Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Diet
3.2. Exercise
3.3. Vitamin Supplementation
3.4. Other Dietary Supplements
3.5. Caffeine
3.6. Alcohol
3.7. Cannabis
3.8. Cigarette Smoking
3.9. Additional Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Keles, G.E.; Anderson, B.; Berger, M.S. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg. Neurol. 1999, 52, 371–379. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; for the European Organization for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jaaskelainen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003, 5, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.M.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.; Xia, Y.; Bettegowda, C.; Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 2018, 15, 422–442. [Google Scholar] [CrossRef]
- Liau, L.M.; Ashkan, K.; Tran, D.D.; Campian, J.L.; Trusheim, J.E.; Cobbs, C.S.; Heth, J.A.; Salacz, M.; Taylor, S.; D’Andre, S.D.; et al. First results on survival from a large Phase 3 clinical trial fo an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 2018, 16, 142. [Google Scholar] [CrossRef] [Green Version]
- Sterck, W.; Coolbrandt, A.; de Casterle, B.D.; Van den Heede, K.; Decruyenaere, M.; Borgenon, S.; Mees, A.; Clement, P. The impact of a high-grade glioma on everyday life: A systematic review from the patient’s and caregiver’s perspective. Eur. J. Oncol Nurs. 2013, 17, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, X.; Sang, H.; Zhou, Y.; Shang, C.; Wang, Y.; Zhu, H. Effects of hyperglycemia on the progression of tumor diseases. J. Exp. Clin. Cancer Res. 2019, 38, 327. [Google Scholar] [CrossRef] [Green Version]
- Roslin, M.; Henriksson, R.; Bergstrom, P.; Ungerstedt, U.; Bergenheim, A.T. Baseline levels of glucose metabolites, glutamate, and glycerol in malignant glioma assessed by stereotactic microdialysis. J. Neurooncol. 2003, 61, 151–160. [Google Scholar] [CrossRef]
- Bao, Z.; Chen, K.; Krepel, S.; Tang, P.; Gong, W.; Zhang, M.; Liang, W.; Trivett, A.; Zhou, M.; Wang, J.M. High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Transl. Oncol. 2019, 12, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Derr, R.L.; Ye, X.; Islas, M.U.; Desideri, S.; Saudek, C.D.; Grossman, S.A. Association between hyperglycemia and survival in patients with newly-diagnosed glioblastoma. J. Clin. Oncol. 2009, 27, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Tieu, M.T.; Lovblom, L.E.; McNamara, M.G.; Mason, W.; Laperriere, N.; Millar, B.; Menard, C.; Kiehl, T.; Perkins, B.A.; Chung, C. Impact of glycemia on survival of glioblastoma patients treated with radiation and temozolomide. J. Neurooncol. 2015, 124, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambless, L.B.; Parker, S.L.; Hassam-Malani, L.; McGirt, M.J.; Thompson, R.C. Type 2 diabetes mellitus and obesity are independent risk factors for poor outcome in patients with high-grade glioma. J. Neurooncol. 2012, 106, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Neal, E.G.; Chaffe, H.; Schwartz, R.H.; Lawson, M.S.; Edwards, N.; Fitzsimmons, G.; Whitney, A.; Cross, J.H. The ketogenic diet for the treatment of childhood epilepsy: A randomized controlled trial. Lancet Neurol. 2008, 7, 500–506. [Google Scholar] [CrossRef]
- Gasior, M.; Rogawski, M.A.; Hartman, A.L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 2006, 17, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Lussier, D.M.; Woolf, E.C.; Johnson, J.L.; Brooks, K.S.; Blattman, J.N.; Scheck, A.C. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 2016, 16, 310. [Google Scholar] [CrossRef]
- Zhou, W.; Mukherjee, P.; Kiebish, M.A.; Markis, W.T.; Mantis, J.G.; Seyfried, T.N. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr. Metab. 2007, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Stafford, P.; Abdelwahab, M.G.; Kim, D.Y.; Preul, M.C.; Rho, J.M.; Scheck, A.C. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr. Metab. 2010, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Woolf, E.C.; Curley, K.L.; Liu, Q.; Turner, G.H.; Charlton, J.A.; Preul, M.C.; Scheck, A.C. The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential, and vascular permeability in a mouse glioma model. PLoS ONE 2015, 10, e0130357. [Google Scholar] [CrossRef] [Green Version]
- Abdelwahab, M.G.; Fenton, K.E.; Preul, M.C.; Rho, J.M.; Lynch, A.; Stafford, P.; Scheck, A.C. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE 2012, 7, e36197. [Google Scholar] [CrossRef]
