Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic
Abstract
:1. Introduction
2. COVID-19 Outbreak and Adverse Effects That Potentially Influence the Learning Performance of Students
3. Learning Stimulation Based on Neuroscientific Findings
3.1. Physical Activity and Cognitive Processes
3.2. Nutrition and Cognitive Processes
3.3. Restful Sleep and Cognitive Processes
3.4. Mindfulness as a Protective Factor and Learning Promoter
4. Concluding Remarks and Guidelines
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shereen, M.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Zhao, M.; Meng, X.; Deng, Y.; Zheng, X.; Wang, X.; Xiong, S.; Han, Y. Differential effects of acute physical activity on executive function in preschoolers with high and low habitual physical activity levels. Ment. Health Phys. Act. 2020, 18, 10036. [Google Scholar] [CrossRef]
- Hamouche, S. COVID-19 and employees’ mental health: Stressors, moderators and agenda for organizational actions. Emerald Open Res. 2020, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Serafini, G.; Parmigiani, B.; Amerio, A.; Aguglia, A.; Sher, L.; Amore, M. The psychological impact of COVID-19 on the mental health in the general population. QJM 2020, 113, 529–535. [Google Scholar] [CrossRef]
- Pfefferbaum, B.; North, C.S. Mental Health and the Covid-19 Pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef]
- Voitsidis, P.; Gliatas, I.; Bairachtari, V.; Papadopoulou, K.; Papageorgiou, G.; Parlapani, E.; Diakogiannis, I. Insomnia during the COVID-19 pandemic in a Greek population. Psychiatry Res. 2020, 289, 113076. [Google Scholar] [CrossRef]
- Ranieri, J.; Guerra, F.; Giacomo, D. Predictive risk factors for post-traumatic stress symptoms among nurses during the Italian acute COVID-19 outbreak. Health Psychol. Report 2020. [Google Scholar] [CrossRef]
- Liu, D.; Baumeister, R.F.; Veilleux, J.C.; Chen, C.; Liu, W.; Yue, Y.; Zhang, S. Risk factors associated with mental illness in hospital discharged patients infected with COVID-19 in Wuhan, China. Psychiatry Res. 2020, 292, 113297. [Google Scholar] [CrossRef]
- Settineri, S.; Merlo, E.M. Editorial: Fear of Contamination. Mediterr. J. Clin. Psychol. 2020, 8, 1–8. [Google Scholar]
- Di Giacomo, D. Public Health emergencies and quarantine: Virtual patient engagement as challenge and opportunity for Mental Health strategy. Mediterr. J. Clin. Psychol. 2020, 8, 1–5. [Google Scholar]
- Marinoni, G.; van’t Land, H.; Jensen, T. The impact of covid-19 on higher education around the world. IAU Global Survey Report. 2020. Available online: https://www.iau-aiu.net/IMG/pdf/iau_covid19_and_he_survey_report_final_may_2020.pdf (accessed on 1 June 2020).
- de Oliveira Araújo, F.J.; de Lima, L.S.A.; Cidade, P.I.M.; Nobre, C.B.; Neto, M.L.R. Impact of Sars-Cov-2 and its reverberation in global higher education and mental health. Psychiatry Res. 2020, 288, 112977. [Google Scholar] [CrossRef]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020, 287, 112934. [Google Scholar] [CrossRef] [PubMed]
- García-Peñalvo, F.J.; Corell, A.; Abella-García, V.; Grande, M. La evaluación online en la educación superior en tiempos de la COVID-19. Educ. Knowl. Soc. 2020, 21, 1–26. [Google Scholar] [CrossRef]
- MacIntyre, P.D.; Gregersen, T.; Mercer, S. Language teachers’ coping strategies during the Covid-19 conversion to online teaching: Correlations with stress, wellbeing and negative emotions. System 2020, 94, 102352. [Google Scholar] [CrossRef]
- Alfadil, M.; Anderson, D.; Green, A. Connecting to the digital age: Using emergent technology to enhance student learning. Educ. Inf. Technol. 2020, 25, 1625–1638. [Google Scholar] [CrossRef]
