Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Surgery
2.2. Stimulation
2.3. Recording and Data Analysis
3. Results
3.1. Establish a Mapping Model for the Amplitudes of the Population Spikes Evoked by A-HFS Pulses
3.2. Predict Neuronal Responses to A-HFS with Varying IPI
3.3. Design Pulse Sequences for Desired APS Distributions
4. Discussion
4.1. Amplitude Distribution of APS as an Index of the Strength of Stimulation Effects
4.2. Mapping Model Correlating the Neuronal Reactions to the Varying IPI of Stimulation Pulses
4.3. Implications of the Designs for Different Distributions of Evoked APS Amplitudes
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouthour, W.; Mégevand, P.; Donoghue, J.; Lüscher, C.; Birbaumer, N.; Krack, P. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 2019, 15, 343–352. [Google Scholar] [CrossRef]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef]
- Cagnan, H.; Denison, T.; McIntyre, C.; Brown, P. Emerging technologies for improved deep brain stimulation. Nat. Biotechnol. 2019, 37, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, A.; Foote, K.D.; Okun, M.S. Reengineering deep brain stimulation for movement disorders: Emerging technologies. Curr. Opin. Biomed. Eng. 2017, 4, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Albert, G.C.; Cook, C.M.; Prato, F.S.; Thomas, A.W. Deep brain stimulation, vagal nerve stimulation and transcranial stimulation: An overview of stimulation parameters and neurotransmitter release. Neurosci. Biobehav. Rev. 2009, 33, 1042–1060. [Google Scholar] [CrossRef]
- Montgomery, E.B. Deep Brain Stimulation Programming: Principles and Practice; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Brocker, D.T.; Grill, W.M. Chapter 1—Principles of electrical stimulation of neural tissue. In Handbook of Clinical Neurology; Lozano, A.M., Hallett, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 116, pp. 3–18. [Google Scholar]
- Hess, C.W.; Vaillancourt, D.E.; Okun, M.S. The temporal pattern of stimulation may be important to the mechanism of deep brain stimulation. Exp. Neurol. 2013, 247, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Grill, W.M. Temporal pattern of electrical stimulation is a new dimension of therapeutic innovation. Curr. Opin. Biomed. Eng. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cota, V.R.; de Castro Medeiros, D.; da Páscoa Vilela, M.R.; Doretto, M.C.; Moraes, M.F. Distinct patterns of electrical stimulation of the basolateral amygdala influence pentylenetetrazole seizure outcome. Epilepsy Behav. 2009, 14, 26–31. [Google Scholar] [CrossRef]
- Wyckhuys, T.; Boon, P.; Raedt, R.; Van Nieuwenhuyse, B.; Vonck, K.; Wadman, W. Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. Epilepsia 2010, 51, 2297–2304. [Google Scholar] [CrossRef]
- Brocker, D.T.; Swan, B.D.; Turner, D.A.; Gross, R.E.; Tatter, S.B.; Miller Koop, M.; Bronte-Stewart, H.; Grill, W.M. Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp. Neurol. 2013, 239, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Ma, W.; Wang, Z.; Qiu, C.; Hu, H. Small Changes in Inter-Pulse-Intervals Can Cause Synchronized Neuronal Firing During High-Frequency Stimulations in Rat Hippocampus. Front. Neurosci. 2019, 13, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamintziou, S.D.; Deligiannis, N.G.; Piallat, B.; Polosan, M.; Chabardès, S.; David, O.; Stathis, P.G.; Tagaris, G.A.; Boviatsis, E.J.; Sakas, D.E.; et al. Dominant efficiency of nonregular patterns of subthalamic nucleus deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder in a data-driven computational model. J. Neural Eng. 2015, 13, 016013. [Google Scholar] [CrossRef] [PubMed]