- Schwartz, K.A.; Noel, M.; Nikolai, M.; Chang, H.T. Investigating the ketogenic diet as treatment for primary aggressive brain cancer: Challenges and lessons learned. Front. Nutr. 2018, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Van der Louw, E.J.T.M.; Olieman, J.F.; van den Bemt, P.M.L.A.; Bromberg, J.E.C.; Oomen-de Hoop, E.; Neuteboom, R.F.; Catsman-Berrevoets, C.E.; Vincent, A.J.P.E. Ketogenic diet treatment as adjuvant to standard treatment of glioblastoma multiforme: A feasibility and safety study. Ther. Adv. Med. Oncol. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Rieger, J.; Bahr, O.; Maurer, G.D.; Hattingen, E.; Franz, K.; Brucker, D.; Walenta, S.; Kammerer, U.; Coy, J.F.; Weller, M.; et al. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma. Int. J. Oncol. 2014, 44, 1843–1852. [Google Scholar] [CrossRef] [Green Version]
- Zuccoli, G.; Marcello, N.; Pisanello, A.; Servadei, F.; Vaccaro, S.; Mukherjee, P.; Seyfried, T.N. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case report. Nutr. Metab. 2010, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Elsakka, A.M.A.; Bary, M.A.; Abdelzaher, E.; Elnaggar, M.; Kalamian, M.; Mukherjee, P.; Seyfried, T.N. Management of glioblastoma multiforme in a patient treated with ketogenic metabolic therapy and a modified standard of care: A 24-month follow up. Front. Nutr. 2018, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Nebeling, L.C.; Miraldi, F.; Shurin, S.B.; Lerner, E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: Two case reports. J. Am. Coll. Nutr. 1995, 14, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.; Wagner, M.; von Mettenheim, N.; Harter, P.; Wenger, K.J.; Franz, K.; Vetter, M.; Gerlach, R.; Glatzel, M.; Paulsen, F.; et al. Calorie-restricted ketogenic diet and fasting in addition to reirradiation in malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 987–995. [Google Scholar] [CrossRef]
- Weindruch, R. The retardation of aging by calorie restriction: Studies in rodents and primates. Toxicol. Pathol. 1996, 24, 742–745. [Google Scholar] [CrossRef]
- Lee, C.; Safdie, F.M.; Raffaghello, L.; Wei, M.; Madia, F.; Parrella, E.; Hwang, D.; Cohen, P.; Bianchi, G.; Longo, V.D. Reduced IGF-1 differentially protects normal and cancer cells and improves chemotherapeutic index in mice. Cancer Res. 2010, 70, 1564–1572. [Google Scholar] [CrossRef] [Green Version]
- Raffaghello, L.; Lee, C.; Safdie, F.; Wei, M.; Madia, F.; Bianchi, G.; Longo, V.D. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci. USA 2008, 105, 8215–8220. [Google Scholar] [CrossRef] [Green Version]
- Safdie, F.; Brandhorst, S.; Wei, M.; Wang, W.; Lee, C.; Hwang, S.; Conti, P.; Chen, T.C.; Longo, V.D. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE 2012, 7, e44603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandhorst, S.; Wei, M.; Hwang, S.; Morgan, T.E.; Longo, V.D. Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Exp. Gerontol. 2013, 48, 1120–1128. [Google Scholar] [CrossRef] [Green Version]
- Shelton, L.M.; Huysentruyt, L.C.; Mukherjee, P.; Seyfriend, T.N. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN Neuro. 2010, 2, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Di Liegro, C.M.; Schiera, G.; Proia, P.; Di Liegro, I. Physical activity and brain health. Genes 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantillo, E.; Colistra, A.; Baroncelli, L.; Costa, M.; Caleo, M.; Vannini, E. Voluntary physical exercise reduces motor dysfunction and hampers tumor cell proliferation in a mouse model of glioma. Int. J. Environ. Res. Public Health 2020, 17, 5667. [Google Scholar] [CrossRef] [PubMed]
- Lemke, D.; Pledl, H.; Zorn, M.; Jugold, M.; Green, E.; Blaes, J.; Low, S.; Hertenstein, A.; Ott, M.; Sahm, F.; et al. Slowing down glioblastoma progression in mice by running or the anti-malarial drug dihydroartemisinin? Induction of oxidative stress in murine glioblastoma therapy. Oncotarget 2016, 7, 56713–56725. [Google Scholar] [CrossRef]
- Capozzi, L.C.; Boldt, K.R.; Easaw, J.; Bultz, B.; Culos-Reed, S.N. Evaluating a 12-week exercise program for brain cancer patients. Psychooncology 2016, 25, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Pedersen, C.B.; Jarden, J.O.; Beier, D.; Rosenbek, L.; Sogaard, K. Effectiveness of physical therapy- and occupational therapy-based rehabilitation in people who have glioma and are undergoing active anticancer treatment: Single-blind randomized controlled trial. Phys. Ther. 2020, 100, 564–574. [Google Scholar] [CrossRef]