- Koçoğlu, E.; Tekdal, D. Analysis of distance education activities conducted during COVID-19 pandemic. Educ. Res. Rev. 2020, 15, 536–543. [Google Scholar]
- Ortiz, T. Neurociencia y Educación; Alianza: Madrid, Spain, 2009; p. 263. [Google Scholar]
- Zadina, J. The emerging role of educational neuroscience in education reform. Psicol. Educ. 2015, 21, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Ofen, N.; Yu, Q.; Chen, Z. Memory and the developing brain: Are insights from cognitive neuroscience applicable to education? Curr. Opin. Behav. Sci. 2016, 10, 81–88. [Google Scholar] [CrossRef]
- Shamsudin, N.M.; Abdullah, N.; Yaamat, N. Strategies of Teaching Science Using an Inquiry based Science Education (IBSE) by Novice Chemistry Teachers. Proc. Soc. Behav. Sci. 2013, 90, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Smart, K.L.; Csapo, N. Learning by Doing: Engaging Students through Learner-Centered Activities. Bus. Commun. Q. 2007, 70, 451–457. [Google Scholar] [CrossRef]
- Ortíz, A. Neuroeducación. ¿Cómo aprende el cerebro humano y cómo deberían enseñar los docentes? Revista Investigaciones en Educación 2015, 15(2), 207–215. [Google Scholar]
- Owens, M.T.; Tanner, K.D. Teaching as Brain Changing: Exploring Connections between Neuroscience and Innovative Teaching. CBE Life Sci. Educ. 2017, 16, fe2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camina, E.; Güell, F. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins. Front. Pharmacol. 2017, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Genzel, L.; Wixted, J.T.; Morris, R.G. Memory consolidation. Cold Spring Harb. Perspect. Biol. 2015, 7, a021766. [Google Scholar] [CrossRef]
- Gulyaeva, N.V. Molecular mechanisms of neuroplasticity: An expanding universe. Biochemistry 2017, 82, 237–242. [Google Scholar] [CrossRef]
- Nicolini, C.; Fahnestock, M.; Gibala, M.J.; Nelson, A.J. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2021, 457, 259–282. [Google Scholar] [CrossRef]
- Joseph-Bravo, P.; de Gortari, P. El estrés y sus efectos en el metabolismo y el aprendizaje. Biotecnología 2007, 14, 65–76. [Google Scholar]
- Beier, M.E.; Ackerman, P.L. Age, Ability, and the Role of Prior Knowledge on the Acquisition of New Domain Knowledge: Promising Results in a Real-World Learning Environment. Psychol. Aging 2005, 20, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Faingold, C.L.; Tupal, S. Neuronal Network Interactions in the Startle Reflex, Learning Mechanisms, and CNS Disorders, Including Sudden Unexpected Death in Epilepsy. Neuronal Netw. Brain Function CNS Dis. Ther. 2014, 407–418. [Google Scholar] [CrossRef]
- Vidaurre, D.; Abeysuriya, R.; Becker, R.; Quinn, A.J.; Alfaro-Almagro, F.; Smith, S.M.; Woolrich, M.W. Discovering dynamic brain networks from big data in rest and task. NeuroImage 2018, 180, 646–656. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Shors, T.J. Critical brain circuits at the intersection between stress and learning. Neurosci. Biobehav. Rev. 2010, 34, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
- Czéh, B.; Fuchs, E. Remodeling of neural networks by stress. In Stress: Concepts, Cognition, Emotion and Behavior: Handbook of Stress; Fink, G., Ed.; Elsevier: London, UK, 2016; Volume 1, pp. 117–124. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer International Publishing AG: Basel, Switzerland, 2018. [Google Scholar]
- Islam, S.M.D.-U.; Bodrud-Doza, M.; Khan, R.M.; Haque, M.A.; Mamun, M.A. Exploring COVID-19 stress and its factors in Bangladesh: A perception-based study. Heliyon 2020, 6, e04399. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Mental Health and Psychosocial Considerations during the COVID-19 Outbreak, 18 March 2020. 2020. Available online: https://apps.who.int/iris/handle/10665/331490 (accessed on 1 March 2020).