- McGee, M.J.; Grill, W.M. Temporal pattern of stimulation modulates reflex bladder activation by pudendal nerve stimulation. Neurourol. Urodyn. 2016, 35, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.J.; London, B.M.; Hokanson, J.A.; Ayers, C.A.; Gaunt, R.A.; Torres, R.R.; Zaaimi, B.; Miller, L.E. Limb-State Information Encoded by Peripheral and Central Somatosensory Neurons: Implications for an Afferent Interface. IEEE Trans. Neural Syst. Rehab. Eng. 2011, 19, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Brocker, D.T.; Swan, B.D.; So, R.Q.; Turner, D.A.; Gross, R.E.; Grill, W.M. Optimized temporal pattern of brain stimulation designed by computational evolution. Sci. Transl. Med. 2017, 9, eaah3532. [Google Scholar] [CrossRef] [Green Version]
- Cassar, I.R.; Titus, N.D.; Grill, W.M. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J. Neural Eng. 2017, 14, 066013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benabid, A.L.; Benazzous, A.; Pollak, P. Mechanisms of deep brain stimulation. Mov. Disord. 2002, 17, S73–S74. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, K.; Rogers, P.; Bergman, H.; Ughratdar, I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 2017, 13, 548–554. [Google Scholar] [CrossRef]
- Nowak, L.G.; Bullier, J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matterI. Evidence from chronaxie measurements. Exp. Brain Res. 1998, 118, 477–488. [Google Scholar] [CrossRef]
- McIntyre, C.C.; Grill, W.M.; Sherman, D.L.; Thakor, N.V. Cellular Effects of Deep Brain Stimulation: Model-Based Analysis of Activation and Inhibition. J. Neurophysiol. 2004, 91, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Lipski, J. Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J. Neurosci. Methods 1981, 4, 1–32. [Google Scholar] [CrossRef]
- Feng, Z.; Zheng, X.; Yu, Y.; Durand, D.M. Functional disconnection of axonal fibers generated by high frequency stimulation in the hippocampal CA1 region in-vivo. Brain Res. 2013, 1509, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Feng, Z.; Cao, J.; Guo, Z.; Wang, Z.; Hu, N.; Wei, X. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region. J. Integrative Neurosci. 2015, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Feng, Z.; Hu, H.; Wang, Z.; Yuan, Y.; Wei, X. The Appearance Order of Varying Intervals Introduces Extra Modulation Effects on Neuronal Firing Through Non-linear Dynamics of Sodium Channels During High-Frequency Stimulations. Front. Neurosci. 2020, 14, 397. [Google Scholar] [CrossRef]
- Ranck, J.B. Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res. 1975, 98, 417–440. [Google Scholar] [CrossRef] [Green Version]
- Rattay, F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 1999, 89, 335–346. [Google Scholar] [CrossRef]
- Basser, P.J. Cable equation for a myelinated axon derived from its microstructure. Med. Biol. Eng. Comput. 1993, 31, S87–S92. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.L.; Durand, D.M. High frequency stimulation can block axonal conduction. Exp. Neurol. 2009, 220, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Lammert, K.; Nixdorf-Bergweiler, B.E.; Steigerwald, F.; Volkmann, J.; Alzheimer, C. Axonal failure during high frequency stimulation of rat subthalamic nucleus. J. Physiol. (Camb.) 2011, 589, 2781–2793. [Google Scholar] [CrossRef]
- Guo, Z.; Feng, Z.; Wang, Y.; Wei, X. Simulation Study of Intermittent Axonal Block and Desynchronization Effect Induced by High-Frequency Stimulation of Electrical Pulses. Front. Neurosci. 2018, 12, 858. [Google Scholar] [CrossRef]