- Levin, G.T.; Greenwood, K.M.; Singh, F.; Tsoi, D.; Newton, R.U. Exercise improves physical function and mental health of brain cancer survivors: Two exploratory case studies. Integr. Cancer Ther. 2016, 15, 190–196. [Google Scholar] [CrossRef]
- Ruden, E.; Reardon, D.A.; Coan, A.D.; Herndon, I.I.J.E.; Hornsby, W.E.; West, M.; Fels, D.R.; Desjardins, A.; Vredenburgh, J.J.; Waner, E.; et al. Exercise behavior, functional capacity, and survival in adults with malignant recurrent glioma. J. Clin. Oncol. 2011, 29, 2918–2923. [Google Scholar] [CrossRef] [Green Version]
- Szulc-Lerch, K.U.; Timmons, B.W.; Bouffet, E.; Laughlin, S.; de Medeiros, C.B.; Skocic, J.; Lerch, J.P.; Mabbott, D.J. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention. Neuroimage Clin. 2018, 18, 972–985. [Google Scholar] [CrossRef]
- Piscione, P.J.; Bouffet, E.; Timmons, B.; Courneya, K.S.; Tetzlaff, D.; Schneiderman, J.E.; de Medeiros, C.B.; Bartels, U.; Mabbott, D.J. Exercise training improves physical function and fitness in long-term paediatric brain tumour survivors treated with cranial irradiation. Eur. J. Cancer 2017, 80, 63–72. [Google Scholar] [CrossRef]
- Heese, O.; Schmidt, M.; Nickel, S.; Berger, H.; Goldbrunner, R.; Tonn, J.C.; Bahr, O.; Steinbach, J.P.; Simon, M.; Schramm, J.; et al. Complementary therapy use in patients with glioma: An observational study. Neurology 2010, 75, 2229–2235. [Google Scholar] [CrossRef]
- Mulpur, B.H.; Nabors, L.B.; Thompson, R.C.; Olson, J.J.; LaRocca, R.V.; Thompson, Z.; Egan, K.M. Complementary therapy and survival in glioblastoma. Neurooncol. Pract. 2015, 2, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Bouterfa, H.; Picht, T.; Ke, D.; Herbold, C.; Noll, E.; Black, P.M.L.; Roosen, K.; Tonn, J.C. Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery 2000, 46, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Ying, M.; Wang, S.; Sang, Y.; Sun, P.; Lal, B.; Goodwin, C.R.; Guerrero-Cazares, H.; Quinones-Hinojosa, A.; Laterra, J.; Xia, S. Regulation of glioblastoma stem cells by retinoic acid: Role for Notch pathway inhibition. Oncogene 2011, 30, 3454–3467. [Google Scholar] [CrossRef] [Green Version]
- Yung, W.K.A.; Kryitsis, A.P.; Gleason, M.J.; Levin, V.A. Treatment of recurrent malignant gliomas with high-dose 13-cis-Retinoid acid. Clin. Cancer Res. 1996, 2, 1931–1935. [Google Scholar]
- Jaeckle, K.A.; Hess, K.R.; Yung, A.; Greenberg, H.; Fine, H.; Schiff, D.; Pollack, I.F.; Kuhn, J.; Fink, K.; Mehta, M.; et al. Phase II evaluation of temozolomide and 13-cis-Retinoic acid for the treatment of recurrent and progressive malignant glioma: A North American brain tumor consortium study. J. Clin. Oncol. 2003, 21, 2305–2311. [Google Scholar] [CrossRef]
- See, S.J.; Levin, V.A.; Yung, W.K.A.; Hess, K.R.; Groves, M.D. 13-cis-Retinoid acid in the treatment of recurrent glioblastoma multiforme. Neuro Oncol. 2004, 6, 253–258. [Google Scholar] [CrossRef]
- Kaba, S.E.; Kyritsis, A.P.; Conrad, C.; Gleason, M.J.; Newman, R.; Levin, V.A.; Yung, W.K.A. The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). J. Neuro Oncol. 1997, 34, 145–151. [Google Scholar] [CrossRef]
- Pitz, M.W.; Lipson, M.; Hosseini, B.; Lambert, P.; Guilbert, K.; Lister, D.; Schroeder, G.; Jones, K.; Mihalicioiu, C.; Eisenstat, D.D. Extended adjuvant temozolomide with cis-retinoic acid for adult glioblastoma. Curr. Oncol. 2012, 19, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Cameron, E.; Pauling, L. Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc. Natl. Acad. Sci. USA 1976, 73, 3685–3689. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chapman, J.; Levine, M.; Polireddy, K.; Drisko, J.; Chen, Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci. Transl. Med. 2014, 6, 222ra18. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, H.; Huang, J.; Zhu, Y.; Hong, M.; Zhu, H.; Zhang, J.; Li, S.; Yang, L.; Lian, Y.; et al. The synergy of vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk. Res. 2018, 66, 1–7. [Google Scholar] [CrossRef]
