Distinction of Physiologic and Epileptic Ripples: An Electrical Stimulation Study
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Electrical Stimulation and Assignment of Grid Contacts
2.3. Detection of Interictal Epileptic Spikes and Ripples
2.4. Quantifying Performance of Different Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Patients and Channels
3.2. Biomarkers of the Seizure-Onset Zone
3.3. Systematic Comparison of Diagnostic Value
3.4. Diagnostic Value at the Level of Individual Patients
3.5. ‘Pure’ Ripples in Eloquent Cortex
3.6. Delineation of Eloquent Cortex—Across and in Individual Patients
4. Discussion
4.1. ‘Pure’ Ripples: A Reproducible Marker of Eloquent Neocortex
4.2. Delineation of Epileptogenic Tissue AAre Spike–Ripples a Better Biomarker?
4.3. Interactions between Spikes and Ripples
4.4. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perucca, P.; Dubeau, F.; Gotman, J. Intracranial Electroencephalographic Seizure-Onset Patterns: Effect of Underlying Pathology. Brain 2014, 137, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.A.; Alvarado-Rojas, C.; Bragin, A.; Behnke, E.; Fields, T.; Fried, I.; Engel, J.J.; Staba, R. Ictal Onset Patterns of Local Field Potentials, High Frequency Oscillations, and Unit Activity in Human Mesial Temporal Lobe Epilepsy. Epilepsia 2016, 57, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, J.; Frauscher, B.; von Ellenrieder, N.; Avoli, M.; Dubeau, F.; Gotman, J. Fast Ripple Analysis in Human Mesial Temporal Lobe Epilepsy Suggests Two Different Seizure-Generating Mechanisms. Neurobiol. Dis. 2019, 127, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, J.; Birk, N.; Lachner-Piza, D.; Dümpelmann, M.; Schulze-Bonhage, A.; Jacobs, J. High-frequency Oscillations Mirror Severity of Human Temporal Lobe Seizures. Ann. Clin. Transl. Neurol. 2019, 6, 2479–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.; Zijlmans, M.; Zelmann, R.; Chatillon, C.-E.; Hall, J.; Olivier, A.; Dubeau, F.; Gotman, J. High-Frequency Electroencephalographic Oscillations Correlate with Outcome of Epilepsy Surgery. Ann. Neurol. 2010, 67, 209–220. [Google Scholar] [CrossRef]
- Wu, J.Y.; Sankar, R.; Lerner, J.T.; Matsumoto, J.H.; Vinters, H.V.; Mathern, G.W. Removing Interictal Fast Ripples on Electrocorticography Linked with Seizure Freedom in Children. Neurology 2010, 75, 1686–1694. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.; Wu, J.Y.; Perucca, P.; Zelmann, R.; Mader, M.; Dubeau, F.; Mathern, G.W.; Schulze-Bonhage, A.; Gotman, J. Removing High-Frequency Oscillations. Neurology 2018, 91, e1040–e1052. [Google Scholar] [CrossRef]
- Kuroda, N.; Sonoda, M.; Miyakoshi, M.; Nariai, H.; Jeong, J.-W.; Motoi, H.; Luat, A.F.; Sood, S.; Asano, E. Objective Interictal Electrophysiology Biomarkers Optimize Prediction of Epilepsy Surgery Outcome. Brain Commun. 2021. [Google Scholar] [CrossRef]
- Jacobs, J.; Zijlmans, M.; Zelmann, R.; Olivier, A.; Hall, J.; Gotman, J.; Dubeau, F. Value of Electrical Stimulation and High Frequency Oscillations (80–500 Hz) in Identifying Epileptogenic Areas during Intracranial EEG Recordings. Epilepsia 2010, 51, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Zijlmans, M.; Jacobs, J.; Zelmann, R.; Dubeau, F.; Gotman, J. High-Frequency Oscillations Mirror Disease Activity in Patients with Epilepsy. Neurology 2009, 72, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Akiyama, T.; Oka, M.; Endoh, F.; Yoshinaga, H. A Storm of Fast (40–150 Hz) Oscillations Hypsarrhythmia in West Syndrome. Ann. Neurol. 2015, 77, 58–67. [Google Scholar] [CrossRef]
- Klotz, K.A.; Sag, Y.; Schönberger, J.; Jacobs, J. Scalp Ripples Can Predict Development of Epilepsy after First Unprovoked Seizure in Childhood. Ann. Neurol. 2020, 89, 134–142. [Google Scholar] [CrossRef]