- Vogel, S.; Schwabe, L. Learning and memory under stress: Implications for the classroom. NPJ Sci. Learn. 2016, 1, 16011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oby, E.R.; Golub, M.D.; Hennig, J.A.; Degenhart, A.D.; Tyler-Kabara, E.C.; Yu, B.M.; Chase, S.M.; Batista, A.P. New neural activity patterns emerge with long-term learning. Proc. Natl. Acad. Sci. USA 2019, 116, 15210–15215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, A. Neuroeducación: Uniendo las neurociencias y la educación en la búsqueda del desarrollo humano. Educ. Rev. Digital 2010, 143, 1–14. [Google Scholar]
- Ceballos-Marón, N.A.; Sevilla-Vallejo, S. El Efecto del Aislamiento Social por el Covid-19 en la Conciencia Emocional y en la Comprensión Lectora. Estudio sobre la Incidencia en Alumnos con Trastornos de Aprendizaje y Menor Acceso a las Nuevas Tecnologías. Rev. Int. Educ. Justicia Soc. 2020, 9, 1–13. [Google Scholar]
- Sevilla-Vallejo, S.; Ceballos Marón, N.A. Theoretical and applied study of the psychological and educational effects of lockdown in primary school students in Argentina. Soc. Sci. Hum. Open 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Son, C.; Hegde, S.; Smith, A.; Wang, X.; Sasangohar, F. Effects of COVID-19 on college students’ mental health in the United States: Interview survey study. J. Med. Internet Res. 2020, 22, e21279. [Google Scholar] [CrossRef]
- Kapasia, N.; Paul, P.; Roy, A.; Saha, J.; Zaveri, A.; Mallick, R.; Barman, P.; Das, P.; Chouhan, P. Impact of lockdown on learning status of undergraduate and postgraduate students during COVID-19 pandemic in West Bengal, India. Child Youth Serv. Rev. 2020, 116, 105194. [Google Scholar] [CrossRef]
- Husky, M.M.; Kovess-Masfety, V.; Swendsen, J.D. Stress and anxiety among university students in France during Covid-19 mandatory confinement. Compr. Psychiatry 2020, 102, 152191. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.H.; Sultana, S.; Hossain, S.; Hasan, M.T.; Ahmed, H.U.; Sikder, T. The impact of COVID-19 pandemic on mental health & wellbeing among home-quarantined Bangladeshi students: A cross-sectional pilot study. J. Affect. Disord. 2020, 277, 121–128. [Google Scholar]
- Di Pietro, G.; Biagi, F.; Costa, P.; Karpiński, Z.; Mazza, J. The Likely Impact of COVID-19 on Education Reflections Based on the Existing Literature and International Datasets; EUR 30275 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-19937-3. [Google Scholar]
- Sacerdote, B. Peer Effects in Education: How Might They Work, How Big Are They and How Much Do We Know Thus Far? Handbook Econ. Educ. 2011, 3, 249–277. [Google Scholar]
- Tan, C. The impact of COVID-19 pandemic on student learning performance from the perspectives of community of inquiry. Asian Educ. Dev. Stud. 2021, 10, 308–321. [Google Scholar] [CrossRef]
- Kalman, R.; Macias Esparza, M.; Weston, C. Student Views of the Online Learning Process during the COVID-19 Pandemic: A Comparison of Upper-Level and Entry-Level Undergraduate Perspectives. J. Chem. Educ. 2020, 97, 3353–3357. [Google Scholar] [CrossRef]
- Sanz, G.; Gil, A.; Marnet, B.; Berlanga, L.; Tordesillas, M.; Pérez Ruiz, S.; Gómez, S. Students’ performance in French subjects in the COVID-19 confinement. In Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’20); Association for Computing Machinery: New York, NY, USA, 2000; pp. 853–858. [Google Scholar]
- Gonzales, T.; de la Rubia, M.A.; Hincz, K.P.; Comas-Lopez, M.; Subirats, L.; Fort, S.; Sacha, G.M. Influence of COVID-19 confinement on students’ performance in higher education. PLoS ONE 2020, 15, e0239490. [Google Scholar] [CrossRef]
- Jalongo, M.R.; Hirsh, R.A. Understanding Reading Anxiety: New Insights from Neuroscience. Early Child Educ. J. 2010, 37, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Walberg, H.J. Improving Student Learning: Action Principles for Families, Classrooms, Schools, Districts, and States; Lincoln: Information Age Publishing Inc.: Charlotte, NC, USA, 2010. Available online: https://eric.ed.gov/?id=ED529526 (accessed on 1 June 2020).
- Akçayır, G.; Akçayır, M. The flipped classroom: A review of its advantages and challenges. Comput. Educ. 2018, 126, 334–345. [Google Scholar] [CrossRef]
- Lachman, S.J. Learning is a process: Toward an improved definition of learning. J. Psychol. 1997, 131, 477–480. [Google Scholar] [CrossRef]
- Bouton, M.E. Learning and Behavior: A Contemporary Synthesis; Sinauer Associates Inc.: Sunderland, MA, USA, 2007. [Google Scholar]
- De Houwer, J.; Barnes-Holmes, D.; Moors, A. What is learning? On the nature and merits of a functional definition of learning. Psychon. Bull. Rev. 2013, 20, 631–642. [Google Scholar] [CrossRef]
- Donaldson, J.P.; Allen-Handy, A. The Nature and Power of Conceptualizations of Learning. Educ. Psychol. Rev. 2020, 32, 545–570. [Google Scholar] [CrossRef]
- Brazier, Y.; Samson, D.O. What is Neuroscience? Medical News Todays. 2018. Available online: https://www.medicalnewstoday.com/articles/248680 (accessed on 1 December 2020).