- Van Gorkom, G.N.Y.; Lookermans, E.L.; Van Elssen, C.H.M.J.; Bos, G.M.J. The effect of vitamin C (ascorbic acid) in the treatment of patients with cancer: A systematic review. Nutrients 2019, 11, 977. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, J.D.; Sibenaller, Z.A.; Mapuskar, K.A.; Wagner, B.A.; Cramer-Morales, K.L.; Furqan, M.; Sandhu, S.; Carlisle, T.L.; Smith, M.C.; Allen, B.G.; et al. O2− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 2017, 31, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Baillie, N.; Carr, A.C.; Peng, S. The use of intravenous vitamin C as a supportive therapy for a patient with glioblastoma multiforme. Antioxidants 2018, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Magrassi, L.; Bono, F.; Milanesi, G.; Butti, G. Vitamin D receptor expression in human brain tumors. J. Neurosurg. Sci. 1992, 36, 27–30. [Google Scholar]
- Magrassi, L.; Butti, G.; Pezzotta, S.; Infuso, L.; Milanesi, G. Effects of vitamin D and retinoic acid on human glioblastoma cell lines. Acta Neurochir. 1995, 133, 184–190. [Google Scholar] [CrossRef]
- Magrassi, L.; Adorni, L.; Montorfano, G.; Rapelli, S.; Butti, G.; Berra, B.; Milanesi, G. Vitamin D metabolites activate the sphingomyelin pathway and induce death of glioblastoma cells. Acta Neurochir. 1998, 140, 707–713. [Google Scholar] [CrossRef]
- Emanuelsson, I.; Wikvall, K.; Friman, T.; Norlin, M. Vitamin D analogues tacalcitol and calcipotriol inhibit proliferation and migration of T98G human glioblastoma cells. Basic Clin. Pharmacol. Toxicol. 2018, 123, 130–136. [Google Scholar] [CrossRef]
- Naveilhan, P.; Berger, F.; Haddad, K.; Barbot, N.; Benabid, A.L.; Brachet, P.; Wion, D. Induction of glioma cell death by 1,25(OH)2 vitamin D3: Towards and endocrine therapy of brain tumors? J. Neurosci. Res. 1994, 37, 271–277. [Google Scholar] [CrossRef]
- McConnell, D.D.; McGreevy, J.W.; Williams, W.N.; Litofsky, N.S. Do anti-oxidants vitamin D3, melatonin, and alpha-lipoic acid have synergistic effects with temozolomide on cultured glioblastoma cells? Medicines 2018, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Berenguer Frances, M.A.; Larrea, L.; Depiaggio, M.; Duque, R.; Vazquez, G.; Marcos Oset, M.; Cardenal, R.; Tormo Ferrero, V.; Amr, O. Vitamin D levels in blood and survival in glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, S188. [Google Scholar] [CrossRef] [Green Version]
- Diesel, B.; Radermacher, J.; Bureik, M.; Bernhardt, R.; Seifert, M.; Reichrath, J.; Fischer, U.; Meese, E. Vitamin D3 metabolism in human glioblastoma multiforme: Functionality of CYP27B1 splice variants, metabolism of calcidiol, and effect of calcitriol. Clin. Cancer Res. 2005, 11, 5370–5380. [Google Scholar] [CrossRef] [Green Version]
- Salomon, D.G.; Fermento, M.E.; Gandini, N.A.; Ferronato, M.J.; Arevalo, J.; Blasco, J.; Andres, N.C.; Zenklusen, J.C.; Curino, A.C.; Facchinetti, M.M. Vitamin D receptor expression is associated with improved overall survival in human glioblastoma multiforme. J. Neurooncol. 2014, 118, 49–60. [Google Scholar] [CrossRef]
- Trouillas, P.; Honnorat, J.; Bret, P.; Jouvet, A.; Gerard, J.P. Redifferentiation therapy in brain tumors: Long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J. Neurooncol. 2001, 51, 57–66. [Google Scholar] [CrossRef]
- Li, J.; Qu, J.; Shi, Y.; Perfetto, M.; Ping, Z.; Christian, L.; Niu, H.; Mei, S.; Zhang, Q.; Yang, X.; et al. Nicotinic acid inhibits glioma invasion by facilitating Snail1 degradation. Sci. Rep. 2017, 7, 4313. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Yang, R.; Mirzaei, R.; Rawji, K.; Poon, C.; Mishra, M.K.; Zemp, F.J.; Bose, P.; Kelly, J.; Dunn, J.F.; et al. Control of brain tumor growth by reactivating myeloid cells with niacin. Sci. Transl. Med. 2020, 21, eaay9924. [Google Scholar] [CrossRef]
- Betti, M.; Minelli, A.; Canonico, B.; Castaldo, P.; Magi, S.; Aisa, M.C.; Piroddi, M.; Di Tomaso, V.; Galli, F. Antiproliferative effects of tocopherols (vitamin E) on murine glioma C6 cells: Homologue-specific control of PKC/ERK and cyclin signaling. Free Radic. Biol. Med. 2006, 41, 464–472. [Google Scholar] [CrossRef]
- Samandari, E.; Visarius, T.; Zingg, J.M.; Azzi, A. The effect of γ-tocopherol on proliferation, integrin expression, adhesion, and migration of human glioma cells. Biomed. Biophys. Res. Commun. 2006, 342, 1329–1333. [Google Scholar] [CrossRef]
- DeLorenze, G.N.; McCoy, L.; Tsai, A.L.; Quesenberry, C.P., Jr.; Rice, T.; Il’yasova, D.; Wrensch, M. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma. BMC Cancer 2010, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Rzepka, Z.; Rok, J.; Maszczyk, M.; Beberok, A.; Hermanowicz, J.M.; Pawlak, D.; Gryko, D.; Wrzesniok, D. Response of human glioblastoma cells to vitamin B12 deficiency: A study using the non-toxic cobalamin antagonist. Biology 2021, 10, 69. [Google Scholar] [CrossRef]