- Staba, R.J.; Wilson, C.L.; Bragin, A.; Fried, I.; Engel, J.J. Quantitative Analysis of High-Frequency Oscillations (80–500 Hz) Recorded in Human Epileptic Hippocampus and Entorhinal Cortex. J. Neurophysiol. 2002, 88, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Zelmann, R.; Mari, F.; Jacobs, J.; Zijlmans, M.; Dubeau, F.; Gotman, J. A Comparison between Detectors of High Frequency Oscillations. Clin. Neurophysiol. 2012, 123, 106–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dümpelmann, M.; Jacobs, J.; Kerber, K.; Schulze-Bonhage, A. Automatic 80–250 Hz “Ripple” High Frequency Oscillation Detection in Invasive Subdural Grid and Strip Recordings in Epilepsy by a Radial Basis Function Neural Network. Clin. Neurophysiol. 2012, 123, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Roehri, N.; Pizzo, F.; Bartolomei, F.; Wendling, F.; Benar, C.-G. What Are the Assets and Weaknesses of HFO Detectors? A Benchmark Framework Based on Realistic Simulations. PLoS ONE 2017, 12, e0174702. [Google Scholar] [CrossRef] [PubMed]
- Buzsaki, G.; Horvath, Z.; Urioste, R.; Hetke, J.; Wise, K. High-Frequency Network Oscillation in the Hippocampus. Science 1992, 256, 1025–1027. [Google Scholar] [CrossRef]
- Foster, D.J.; Wilson, M.A. Reverse Replay of Behavioural Sequences in Hippocampal Place Cells during the Awake State. Nature 2006, 440, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.P.; Wittig, J.H.J.; Inati, S.K.; Zaghloul, K.A. Replay of Cortical Spiking Sequences during Human Memory Retrieval. Science 2020, 367, 1131–1134. [Google Scholar] [CrossRef]
- Engel, J.J.; Bragin, A.; Staba, R.; Mody, I. High-Frequency Oscillations: What Is Normal and What Is Not? Epilepsia 2009, 50, 598–604. [Google Scholar] [CrossRef]
- Frauscher, B.; von Ellenrieder, N.; Ferrari-Marinho, T.; Avoli, M.; Dubeau, F.; Gotman, J. Facilitation of Epileptic Activity during Sleep Is Mediated by High Amplitude Slow Waves. Brain 2015, 138, 1629–1641. [Google Scholar] [CrossRef] [Green Version]
- Von Ellenrieder, N.; Frauscher, B.; Dubeau, F.; Gotman, J. Interaction with Slow Waves during Sleep Improves Discrimination of Physiologic and Pathologic High-Frequency Oscillations (80–500 Hz). Epilepsia 2016, 57, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Nonoda, Y.; Miyakoshi, M.; Ojeda, A.; Makeig, S.; Juhász, C.; Sood, S.; Asano, E. Interictal High-Frequency Oscillations Generated by Seizure Onset and Eloquent Areas May Be Differentially Coupled with Different Slow Waves. Clin. Neurophysiol. 2016, 127, 2489–2499. [Google Scholar] [CrossRef] [Green Version]
- Von Ellenrieder, N.; Dubeau, F.; Gotman, J.; Frauscher, B. Physiological and Pathological High-Frequency Oscillations Have Distinct Sleep-Homeostatic Properties. NeuroImage Clin. 2017, 14, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Alkawadri, R.; Gaspard, N.; Goncharova, I.I.; Spencer, D.D.; Gerrard, J.L.; Zaveri, H.; Duckrow, R.B.; Blumenfeld, H.; Hirsch, L.J. The Spatial and Signal Characteristics of Physiologic High Frequency Oscillations. Epilepsia 2014, 55, 1986–1995. [Google Scholar] [CrossRef] [PubMed]
- Bruder, J.C.; Dümpelmann, M.; Piza, D.L.; Mader, M.; Schulze-Bonhage, A.; Jacobs-Le Van, J. Physiological Ripples Associated with Sleep Spindles Differ in Waveform Morphology from Epileptic Ripples. Int. J. Neural Syst. 2017, 27, 1750011. [Google Scholar] [CrossRef] [PubMed]
- Cimbalnik, J.; Brinkmann, B.; Kremen, V.; Jurak, P.; Berry, B.; Van Gompel, J.; Stead, M.; Worrell, G. Physiological and Pathological High Frequency Oscillations in Focal Epilepsy. Ann. Clin. Transl. Neurol. 2018, 5, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Kucewicz, M.T.; Cimbalnik, J.; Matsumoto, J.Y.; Brinkmann, B.H.; Hu, W.; Marsh, W.R.; Meyer, F.B.; Stead, S.M.; Worrell, G.A. Gamma Oscillations Precede Interictal Epileptiform Spikes in the Seizure Onset Zone. Neurology 2015, 84, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.; Vogt, C.; LeVan, P.; Zelmann, R.; Gotman, J.; Kobayashi, K. The Identification of Distinct High-Frequency Oscillations during Spikes Delineates the Seizure Onset Zone Better than High-Frequency Spectral Power Changes. Clin. Neurophysiol. 2016, 127, 129–142. [Google Scholar] [CrossRef]