- Román, F. La Neurociencia detrás del aprendizaje basado en problemas (ABP). JONED J. Neuroeducat. 2021, 1, 50–56. [Google Scholar]
- Mora, G. El Cerebro y el Aprendizaje. Laboratorio de Farmacología del comportamiento, Facultad de Medicina, Universidad de Chile. Rev. Farmacol. Chile 2013, 6, 5. [Google Scholar]
- Jarrard, L.E. On the role of the hippocampus in learning and memory in the rat. Behav. Neural Biol. 1993, 60, 9–26. [Google Scholar] [CrossRef]
- Ólafsdóttir, H.F.; Bush, D.; Barry, C. The Role of Hippocampal Replay in Memory and Planning. Curr. Biol. 2018, 28, R37–R50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monk, A.M.; Dalton, M.A.; Barnes, G.R.; Maguire, E.A. The Role of Hippocampal-Ventromedial Prefrontal Cortex Neural Dynamics in Building Mental Representations. J. Cogn. Neurosci. 2021, 33, 89–103. [Google Scholar] [CrossRef] [PubMed]
- De Souza-Talarico, J.N.; Marin, M.F.; Sindi, S.; Lupien, S.J. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement. Neuropsychol. 2011, 5, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Conner, S.C.; Himali, J.J.; Maillard, P.; de Carli, C.S.; Beiser, A.S.; Seshadri, S. Circulating cortisol and cognitive and structural brain measures. Neurology 2018, 91, e1961–e1970. [Google Scholar] [CrossRef]
- Haier, R.J.; Siegel, B.; Tang, C.; Abel, L.; Buchsbaum, M.S. Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence 1992, 16, 415–426. [Google Scholar] [CrossRef]
- Schurr, A. Cerebral Energy Metabolism: Measuring and Understanding Its Rate. Cell. Metab. Related Dis. 2019. [Google Scholar] [CrossRef] [Green Version]
- Nakajo, Y.; Miyamoto, S.; Nakano, Y.; Xue, J.-H.; Hori, T.; Yanamoto, H. Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory. Brain Res. 2008, 1241, 103–109. [Google Scholar] [CrossRef]
- Deveci, S.; Matur, Z.; Kesim, Y.; Şentürk, G.; Sargın-Kurt, G.; Uğur, S.A.; Öge, A.E. Effect of the Brain-derived Neurotrophic Factor Gene Val66Met Polymorphism on Sensory-Motor Integration During a Complex Motor Learning Exercise. Brain Res. 2020, 1732, 146652. [Google Scholar] [CrossRef]
- Mateos-Aparicio, P.; Rodríguez-Moreno, A. The Impact of Studying Brain Plasticity. Front. Cell Neurosci. 2019, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Baroncelli, L.; Lunghi, C. Neuroplasticity of the visual cortex: In sickness and in health. Exp. Neurol. 2020, 335, 113515. [Google Scholar] [CrossRef]
- Von Bernhardi, R.; Bernhardi, L.E.; Eugenín, J. What Is Neural Plasticity? Adv. Exp. Med. Biol. 2017, 1015, 1–15. [Google Scholar]
- Focus on learning and memory. Nat. Neurosci. 2019, 22, 1535. [CrossRef] [Green Version]
- Ji, S.; Duan, J.; Hou, X.; Zhou, L.; Qin, W.; Niu, H.; Luo, S.; Zhang, Y.; Chan, P.; Jin, X. The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer’s Disease or Vascular Diseases through Regulating Neuroplasticity. Neural Plasticity 2021, 8868447, 16. [Google Scholar]
- Picón-Pagès, P.; Garcia-Buendia, J.; Muñoz, F.J. Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2019, 1865, 1949–1967. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.C.; Jones, O.D.; Glanzman, D.L. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci. Learn. 2019, 4, 9. [Google Scholar] [CrossRef]
- Gay, S.; Bishop, M.; Sutherland, S. Teaching Genetics and Genomics for Social and Lay Professionals. Genomics Soc. 2016, 147–164. [Google Scholar] [CrossRef]
- Brown, R.; Milner, P. The legacy of Donald O. Hebb: More than the Hebb Synapse. Nat. Rev. Neurosci. 2003, 4, 1013–1019. [Google Scholar] [CrossRef]
- Leisman, G.; Mualem, R.; Mughrabi, S.K. The neurological development of the child with the educational enrichment in mind. Psicol. Educ. 2015, 21, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Kahneman, D. Thinking Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Schmidt-Kassow, M.; Zink, N.; Mock, J.; Thiel, C.; Vogt, L.; Abel, C.; Kaiser, J. Treadmill walking during vocabulary encoding improves verbal long-term memory. Behav. Brain Funct. 2014, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotink, R.A.; Meijboom, R.; Vernooij, M.W.; Smits, M.; Hunink, M.G.M. 8-week Mindfulness Based Stress Reduction induces brain changes similar to traditional long-term meditation practice—A systematic review. Brain Cogn. 2016, 108, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Berkovich-Ohana, A.; Jennings, P.A.; Lavy, S. Contemplative neuroscience, self-awareness, and education. Prog. Brain Res. 2019, 244, 355–385. [Google Scholar] [PubMed]