- Oh, H.K.; Lee, J.Y.; Eo, W.K.; Yoon, S.W.; Han, S.N. Elevated serum vitamin B12 levels as a prognostic factor for survival time in metastatic cancer patients: A retrospective study. Nutr. Cancer 2018, 70, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Kumar Patel, K.; Dehari, D.; Kumar Agrawal, A.; Singh, S. Melatonin and its ubiquitous anticancer effects. Mol. Cell Biochem. 2019, 462, 133–155. [Google Scholar] [CrossRef]
- Moretti, E.; Favero, G.; Fabrizio Rodella, L.; Rezzani, R. Melatonin’s antineoplastic potential against glioblastoma. Cells 2020, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Lissoni, P.; Meregalli, S.; Nosetto, L.; Barni, S.; Tancini, G.; Fossati, V. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology 1996, 53, 43–46. [Google Scholar] [CrossRef]
- Kiskova, T.; Kubatka, P.; Busselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules 2020, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zhang, P.; Kiang, K.M.Y.; Cheng, Y.S.; Leung, G.K.K. Caffeine sensitizes U87-MG human glioblastoma cells to temozolomide through mitotic catastrophe by impeding G2 arrest. BioMed Res. Int. 2018, 2018, 5364973. [Google Scholar] [CrossRef]
- Klinger, N.V.; Mittal, S. Therapeutic potential of curcumin for the treatment of brain tumors. Oxid Med. Cell Longev. 2016, 2016, 9324085. [Google Scholar] [CrossRef]
- Casper, D.; Lekhraj, R.; Yaparpalvi, U.S.; Pidel, A.; Jaggernauth, W.A.; Werner, P.; Tribius, S.; Del Rowe, J.; LaSala, P.A. Acetaminophen selectively reduces glioma cell growth and increases radiosensitivity in culture. J. Neurooncol. 2000, 46, 215–229. [Google Scholar] [CrossRef]
- Pozzoli, G.; Marei, H.E.; Althani, A.; Boninsegna, A.; Casalbore, P.; Marlier, L.N.J.L.; Lanzilli, G.; Zonfrillo, M.; Petrucci, G.; Rocca, B.; et al. Aspirin inhibits cancer stem cells properties and growth of glioblastoma multiforme through Rb1 pathway modulation. J. Cell Physiol. 2019, 234, 15459–15471. [Google Scholar] [CrossRef]
- Ozdemir, O.; Marinelli, L.; Cacciatore, I.; Ciulla, M.; Emsen, B.; Di Stefano, A.; Mardinoglu, A.; Turkez, H. Anticancer effects of novel NSAIDs derivatives on cultured human glioblastoma cells. Z. Nat. C J. Biosci. 2020. [Google Scholar] [CrossRef]
- Nehlig, A.; Daval, J.L.; Debry, G. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic, and psychostimulant effects. Brain Res. Rev. 1992, 17, 139–170. [Google Scholar] [CrossRef]
- Lunt, M.J.; Ragab, S.; Birch, A.A.; Schley, D.; Jenkinson, D.F. Comparison of caffeine-induced changes in cerebral blood flow and middle cerebral artery blood velocity shows that caffeine reduces middle cerebral artery diameter. Physiol. Meas. 2004, 25, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Holick, C.N.; Smith, S.G.; Giovannucci, E.; Michaud, D.S. Coffee, tea, caffeine intake and risk of adult glioma in 3 prospective cohort studies. Cancer Epidemiol. Biomark. Prev. 2010, 19, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Michaud, D.S.; Gallo, V.; Schlehofer, B.; Tjonneland, A.; Olsen, A.; Overvad, K.; Dahm, C.C.; Teucher, B.; Lukanova, A.; Boeing, H.; et al. Coffee and tea intake and risk of brain tumors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Am. J. Clin. Nutr. 2010, 92, 1145–1150. [Google Scholar] [CrossRef] [Green Version]
- Creed, J.H.; Smith-Warner, S.A.; Gerke, T.A.; Egan, K.M. A prospective study of coffee and tea consumption and the risk of glioma in the UK Biobank. Eur. J. Cancer 2020, 129, 123–131. [Google Scholar] [CrossRef]
- Ku, B.M.; Lee, Y.K.; Jeong, J.Y.; Ryu, J.; Choi, J.; Kim, J.S.; Cho, Y.W.; Roh, G.S.; Kim, H.J.; Cho, G.J.; et al. Caffeine inhibits cell proliferation and regulates PKA/GSK3β pathways in U87MG human glioma cells. Mol. Cells 2011, 31, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chou, W.C.; Ding, Y.M.; Wu, Y.C. Caffeine inhibits migration in glioma cells through the ROCK-FAK pathway. Cell Physiol. Biochem. 2014, 33, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Ding, Y.M.; Hueng, D.Y.; Chen, J.Y.; Chen, Y. Caffeine suppresses the progression of human glioblastoma via cathepsin B and MAPK signaling pathway. J. Nutr. Biochem. 2016, 33, 63–72. [Google Scholar] [CrossRef]