- Rosenbaum, R.; Zimnik, A.; Zheng, F.; Turner, R.S.; Alzheimer, C.; Doiron, B.; Rubin, J.E. Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiol. Dis. 2014, 62, 86–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellinger, S.C.; Miyazawa, G.; Steinmetz, P.N. Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: A modeling study. J. Neural Eng. 2008, 5, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.; Marasco, A.; Limongiello, A.; Marchetti, C.; Marie, H.; Tirozzi, B.; Migliore, M. On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J. Comput. Neurosci. 2012, 33, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, Z.; Guo, Z.; Zhou, W.; Cai, Z.; Durand, D.M. High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction. Brain Res. 2017, 1661, 67–78. [Google Scholar] [CrossRef]
- Sprengers, M.; Raedt, R.; Larsen, L.E.; Delbeke, J.; Wadman, W.J.; Boon, P.; Vonck, K. Deep brain stimulation reduces evoked potentials with a dual time course in freely moving rats: Potential neurophysiological basis for intermittent as an alternative to continuous stimulation. Epilepsia 2020, 61, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Boëx, C.; Vulliémoz, S.; Spinelli, L.; Pollo, C.; Seeck, M. High and low frequency electrical stimulation in non-lesional temporal lobe epilepsy. Seizure 2007, 16, 664–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limousin, P.; Pollak, P.; Benazzouz, A.; Hoffmann, D.; Le Bas, J.F.; Perret, J.E.; Benabid, A.L.; Broussolle, E. Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995, 345, 91–95. [Google Scholar] [CrossRef]
- McConnell, G.C.; So, R.Q.; Grill, W.M. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation. J. Neurophysiol. 2012, 115, 2791–2802. [Google Scholar] [CrossRef] [Green Version]
- Birdno, M.J.; Kuncel, A.M.; Dorval, A.D.; Turner, D.A.; Gross, R.E.; Grill, W.M. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J. Neurophysiol. 2011, 107, 364–383. [Google Scholar] [CrossRef] [PubMed]
- Kuncel, A.M.; Birdno, M.J.; Swan, B.D.; Grill, W.M. Tremor reduction and modeled neural activity during cycling thalamic deep brain stimulation. Clin. Neurophysiol. 2012, 123, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Baizabal-Carvallo, J.F.; Alonso-Juarez, M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat. Disord. 2016, 31, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Pho, G.; Czigler, M.; Werz, M.A.; Durand, D.M. Low frequency stimulation of ventral hippocampal commissures reduces seizures in a rat model of chronic temporal lobe epilepsy. Epilepsia 2012, 53, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Henze, D.A.; Wittner, L.; Buzsáki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 2002, 5, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Cid, E.; Averkin, R.G.; Aguilar, J.; Sanchez-Aguilera, A.; Viney, T.J.; Gomez-Dominguez, D.; Bellistri, E.; de la Prida, L.M. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat. Neurosci. 2015, 18, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Harris, R.A. The Anesthetic Mechanism of Urethane: The Effects on Neurotransmitter-Gated Ion Channels. Anesth. Analg. 2002, 94, 313–318. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Feng, Z.; Hu, Y.; Wang, Z.; Yuan, Y.; Yang, G.; Lu, C. Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo. Brain Sci. 2021, 11, 509. https://doi.org/10.3390/brainsci11040509
Zheng L, Feng Z, Hu Y, Wang Z, Yuan Y, Yang G, Lu C. Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo. Brain Sciences. 2021; 11(4):509. https://doi.org/10.3390/brainsci11040509
Chicago/Turabian StyleZheng, Lvpiao, Zhouyan Feng, Yifan Hu, Zhaoxiang Wang, Yue Yuan, Gangsheng Yang, and Chuchu Lu. 2021. "Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo" Brain Sciences 11, no. 4: 509. https://doi.org/10.3390/brainsci11040509
APA StyleZheng, L., Feng, Z., Hu, Y., Wang, Z., Yuan, Y., Yang, G., & Lu, C. (2021). Adjust Neuronal Reactions to Pulses of High-Frequency Stimulation with Designed Inter-Pulse-Intervals in Rat Hippocampus In Vivo. Brain Sciences, 11(4), 509. https://doi.org/10.3390/brainsci11040509