- Rashidy-Pour, A.; Bavarsad, K.; Miladi-Gorji, H.; Seraj, Z.; Vafaei, A.A. Voluntary exercise and estradiol reverse ovariecto-my-induced spatial learning and memory deficits and reduction in hippocampal brain-derived neurotrophic factor in rats. Pharmacol. Biochem. Behav. 2019, 187, 172819. [Google Scholar] [CrossRef] [PubMed]
- Galván, A. The Need for Sleep in the Adolescent Brain. Trends Cogn. Sci. 2020, 24, 79–89. [Google Scholar] [CrossRef]
- Dringenberg, H.C. Sleep and Memory Consolidation: Conceptual and Methodological Challenges. Handbook Behav. Neurosci. 2019, 30, 489–501. [Google Scholar]
- Lavy, S.; Berkovich-Ohana, A. From Teachers’ Mindfulness to Students’ Thriving: The Mindful Self in School Relationships (MSSR) Model. Mindfulness 2020, 11, 2258–2273. [Google Scholar] [CrossRef]
- Vetter, M.; O’Connor, H.T.; O’Dwyer, N.; Chau, J.; Orr, R. Math’s on the Move: Effectiveness of physically-active lessons for learning math’s and increasing physical activity in primary school students. J. Sci. Med. Sport 2020, 23, 735–739. [Google Scholar] [CrossRef]
- Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr. 2020, 52, 102066. [Google Scholar] [CrossRef]
- Van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Mang, C.S.; Snow, N.J.; Wadden, K.P.; Campbell, K.L.; Boyd, L.A. High-Intensity Aerobic Exercise Enhances Motor Memory Retrieval. Med. Sci. Sports Exerc. 2016, 48, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Kuo, T.B.J.; Hung, C.-T.; Yang, C.C.H. Voluntary exercise enhances hippocampal theta rhythm and cognition in the rat. Behav. Brain Res. 2020, 399, 112916. [Google Scholar] [CrossRef]
- Wood, C.J.; Clow, A.; Hucklebridge, F.; Law, R.; Smyth, N. Physical fitness and prior physical activity are both associated with less cortisol secretion during psychosocial stress. Anxiety Stress Coping 2017, 31, 135–145. [Google Scholar] [CrossRef]
- Tunstall, S.L.; Beymer, P.N. Learning to Think Slower: Review of Thinking, Fast and Slow by Daniel Kahneman (2011). Numeracy 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Executive function. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Siegel, L.S.; Mazabel, S. Basic cognitive processes and reading disabilities. In Handbook of Learning Disabilities; Swanson, H.L., Harris, K.R., Graham, S., Eds.; The Guilford Press: New York, NY, USA, 2014; pp. 186–213. [Google Scholar]
- Barenberg, J.; Berse, T.; Dutke, S. Executive functions in learning processes: Do they benefit from physical activity? Educ. Res. Rev. 2011, 6, 208–222. [Google Scholar] [CrossRef]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Schmidt, M.; Mavilidi, M.-F.; Singh, A.; Englert, C. Combining Physical and Cognitive Training to Improve Kindergarten Children’s Executive Functions: A Cluster Randomized Controlled Trial. Contemp. Educ. Psychol. 2020, 63, 101908. [Google Scholar]
- Xiong, J.; Ye, M.; Wang, L.; Zheng, G. Effects of Physical Exercise on Executive Function in Cognitively Healthy Older Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Int. J. Nurs. Stud. 2021, 114, 103810. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, J.; Cao, M.; Hu, W.; Zhou, T.; Huang, T.; Chen, P.; Quan, M. The effect of chronic physical activity interventions on executive function in children aged 3–7 years: A meta-analysis. J. Sci. Med. Sport. 2020, 23, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.L.; Daly-Smith, A.; Archbold, V.S.; Wilkins, E.L.; McKenna, J. The Daily Mile™ initiative: Exploring physical activity and the acute effects on executive function and academic performance in primary school children. Psychol. Sport Exerc. 2019, 45, 101583. [Google Scholar] [CrossRef]