- Kang, S.S.; Han, K.S.; Ku, B.M.; Lee, Y.K.; Hong, J.; Shin, H.Y.; Almonte, A.G.; Woo, D.H.; Brat, D.J.; Hwang, E.M.; et al. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-triphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res. 2010, 70, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Han, D.F.; Cao, B.Q.; Wang, B.; Dong, N.; Jiang, D.H. Caffeine-induced nuclear translocation of FoxO1 triggers Bim-mediated apoptosis in human glioblastoma cells. Tumor Biol. 2016, 37, 3417–3423. [Google Scholar] [CrossRef] [PubMed]
- Janss, A.J.; Levow, C.; Bernhard, E.J.; Muschel, R.J.; McKenna, W.G.; Sutton, L.; Phillips, P.C. Caffeine and staurosporine enhance the cytotoxicity of cisplatin and camptothecin in human brain tumor cell lines. Exp. Cell Res. 1998, 243, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Sinn, B.; Tallen, G.; Schroeder, G.; Grassl, B.; Schulze, J.; Budach, V.; Tinhofer, I. Caffeine confers radiosensitization of PTEN-deficient malignant glioma cells by enhancing ionizing radiation-induced G1 arrest and negatively regulating Akt phosphorylation. Mol. Cancer Ther. 2010, 9, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.J.; Hugenholtz, H.; DaSilva, V.; Benoit, B.; Richard, M.; Russel, N.; Maroun, J.; Verma, S. Cytosine arabinoside plus cisplatin and other drugs as chemotherapy for gliomas. Semin. Oncol. 1987, 14, 110–115. [Google Scholar]
- Perez-Perez, D.; Reyes-Vidal, I.; Chavez-Cortez, E.G.; Sotelo, J.; Magana-Maldonado, R. Methylxanthines: Potential therapeutic agents for glioblastoma. Pharmaceuticals 2019, 12, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testino, G. The burden of cancer attributable to alcohol consumption. Maedica 2011, 6, 313–320. [Google Scholar]
- Qi, Z.Y.; Shao, C.; Yang, C.; Wang, Z.; Hui, G.Z. Alcohol consumption and risk of glioma: A meta-analysis of 19 observational studies. Nutrients 2014, 6, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Galeone, C.; Malerba, S.; Rota, M.; Bagnardi, V.; Negri, E.; Scotti, L.; Bellocco, R.; Corrao, G.; Boffetta, P.; La Vecchia, C.; et al. A meta-analysis of alcohol consumption and the risk of brain tumours. Ann. Oncol. 2013, 24, 514–523. [Google Scholar] [CrossRef]
- Haspula, D.; Clark, M.A. Cannabinoid receptors: An update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases. Int. J. Mol. Sci. 2020, 21, 7693. [Google Scholar] [CrossRef]
- Moreno, E.; Cavic, M.; Krivokuca, A.; Casado, V.; Canela, E. The endocannabinoid system as a target in cancer diseases: Are we there yet? Front. Pharmacol. 2019, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Gomez del Pulgar, T.; De Ceballos, M.L.; Guzman, M.; Velasco, G. Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 2002, 277, 36527–36533. [Google Scholar] [CrossRef] [Green Version]
- Molina-Holgado, E.; Vela, J.M.; Arevalo-Martin, A.; Almazan, G.; Molina-Holgado, F.; Borrell, J.; Guaza, C. Cannabinoids promote oligodendrocyte progenitor survival: Involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J. Neurosci. 2002, 22, 9742–9753. [Google Scholar] [CrossRef]
- Massi, P.; Vaccani, A.; Ceruti, S.; Colombo, A.; Abbracchio, M.P.; Parolaro, D. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J. Pharmacol. Exp. Ther. 2004, 308, 838–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massi, P.; Vaccani, A.; Bianchessi, S.; Costa, B.; Macchi, P.; Parolaro, D. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell Mol. Life Sci. 2006, 63, 2057–2066. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Valero, I.; Saiz-Ladera, C.; Torres, S.; Hernandez-Tiedra, S.; Garcia-Taboada, E.; Fodriguez-Fornes, F.; Barba, M.; Davila, D.; Salvador-Tormo, N.; Guzman, M.; et al. Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochem. Pharmacol. 2018, 157, 266–274. [Google Scholar] [CrossRef]
- Recht, L.D.; Salmonsen, R.; Rosetti, R.; Jang, T.; Pipia, G.; Kubiatowski, T.; Karim, P.; Ross, A.H.; Zurier, R.; Litofsky, N.S.; et al. Antitumor effects of ajulemic acid (CT3), a synthetic non-psychoactive cannabinoid. Biochem. Pharmacol. 2001, 62, 75–763. [Google Scholar] [CrossRef]
- Reblin, M.; Sahebjam, S.; Peeri, N.C.; Martinez, Y.C.; Thompson, Z.; Egan, K.M. Medical cannabis use in glioma patients treated at a comprehensive cancer center in Florida. J. Palliat. Med. 2019, 22, 1202–1207. [Google Scholar] [CrossRef]