- Lachner-Piza, D.; Jacobs, J.; Bruder, J.C.; Schulze-Bonhage, A.; Stieglitz, T.; Dumpelmann, M. Automatic Detection of High-Frequency-Oscillations and Their Sub-Groups Co-Occurring with Interictal-Epileptic-Spikes. J. Neural Eng. 2020, 17, 16030. [Google Scholar] [CrossRef]
- Kramer, M.A.; Ostrowski, L.M.; Song, D.Y.; Thorn, E.L.; Stoyell, S.M.; Parnes, M.; Chinappen, D.; Xiao, G.; Eden, U.T.; Staley, K.J.; et al. Scalp Recorded Spike Ripples Predict Seizure Risk in Childhood Epilepsy Better than Spikes. Brain 2019, 142, 1296–1309. [Google Scholar] [CrossRef]
- Roehri, N.; Pizzo, F.; Lagarde, S.; Lambert, I.; Nica, A.; McGonigal, A.; Giusiano, B.; Bartolomei, F.; Bénar, C.-G. High-Frequency Oscillations Are Not Better Biomarkers of Epileptogenic Tissues than Spikes. Ann. Neurol. 2018, 83, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.A. Are Spikes Noninferior to High-Frequency Oscillations? Ann. Neurol. 2018, 83, 870. [Google Scholar] [CrossRef] [PubMed]
- Roehri, N.; Pizzo, F.; McGonigal, A.; Bartolomei, F.; Bénar, C.G. Reply to “Are Spikes Noninferior to High-Frequency Oscillations?”. Ann. Neurol. 2018, 83, 870–871. [Google Scholar] [CrossRef]
- Roehri, N.; Lina, J.-M.; Mosher, J.C.; Bartolomei, F.; Benar, C.-G. Time-Frequency Strategies for Increasing High-Frequency Oscillation Detectability in Intracerebral EEG. IEEE Trans. Biomed. Eng. 2016, 63, 2595–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombet, B.; Woodman, M.; Badier, J.M.; Bénar, C.G. AnyWave: A Cross-Platform and Modular Software for Visualizing and Processing Electrophysiological Signals. J. Neurosci. Methods 2015, 242, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, F.; Turnbull, B.W. Nonparametric and Semiparametric Estimation of the Receiver Operating Characteristic Curve. Ann. Stat. 1996, 24, 25–40. [Google Scholar] [CrossRef]
- Bandos, A.I.; Rockette, H.E.; Gur, D. A Permutation Test Sensitive to Differences in Areas for Comparing ROC Curves from a Paired Design. Stat. Med. 2005, 24, 2873–2893. [Google Scholar] [CrossRef]
- Frauscher, B.; von Ellenrieder, N.; Zelmann, R.; Rogers, C.; Nguyen, D.K.; Kahane, P.; Dubeau, F.; Gotman, J. High-Frequency Oscillations in the Normal Human Brain. Ann. Neurol. 2018, 84, 374–385. [Google Scholar] [CrossRef]
- Jacobs, J.; Golla, T.; Mader, M.; Schelter, B.; Dümpelmann, M.; Korinthenberg, R.; Schulze-Bonhage, A. Electrical Stimulation for Cortical Mapping Reduces the Density of High Frequency Oscillations. Epilepsy Res. 2014, 108, 1758–1769. [Google Scholar] [CrossRef]
- Urrestarazu, E.; Jirsch, J.D.; LeVan, P.; Hall, J.; Avoli, M.; Dubeau, F.; Gotman, J. High-Frequency Intracerebral EEG Activity (100–500 Hz) Following Interictal Spikes. Epilepsia 2006, 47, 1465–1476. [Google Scholar] [CrossRef]
- Urrestarazu, E.; Chander, R.; Dubeau, F.; Gotman, J. Interictal High-Frequency Oscillations (100–500 Hz) in the Intracerebral EEG of Epileptic Patients. Brain 2007, 130, 2354–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.; Kobayashi, K.; Gotman, J. High-Frequency Changes during Interictal Spikes Detected by Time-Frequency Analysis. Clin. Neurophysiol. 2011, 122, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bénar, C.G.; Chauvière, L.; Bartolomei, F.; Wendling, F. Pitfalls of High-Pass Filtering for Detecting Epileptic Oscillations: A Technical Note on “False” Ripples. Clin. Neurophysiol. 2010, 121, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Jirsch, J.D.; Urrestarazu, E.; LeVan, P.; Olivier, A.; Dubeau, F.; Gotman, J. High-Frequency Oscillations during Human Focal Seizures. Brain 2006, 129, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Single-Unit Analysis Reveals That Distinct Networks Underlie High-Frequency Oscillation-Associated Interictal Epileptiform Discharges. Available online: https://cms.aesnet.org/abstractslisting/single-unit-analysis-reveals-that-distinct-networks-underlie-high-frequency-oscillation-associated-interictal-epileptiform-discharges (accessed on 23 April 2021).