- Zamroziewicz, M.K.; Barbey, A.K. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging. Front. Neurosci. 2016, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. The Salutary Effects of DHA Dietary Supplementation on Cognition, Neuroplasticity, and Membrane Homeostasis after Brain Trauma. J. Neurotrauma 2011, 28, 2113–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Pinilla, F.; Gomez, A.G. The influence of dietary factors in central nervous system plasticity and injury recovery. PM R. 2011, 3, S111–S116. [Google Scholar] [CrossRef] [Green Version]
- D’ Angelo, M.; Cimini, A.; Castelli, V. Insights into the Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 5241. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bansal, M.P.; Sandhir, R. Altered Dietary Selenium Influences Brain Iron Content and Behavioural Outcomes. Behav. Brain Res. 2019, 327, 112011. [Google Scholar]
- Hidalgo, C.; Núñez, M.T. Calcium, iron and neuronal function. IUBMB Life 2007, 59, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.F.; Lawlis, T.R. Feeding the brain—The effects of micronutrient interventions on cognitive performance among school-aged children: A systematic review of randomized controlled trials. Clin. Nutr. 2017, 36, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Mattei, D.; Pietrobelli, A. Micronutrients and Brain Development. Curr. Nutr. Rep. 2019, 8, 99–107. [Google Scholar] [CrossRef]
- Rower, H.B.; Maria Teresa, A.O.; Tonantzin, R.G.; Pattussi, M.P. The role of emotional states in fruit and vegetable consumption in Brazilian adults. Cien Saude Colet 2017, 22, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Masih, T.; Dimmock, J.A.; Epel, E.S.; Guelfi, K.J. Stress-induced eating and the relaxation response as a potential antidote: A review and hypothesis. Appetite 2017, 118, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yu, C.; Xu, L.; Qin, W.; Li, K.; Jiang, T. Offline memory reprocessing: Involvement of the brain’s default network in spontaneous thought processes. PLoS ONE 2009, 4, e4867. [Google Scholar] [CrossRef] [Green Version]
- Tucker, M.A.; Humiston, G.B.; Summer, T.; Wamsley, E. Comparing the Effects of Sleep and Rest on Memory Consolidation. Nat. Sci. Sleep 2020, 12, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, Y.; Fang, Z.; Yang, F.N.; Xu, S.; Deng, Y.; Raine, A.; Wang, J.; Yu, M.; Basner, M.; Goel, N.; et al. Two nights of recovery sleep restores hippocampal connectivity but not episodic memory after total sleep deprivation. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Vecsey, C.G.; Baillie, G.S.; Jaganath, D.; Havekes, R.; Daniels, A.; Wimmer, M.; Huang, T.; Brown, K.M.; Li, X.Y.; Descalzi, G.; et al. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 2009, 461, 1122–1125. [Google Scholar] [CrossRef] [Green Version]
- Klinzing, J.G.; Niethard, N.; Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 2019, 22, 1598–1610. [Google Scholar] [CrossRef]
- Goel, N. Genetics of Sleep Timing, Duration and Homeostasis in Humans. Sleep Med. Clin. 2011, 6, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amici, R.; Cerri, M.; Parmeggiani, P.L. Overview of Physiological Processes during Sleep. In The Encyclopedia of Sleep; Kushida, C., Ed.; Academic Press: Waltham, MA, USA, 2013; Volume 1, pp. 385–389. [Google Scholar]
- Feld, G.B.; Diekelmann, S. Sleep smart—Optimizing sleep for declarative learning and memory. Front. Psychol. 2015, 6, 622. [Google Scholar] [CrossRef] [PubMed]
- Van Der Werf, Y.D.; Altena, E.; Schoonheim, M.M.; Sanz-Arigita, E.J.; Vis, J.C.; de Rijke, W.; van Someren, E.J. Sleep benefits subsequent hippocampal functioning. Natural Neurosci. 2009, 12, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Rosso, A.C.; Wilson, O.W.A.; Papalia, Z.; Duffey, M.; Kline, C.E.; Bopp, M. Frequent restful sleep is associated with the absence of depressive symptoms and higher-grade point average among college students. Sleep Health 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Barber, I. Sleep in a time of pandemic—A position statement from the national sleep foundation. Sleep Health 2020, 6, 431. [Google Scholar] [CrossRef] [PubMed]
- Kabat-Zinn, J. Mindfulness. Mindfulness 2015, 6, 1481–1483. [Google Scholar] [CrossRef]