- Bar-Lev Schleider, L.; Mechoulam, R.; Lederman, V.; Hilou, M.; Lencovsky, O.; Betzalel, O.; Shbiro, L.; Novack, V. Prospective analysis of safety and efficacy of medical cannabis in large unselected population of patients with cancer. Eur. J. Intern. Med. 2018, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.; Schloss, J.; Sinclair, J.S.; Steel, A. A phase II double-blind, randomized clinical trial assessing the tolerability of two different ratios of cannabis in patients with glioblastoma multiforme. J. Clin. Oncol. 2020, 38, 2530. [Google Scholar] [CrossRef]
- Guzman, M.; Duarte, M.J.; Blazquez, C.; Ravina, J.; Rosa, M.C.; Galve-Roperh, I.; Sanchez, C.; Velasco, G.; Gonzalez-Feria, L. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer 2006, 95, 197–203. [Google Scholar] [CrossRef]
- Twelves, C.; Short, S.; Wright, S. A two-part safety and exploratory efficacy randomized double-blind, placebo-controlled study of a 1:1 ratio of the cannabinoids cannabidiol and delta-9-tetrahydrocannabinol (CBD:THC) plus dose-intense temozolomide in patients with recurrent glioblastoma multiforme. J. Clin. Oncol. 2017, 35, 2046. [Google Scholar] [CrossRef]
- Blondin, N. The evolving role of complementary cannabis therapy in glioblastoma treatment. Neuro Oncol. 2018, 20, vi214–vi215. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Jiang, J.; Liu, B.; Han, W.; Wu, Y.; Zou, X.; Nasca, P.; Xue, F.; Chen, Y.; Zhang, B.; et al. Smoking and adult glioma: A population-based case-control study in China. Neuro Oncol. 2016, 18, 105–113. [Google Scholar] [CrossRef]
- Ahn, S.; Han, K.D.; Park, Y.M.; Bae, J.M.; Kim, S.U.; Jeun, S.S.; Yang, S.H. Cigarette smoking is associated with increased risk of malignant gliomas: A nationwide population-based cohort study. Cancers 2020, 12, 1343. [Google Scholar] [CrossRef]
- Tseng, T.S.; Lin, H.Y.; Moody-Thomas, S.; Martin, M.; Chen, T. Who tended to continue smoking after cancer diagnosis: The national health and nutrition examination survey 1999–2008. BMC Public Health 2012, 12, 784. [Google Scholar] [CrossRef] [Green Version]
- McConnell, D.D.; Carr, S.B.; Litofsky, N.S. Potential effects of nicotine on glioblastoma and chemoradiotherapy: A review. Expert Rev. Neurother. 2019, 19, 545–555. [Google Scholar] [CrossRef]
- Paravati, A.J.; Heron, D.E.; Landsittel, D.; Flickinger, J.C.; Mintz, A.; Chen, Y.F.; Huq, S. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: Validation of radiation therapy oncology group-recursive partitioning analysis in the IMRT and temozolomide era. J. Neurooncol. 2011, 104, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Fox, S.; Laws, E.R., Jr.; Anderson, F., Jr.; Farace, E. Complementary therapy use and quality of life in persons with high-grade glioma. J. Neurosci. Nurs. 2006, 38, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Field, K.M.; Drummond, K.J.; Yilmaz, M.; Tacey, M.; Compston, D.; Gibbs, P.; Rosenthal, M.A. Clinical trial participation and outcome for patients with glioblastoma: Multivariate analysis from a comprehensive dataset. J. Clin. Neurosci. 2013, 20, 783–789. [Google Scholar] [CrossRef]
- Xie, J.C.; Yang, S.; Liu, X.Y.; Zhao, Y.X. Effect of marital status on survival in glioblastoma multiforme by demographics, education, economic factors, and insurance status. Cancer Med. 2018, 7, 3722–3742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.; Li, M.; Ou, S.; Li, G. The effect of marital status on glioma patient survival: Analysis of 617 cases. Medicine 2018, 97, e13900. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Barker, F.G. Marital status, treatment, and survival in patients with glioblastoma multiforme. Cancer 2005, 104, 1975–1984. [Google Scholar] [CrossRef]
- Mutlu, H.; Akca, Z.; Erden, A.; Aslan, T.; Ucar, K.; Kaplan, B.; Buyukcelik, A. Lack of sunlight exposure influence on primary glioblastoma survival. Asian Pac. J. Cancer Prev. 2014, 15, 4165–4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Type of Study | Author | Findings | Current Clinical Trial | Current Status; Estimated Date of Completion |
---|---|---|---|---|---|
Ketogenic Diet | Prospective randomized clinical trial | Voss et al. [28] | Patients in the ketogenic diet–intermittent fasting group receiving reirradiation for GBM who achieved blood glucose levels < 83.5 mg/dL had significantly longer PFS and OS | Ketogenic diet in combination with standard-of-care radiation and temozolomide for patients with glioblastoma (NCT03451799) | Recruiting; April 2021 |
Feasibility study of modified Atkins ketogenic diet in the treatment of newly diagnosed malignant glioma (NCT03278249) | Recruiting; January 2021 | ||||