ID | Sex | Age (y) | MRI | Grid Coverage | Eloquent Cortex | AEDs | Surgery | Outcome, Engel Class (Follow-Up) |
---|---|---|---|---|---|---|---|---|
1 | m | 21 | S/p resection pilocytic astrocytoma, gliosis temporobasal L | T | Wernicke | OXC | EL | Ia (1 y) |
2 | f | 51 | Hippocampal sclerosis L | T, F | Wernicke, motor | LEV, PGB | AHE | Ia (1 y) |
3 | f | 28 | no clear epileptogenic lesion | F, T, P, O | Motor, sensory, Wernicke | OXC, PGB | none | N/A |
4 | m | 11 | FCD frontoparietal R | F, P | Motor, sensory | LEV, OXC, ZNS | EL | Ia (3 m) |
5 | m | 41 | S/p resection ganglioglioma parietal L | P, T, F | Wernicke, motor, sensory | ZNS, PHT | EL | Ib (3 m) |
6 | f | 21 | FCD frontal R | F, T, P | Motor, sensory | OXC, TPM, CLB | EL | Ia (3 m) |
7 | m | 41 | FCD frontocentral R | F, P | Motor, sensory | LTG, CLB | EL + MST | Ia (3 m) |
8 | m | 39 | Hippocampal sclerosis L, FCD temporal L | T, F | Motor | LEV | EL + AHE | Ia (3 m) |
9 | f | 48 | FCD frontal L | F, P | Motor, sensory, Broca | OXC, PHT, DZP | EL | IIb (1 y) |
10 | m | 54 | Gliosis frontal L | F | Motor, Broca | OXC, LEV | EL | Ia (6 m) |
11 | f | 33 | FCD frontal R | F, P | Motor, sensory | OXC, CLB | EL | Ia (1 y) |
12 | f | 27 | S/p AHE, FCD temporal L | T | Wernicke | OXC, LCM | ATL + MST superior temporal gyrus | IVb (1 y) |
13 | m | 17 | FCD temporal R | T, P | Sensory | LEV, OXC | EL + AHE | Ia (2 y) |
14 | f | 14 | FCD occipitotemporal L | T | Wernicke | OXC, LTG, PHT | MST | IVb (1 y) |
15 | f | 15 | FCD frontal R | F, P | Motor, sensory | STM, LTG, CLB | EL | Ia (3 m) |
16 | f | 38 | FCD frontal L | F, P | Motor, sensory, Broca | LTG, LCM, TPM, CLB | partial resection frontal lobe | IIIa (6 m) |
17 | m | 33 | no clear epileptogenic lesion | F, P | Motor, sensory | LTG, RUF, CLB | MST | IIIa (6 m) |
18 | m | 22 | FCD frontal L | F, T, P, O | Motor, sensory, Broca, Wernicke | OXC, LTG, CLB | EL | IIIa (1 y) |
19 | m | 14 | Gliosis frontal R | F, P | Motor, sensory | LEV | EL | Ia (3 m) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönberger, J.; Knopf, A.; Klotz, K.A.; Dümpelmann, M.; Schulze-Bonhage, A.; Jacobs, J. Distinction of Physiologic and Epileptic Ripples: An Electrical Stimulation Study. Brain Sci. 2021, 11, 538. https://doi.org/10.3390/brainsci11050538
Schönberger J, Knopf A, Klotz KA, Dümpelmann M, Schulze-Bonhage A, Jacobs J. Distinction of Physiologic and Epileptic Ripples: An Electrical Stimulation Study. Brain Sciences. 2021; 11(5):538. https://doi.org/10.3390/brainsci11050538
Chicago/Turabian StyleSchönberger, Jan, Anja Knopf, Kerstin Alexandra Klotz, Matthias Dümpelmann, Andreas Schulze-Bonhage, and Julia Jacobs. 2021. "Distinction of Physiologic and Epileptic Ripples: An Electrical Stimulation Study" Brain Sciences 11, no. 5: 538. https://doi.org/10.3390/brainsci11050538
APA StyleSchönberger, J., Knopf, A., Klotz, K. A., Dümpelmann, M., Schulze-Bonhage, A., & Jacobs, J. (2021). Distinction of Physiologic and Epileptic Ripples: An Electrical Stimulation Study. Brain Sciences, 11(5), 538. https://doi.org/10.3390/brainsci11050538