- Grossman, P.; Niemann, L.; Schmidt, S.; Walach, H. Mindfulness-based stress reduction and health benefits. A meta-analysis. J. Psychosom. Res. 2004, 57, 35–43. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Askari, P.; Choi, C. Brief mindfulness training increased glutamate metabolism in the anterior cingulate cortex. NeuroReport 2020, 31, 1142–1145. [Google Scholar] [CrossRef]
- Águila, C. Educación Física para el desarrollo de la consciencia: Una propuesta pedagógica (Physical Education for the deve-lopment of consciousness: A pedagogical proposal). Retos 2020, 39, 937–944. [Google Scholar]
- Chang, V.Y.; Palesh, O.; Caldwell, R.; Glasgow, N.; Abramson, M.; Luskin, F.; Gill, M.; Burke, A.; Koopman, C. The effects of a mindfulness-based stress reduction program on stress, mindfulness self-efficacy, and positive states of mind. Stress Health 2004, 20, 141–147. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Wang, X.; Liu, L.; Zhang, J.; Zhou, R. The Effects of Different Stages of Mindfulness Meditation Training on Emotion Regulation. Front. Hum. Neurosci. 2019, 13, 208. [Google Scholar] [CrossRef]
- Tymofiyeva, O.; Henje, E.; Yuan, J.; Huang, C.H.-Y.; Connolly, C.; Ho, T.; Bhandari, S.; Parks, K.; Sipes, B.; Yang, T.; et al. Reduced anxiety and changes in amygdala network properties in adolescents with training for awareness, resilience, and action (TARA). NeuroImage Clin. 2021, 29, 102521. [Google Scholar] [CrossRef] [PubMed]
- Lardone, A.; Liparoti, M.; Sorrentino, P.; Rucco, R.; Jacini, F.; Polverino, A.; Minino, R.; Pesoli, M.; Baselice, F.; Sorriso, A.; et al. Mindfulness Meditation Is Related to Long-Lasting Changes in Hippocampal Functional Topology during Resting State: A Magnetoencephalography Study. Neural Plasticity 2018, 5340717. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Friston, K.J.; Tang, Y.Y. Brief mindfulness meditation induces gray matter changes in a brain hub. Neural Plasticity 2020, 8830005. [Google Scholar] [CrossRef]
- Hölzel, B.K.; Carmody, J.; Vangel, M.; Congleton, C.; Yerramsetti, S.M.; Gard, T.; Lazar, S.W. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. Neuroimaging 2011, 191, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-C.; Barrós-Loscertales, A.; Li, M.; Pinazo, D.; Borchardt, V.; Ávila, C.; Walter, M. Alterations in Brain Structure and Amplitude of Low-frequency after 8 weeks of Mindfulness Meditation Training in Meditation-Naïve Subjects. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, M.S. De la mente a la celula: Impacto del estres en psiconeuroinmunoendocrinologia. Liberabit. Rev. Peru. Psicol. 2009, 15, 143–152. [Google Scholar]
- Chu, C.S.; Stubbs, B.; Chen, T.Y.; Tang, C.H.; Li, D.J.; Yang, W.C.; Wu, C.K.; Carvalho, A.F.; Vieta, E.; Miklowitz, D.J.; et al. The effectiveness of adjunct mindfulness-based intervention in treatment of bipolar disorder: A systematic review and meta-analysis. J. Affect Disord. 2018, 225, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Stahl, B.; Goldstein, E. A Mindfulness-Based Stress Reduction Workbook; New Harbinger: Oakland, CA, USA, 2019. [Google Scholar]
- Lam, A.; Leung, S.F.; Lin, J.J.; Chien, W.T. The Effectiveness of a Mindfulness-Based Psychoeducation Programme for Emotional Regulation in Individuals with Schizophrenia Spectrum Disorders: A Pilot Randomised Controlled Trial. Neuropsychiatr. Dis. Treat. 2020, 16, 729–747. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xiao, R.; Tang, F.; Wu, S. Mindfulness-based intervention to reduce multiple health risk behaviors in Chinese under-graduates:a randomized controlled trial. Curr. Psychol. 2021, in press. [Google Scholar] [CrossRef]
- Světlák, M.; Linhartová, P.; Knejzlíková, T.; Knejzlík, J.; Kóša, B.; Horníčková, V.; Jarolínová, K.; Lučanská, K.; Slezáčková, A.; Šumec, R. Being Mindful at University: A Pilot Evaluation of the Feasibility of an Online Mindfulness-Based Mental Health Support Program for Students. Front. Psychol. 2021, 11, 581086. [Google Scholar] [CrossRef] [PubMed]
- Di Fonte, M.; James, C.; Michel, R.; Flannery-Schroeder, E. COVID-19 impact on anxiety and depression among emerging adults: The role of mindfulness. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, S252. [Google Scholar] [CrossRef]