Feasibility, safety, and efficacy of a metabolic therapy program in conjunction with standard treatment for glioblastoma multiforme (NCT04730869) | Not yet recruiting; November 2022 | ||||
Calorie Restriction | No human trials; mouse studies only | N/A | N/A | Glioma modified Atkins-based diet in patients with glioblastoma (GLAD) (NCT02286167) | Completed with no results posted yet; July 2019 |
Characterization of metabolic changes in the glioma tumor tissue induced by transient fasting (ERGO3) (NCT04461938) | Recruiting; March 2022 | ||||
Exercise | Prospective observational cohort study | Ruden et al. [41] | Exercise behavior is an independent predictor of survival with those exercising ≥ 9 MET-h/wk having a median survival of 21.84 months compared to 13.03 months in those exercising < 9 MET-h/wk | Does exercise improve progression-free survival in glioblastoma? A prospective single arm intervention trial (NCT03390569) | Recruiting; December 2020 |
Influence of physical activity in patients with high grade glioma on patients’ psychological well being, sleep and quality of life (NCT03775369) | Recruiting; December 2021 | ||||
Vitamin A | Multi-center phase II clinical trial | Jaeckle et al. [49] | Patients with recurrent glioblastoma receiving cis-retinoid acid and temozolomide exceeded the goal of 20% increase in PFS at 6 months compared to historical controls | Phase I/II adaptive randomized trial of vorinostat, isotretinoin, and temozolomide in adults with recurrent glioblastoma multiforme (NCT00555399) | Active, not recruiting; November 2024 |
Vitamin B3 | No human studies | N/A | N/A | A phase I/II study of niacin in patients with newly diagnosed glioblastoma receiving concurrent radiotherapy and temozolomide followed by monthly temozolomide (NCT04677049) | Recruiting; January 2026 |
Vitamin C | Phase 1 clinical trial | Schoenfeld et al. [57] | High-dose ascorbic acid is safe and well-tolerated in patients with glioblastoma with a trend toward longer PFS and overall survival compared to historical averages | Pharmacological ascorbate combined with radiation and temozolomide in glioblastoma multiforme: A Phase 2 trial (NCT02344355) | Active, not recruiting; December 2024 |
A phase I trial of high-dose ascorbate in glioblastoma multiforme (NCT01752491) | Active, not recruiting; December 2021 | ||||
Vitamin D | Phase 2 clinical trial | Trouillas et al. [68] | Oral alfacalcidol is safe. 20% of glioblastoma patients had significant clinical and radiographic response and were alive >4 years after diagnosis | None | N/A |
Melatonin | Randomized controlled trial | Lissoni et al. [78] | 42.9% of glioblastoma patients receiving oral melatonin in addition to radiotherapy were alive at one year compared to 6.2% of those receiving radiotherapy alone | None | N/A |
Caffeine | Phase 2 clinical trial | Stewart et al. [98] | Caffeine-induced seizures prevented dose escalation to a therapeutic level | None | N/A |
Alcohol | No human studies | N/A | N/A | None | N/A |
Cannabis | Randomized double-blind placebo-controlled trial | Twelves et al. [114] | 1-year survival in patients receiving CBD:THC with temozolomide was 83% compared to 56% in those receiving temozolomide plus placebo | Phase Ib, open-label, multicenter, intrapatient dose-escalation clinical trial to assess the safety profile of the TN-TC11G (THC + CBD) combination with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma (NCT03529448) | Not yet recruiting; June 2023 |
Smoking Cessation | Retrospective cohort study | Paravati et al. [120] | Smokers with KPS < 70 have median survival of 5.2 months compared to 8 months in nonsmokers with KPS < 70 | None | N/A |
Marital Status | Retrospective population-based cohort study | Xie et al. [123] | Longer overall survival for married patients | None | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travers, S.; Litofsky, N.S. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci. 2021, 11, 533. https://doi.org/10.3390/brainsci11050533
Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sciences. 2021; 11(5):533. https://doi.org/10.3390/brainsci11050533
Chicago/Turabian StyleTravers, Sarah, and N. Scott Litofsky. 2021. "Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review" Brain Sciences 11, no. 5: 533. https://doi.org/10.3390/brainsci11050533
APA StyleTravers, S., & Litofsky, N. S. (2021). Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sciences, 11(5), 533. https://doi.org/10.3390/brainsci11050533