based training as a paradigm shift in surgical skills training. Ann. Surg. 2005, 241, 364–372. [Google Scholar] [CrossRef] [PubMed]
Subjects Characteristics | Characteristic Options | Number of Subjects (%) |
---|---|---|
Age (mean) | 30–45 (38) | 3 (100) |
Dominant hand | Right | 3 (100) |
Gender | Male | 3 (100) |
Experience | No prior experience in RAS in the OR | 3 (100) |
Overall years of surgical training/practice | 5–10 | 2 (67) |
10–15 | 1 (33) |
Variable | Estimate | 95% Confidence Interval | p-Value |
---|---|---|---|
Flexibility motor process-related areas | 11.90 | (1.28, 22.52) | 0.028 |
Flexibility cognitive process-related areas | 15.07 | (2.6, 27.53) | 0.018 |
Flexibility perceptual process-related areas | 19.50 | (7.2, 31.79) | 0.0021 |
Strength motor process-related areas | 0.10 | (0.04, 0.15) | 0.0005 |
Strength cognitive process-related areas | 0.10 | (0.05, 0.16) | 0.0004 |
Strength perceptual process-related areas | 0.11 | (0.05, 0.17) | 0.0004 |
Integration motor process-related areas | 26.77 | (7.65, 45.89) | 0.0064 |
Integration cognitive process-related areas | 28.63 | (8.88, 48.38) | 0.0048 |
Integration perceptual process-related areas | 39 | (13.77, 57.01) | 0.0015 |
Recruitment motor process-related areas | 37.12 | (13.34, 60.89) | 0.0024 |
Recruitment cognitive process-related areas | 48.16 | (25.67, 70.65) | <0.0001 |
Recruitment perceptual process-related areas | 8.99 | (−1.47, 19.45) | 0.0915 |
Search information motor process-related areas | 0.44 | (0.16, 0.73) | 0.0026 |
Search information cognitive process-related areas | 0.52 | (0.22, 0.82) | 0.0009 |
Search information perceptual process-related areas | 0.54 | (0.19, 0.89) | 0.0028 |
Dependent | Parameter | Estimate | p-Value |
---|---|---|---|
Performance | Intercept | −16.78 | 0.0011 |
Performance | Flexibility perceptual process-related areas | 21.57 | 0.0001 |
Performance | Strength cognitive process-related areas | 0.10 | <0.0001 |
Performance | Recruitment cognitive process-related areas | 50.36 | <0.0001 |
Variable | Estimate | 95% Confidence Interval | p-Value |
---|---|---|---|
Flexibility motor process-related areas | −6.66 | (−14.49, 1.17) | 0.0948 |
Flexibility cognitive process-related areas | −10.90 | (−20.02, −1.79) | 0.0194 |
Flexibility perceptual process-related areas | −11.15 | (−20.27, −2.03) | 0.0170 |
Strength motor process-related areas | 0.02 | (−0.02, 0.06) | 0.3148 |
Strength cognitive process-related areas | 0.02 | (−0.02, 0.07) | 0.3038 |
Strength perceptual process-related areas | 0.02 | (−0.03, 0.07) | 0.3622 |
Integration motor process-related areas | 15.64 | (1.33, 29.95) | 0.0324 |
Integration cognitive process-related areas | 15.79 | (1.01, 30.58) | 0.0365 |
Integration perceptual process-related areas | 15.39 | (−0.93, 31.71) | 0.0644 |
Recruitment motor process-related areas | 1.69 | (−16.3, 19.67) | 0.8531 |
Recruitment cognitive process-related areas | −5.02 | (−22.52, 12.47) | 0.5712 |
Recruitment perceptual process-related areas | −10.30 | (−17.89, −2.72) | 0.0081 |
Search information motor process-related areas | 0.16 | (−0.06, 0.38) | 0.1608 |
Search information cognitive process-related areas | 0.17 | (−0.07, 0.41) | 0.1553 |
Search information perceptual process-related areas | 0.09 | (−0.18, 0.36) | 0.4958 |
Dependent | Parameter | Estimate | p-Value |
---|---|---|---|
Distraction | Intercept | 13.71 | <0.0001 |
Distraction | Integration perceptual process-related areas | 19.35 | 0.0185 |
Distraction | Recruitment perceptual process-related areas | −11.75 | 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiei, S.B.; Jing, Z.; Attwood, K.; Iqbal, U.; Arman, S.; Hussein, A.A.; Durrani, M.; Guru, K. Association between Functional Brain Network Metrics and Surgeon Performance and Distraction in the Operating Room. Brain Sci. 2021, 11, 468. https://doi.org/10.3390/brainsci11040468
Shafiei SB, Jing Z, Attwood K, Iqbal U, Arman S, Hussein AA, Durrani M, Guru K. Association between Functional Brain Network Metrics and Surgeon Performance and Distraction in the Operating Room. Brain Sciences. 2021; 11(4):468. https://doi.org/10.3390/brainsci11040468
Chicago/Turabian StyleShafiei, Somayeh B., Zhe Jing, Kristopher Attwood, Umar Iqbal, Sena Arman, Ahmed A. Hussein, Mohammad Durrani, and Khurshid Guru. 2021. "Association between Functional Brain Network Metrics and Surgeon Performance and Distraction in the Operating Room" Brain Sciences 11, no. 4: 468. https://doi.org/10.3390/brainsci11040468
APA StyleShafiei, S. B., Jing, Z., Attwood, K., Iqbal, U., Arman, S., Hussein, A. A., Durrani, M., & Guru, K. (2021). Association between Functional Brain Network Metrics and Surgeon Performance and Distraction in the Operating Room. Brain Sciences, 11(4), 468. https://doi.org/10.3390/brainsci11040468