- Michel, R.; di Fonte, M.; Ruiz, E.; James, C.; Flannery-Schroeder, E. Mindfulness as a mediator in the relationship between social loneliness and depression in young adults during the covid-19 pandemic. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, S253. [Google Scholar] [CrossRef]
- Conversano, C.; Di Giuseppe, M.; Miccoli, M.; Ciacchini, R.; Gemignani, A.; Orrù, G. Mindfulness, Age and Gender as Protective Factors against Psychological Distress during COVID-19 Pandemic. Front. Psychol. 2020, 11, 1900. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Liu, R.-D.; Ding, Y.; Fu, X.; Zhen, R.; Sheng, X. Social Media Exposure and College Students’ Mental Health During the Outbreak of COVID-19: The Mediating Role of Rumination and the Moderating Role of Mindfulness. Cyberpsychol. Behav. Soc. Netw. 2020. [Google Scholar] [CrossRef] [PubMed]
- Matiz, A.; Fabbro, F.; Paschetto, A.; Cantone, D.; Paolone, A.R.; Crescentini, C. Positive Impact of Mindfulness Meditation on Mental Health of Female Teachers during the COVID-19 Outbreak in Italy. Int. J. Environ. Res. Public Health 2020, 17, 6450. [Google Scholar] [CrossRef]
- Skaalvik, E.M.; Skaalvik, S. Teacher job satisfaction and motivation to leave the teaching profession: Relations with school context, feeling of belonging, and emotional exhaustion. Teach. Teach. Educ. 2011, 27, 1029–1038. [Google Scholar] [CrossRef]
- Aldrup, K.; Klusmann, U.; Lüdtke, O.; Göllner, R.; Trautwein, U. Student misbehavior and teacher well-being: Testing the mediating role of teacher–student relationship. Learn. Instruct. 2018, 58, 126–136. [Google Scholar] [CrossRef]
- Collie, R.J.; Shapka, J.D.; Perry, N.E. School climate and social-emotional learning: Predicting teacher stress, job satisfaction, and teaching efficacy. J. Educ. Psychol. 2012, 104, 1189–1204. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Crooks, C.V.; Bax, K.; Shokoohi, M. Impact of Trauma-Informed Training and Mindfulness-Based Social–Emotional Learning Program on Teacher Attitudes and Burnout: A Mixed-Methods Study. School Mental Health 2021, in press. [Google Scholar] [CrossRef]
- Chaput, J.P.; Dutil, C.; Sampasa-Kanyinga, H. Sleeping hours: What is the ideal number and how does age impact this? Nat. Sci. Sleep 2008, 10, 421–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolb, D.A.; Boyatzis, R.E.; Mainemelis, C. Experiential learning theory: Previous research and new directions. In Perspectives on Thinking, Learning, and Cognitive Styles. The Educational Psychology Series; Sternberg, R.J., Zhang, L., Eds.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 2001; pp. 227–247. [Google Scholar]
- Mang, C.S.; Campbell, K.L.; Ross, C.J.; Boyd, L.A. Promoting neuroplasticity for motor rehabilitation after stroke: Considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Physical Ther. 2013, 93, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, N.A. Attention span during lectures: 8 seconds, 10 minutes, or more? Adv. Physiol. Educ. 2016, 40, 509–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.-S.; Monrouxe, L.; Lu, Y.-H.; Jenq, C.-C.; Chang, Y.-J.; Chang, Y.-C.; Chai, P.Y.-C. Academic outcomes of flipped classroom learning: A meta-analysis. Med. Educ. 2018, 52, 910–924. [Google Scholar] [CrossRef] [Green Version]
- Ajilchi, B.; Nejati, V. Executive Functions in Students with Depression, Anxiety, and Stress Symptoms. BCN 2017, 8, 223–232. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tortella, G.R.; Seabra, A.B.; Padrão, J.; Díaz-San Juan, R. Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sci. 2021, 11, 552. https://doi.org/10.3390/brainsci11050552
Tortella GR, Seabra AB, Padrão J, Díaz-San Juan R. Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sciences. 2021; 11(5):552. https://doi.org/10.3390/brainsci11050552
Chicago/Turabian StyleTortella, Gonzalo R., Amedea B. Seabra, Jorge Padrão, and Rodrigo Díaz-San Juan. 2021. "Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic" Brain Sciences 11, no. 5: 552. https://doi.org/10.3390/brainsci11050552
APA StyleTortella, G. R., Seabra, A. B., Padrão, J., & Díaz-San Juan, R. (2021). Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sciences, 11(5), 552. https://doi.org/10.3390/brainsci11050552